Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of virtual tables.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Format.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
#include <cstdio>

using namespace clang;
using namespace CodeGen;

CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
    : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}

llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
                                              GlobalDecl GD) {
  return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
                                 /*DontDefer=*/true, /*IsThunk=*/true);
}

static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
                               llvm::Function *ThunkFn, bool ForVTable,
                               GlobalDecl GD) {
  CGM.setFunctionLinkage(GD, ThunkFn);
  CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
                                  !Thunk.Return.isEmpty());

  // Set the right visibility.
  CGM.setGVProperties(ThunkFn, GD);

  if (!CGM.getCXXABI().exportThunk()) {
    ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
    ThunkFn->setDSOLocal(true);
  }

  if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
}

#ifndef NDEBUG
static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
                    const ABIArgInfo &infoR, CanQualType typeR) {
  return (infoL.getKind() == infoR.getKind() &&
          (typeL == typeR ||
           (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
           (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
}
#endif

static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
                                      QualType ResultType, RValue RV,
                                      const ThunkInfo &Thunk) {
  // Emit the return adjustment.
  bool NullCheckValue = !ResultType->isReferenceType();

  llvm::BasicBlock *AdjustNull = nullptr;
  llvm::BasicBlock *AdjustNotNull = nullptr;
  llvm::BasicBlock *AdjustEnd = nullptr;

  llvm::Value *ReturnValue = RV.getScalarVal();

  if (NullCheckValue) {
    AdjustNull = CGF.createBasicBlock("adjust.null");
    AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
    AdjustEnd = CGF.createBasicBlock("adjust.end");

    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
    CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
    CGF.EmitBlock(AdjustNotNull);
  }

  auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
  auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
  ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
                                            Address(ReturnValue, ClassAlign),
                                            Thunk.Return);

  if (NullCheckValue) {
    CGF.Builder.CreateBr(AdjustEnd);
    CGF.EmitBlock(AdjustNull);
    CGF.Builder.CreateBr(AdjustEnd);
    CGF.EmitBlock(AdjustEnd);

    llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
    PHI->addIncoming(ReturnValue, AdjustNotNull);
    PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
                     AdjustNull);
    ReturnValue = PHI;
  }

  return RValue::get(ReturnValue);
}

/// This function clones a function's DISubprogram node and enters it into
/// a value map with the intent that the map can be utilized by the cloner
/// to short-circuit Metadata node mapping.
/// Furthermore, the function resolves any DILocalVariable nodes referenced
/// by dbg.value intrinsics so they can be properly mapped during cloning.
static void resolveTopLevelMetadata(llvm::Function *Fn,
                                    llvm::ValueToValueMapTy &VMap) {
  // Clone the DISubprogram node and put it into the Value map.
  auto *DIS = Fn->getSubprogram();
  if (!DIS)
    return;
  auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
  VMap.MD()[DIS].reset(NewDIS);

  // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
  // they are referencing.
  for (auto &BB : Fn->getBasicBlockList()) {
    for (auto &I : BB) {
      if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
        auto *DILocal = DII->getVariable();
        if (!DILocal->isResolved())
          DILocal->resolve();
      }
    }
  }
}

// This function does roughly the same thing as GenerateThunk, but in a
// very different way, so that va_start and va_end work correctly.
// FIXME: This function assumes "this" is the first non-sret LLVM argument of
//        a function, and that there is an alloca built in the entry block
//        for all accesses to "this".
// FIXME: This function assumes there is only one "ret" statement per function.
// FIXME: Cloning isn't correct in the presence of indirect goto!
// FIXME: This implementation of thunks bloats codesize by duplicating the
//        function definition.  There are alternatives:
//        1. Add some sort of stub support to LLVM for cases where we can
//           do a this adjustment, then a sibcall.
//        2. We could transform the definition to take a va_list instead of an
//           actual variable argument list, then have the thunks (including a
//           no-op thunk for the regular definition) call va_start/va_end.
//           There's a bit of per-call overhead for this solution, but it's
//           better for codesize if the definition is long.
llvm::Function *
CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
                                      const CGFunctionInfo &FnInfo,
                                      GlobalDecl GD, const ThunkInfo &Thunk) {
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
  QualType ResultType = FPT->getReturnType();

  // Get the original function
  assert(FnInfo.isVariadic());
  llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
  llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
  llvm::Function *BaseFn = cast<llvm::Function>(Callee);

  // Cloning can't work if we don't have a definition. The Microsoft ABI may
  // require thunks when a definition is not available. Emit an error in these
  // cases.
  if (!MD->isDefined()) {
    CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
    return Fn;
  }
  assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");

  // Clone to thunk.
  llvm::ValueToValueMapTy VMap;

  // We are cloning a function while some Metadata nodes are still unresolved.
  // Ensure that the value mapper does not encounter any of them.
  resolveTopLevelMetadata(BaseFn, VMap);
  llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
  Fn->replaceAllUsesWith(NewFn);
  NewFn->takeName(Fn);
  Fn->eraseFromParent();
  Fn = NewFn;

  // "Initialize" CGF (minimally).
  CurFn = Fn;

  // Get the "this" value
  llvm::Function::arg_iterator AI = Fn->arg_begin();
  if (CGM.ReturnTypeUsesSRet(FnInfo))
    ++AI;

  // Find the first store of "this", which will be to the alloca associated
  // with "this".
  Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
  llvm::BasicBlock *EntryBB = &Fn->front();
  llvm::BasicBlock::iterator ThisStore =
      std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
        return isa<llvm::StoreInst>(I) &&
               I.getOperand(0) == ThisPtr.getPointer();
      });
  assert(ThisStore != EntryBB->end() &&
         "Store of this should be in entry block?");
  // Adjust "this", if necessary.
  Builder.SetInsertPoint(&*ThisStore);
  llvm::Value *AdjustedThisPtr =
      CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
  AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
                                          ThisStore->getOperand(0)->getType());
  ThisStore->setOperand(0, AdjustedThisPtr);

  if (!Thunk.Return.isEmpty()) {
    // Fix up the returned value, if necessary.
    for (llvm::BasicBlock &BB : *Fn) {
      llvm::Instruction *T = BB.getTerminator();
      if (isa<llvm::ReturnInst>(T)) {
        RValue RV = RValue::get(T->getOperand(0));
        T->eraseFromParent();
        Builder.SetInsertPoint(&BB);
        RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
        Builder.CreateRet(RV.getScalarVal());
        break;
      }
    }
  }

  return Fn;
}

void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
                                 const CGFunctionInfo &FnInfo,
                                 bool IsUnprototyped) {
  assert(!CurGD.getDecl() && "CurGD was already set!");
  CurGD = GD;
  CurFuncIsThunk = true;

  // Build FunctionArgs.
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
  QualType ThisType = MD->getThisType();
  QualType ResultType;
  if (IsUnprototyped)
    ResultType = CGM.getContext().VoidTy;
  else if (CGM.getCXXABI().HasThisReturn(GD))
    ResultType = ThisType;
  else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
    ResultType = CGM.getContext().VoidPtrTy;
  else
    ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
  FunctionArgList FunctionArgs;

  // Create the implicit 'this' parameter declaration.
  CGM.getCXXABI().buildThisParam(*this, FunctionArgs);

  // Add the rest of the parameters, if we have a prototype to work with.
  if (!IsUnprototyped) {
    FunctionArgs.append(MD->param_begin(), MD->param_end());

    if (isa<CXXDestructorDecl>(MD))
      CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
                                                FunctionArgs);
  }

  // Start defining the function.
  auto NL = ApplyDebugLocation::CreateEmpty(*this);
  StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
                MD->getLocation());
  // Create a scope with an artificial location for the body of this function.
  auto AL = ApplyDebugLocation::CreateArtificial(*this);

  // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
  CXXThisValue = CXXABIThisValue;
  CurCodeDecl = MD;
  CurFuncDecl = MD;
}

void CodeGenFunction::FinishThunk() {
  // Clear these to restore the invariants expected by
  // StartFunction/FinishFunction.
  CurCodeDecl = nullptr;
  CurFuncDecl = nullptr;

  FinishFunction();
}

void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
                                                const ThunkInfo *Thunk,
                                                bool IsUnprototyped) {
  assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
         "Please use a new CGF for this thunk");
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());

  // Adjust the 'this' pointer if necessary
  llvm::Value *AdjustedThisPtr =
    Thunk ? CGM.getCXXABI().performThisAdjustment(
                          *this, LoadCXXThisAddress(), Thunk->This)
          : LoadCXXThis();

  // If perfect forwarding is required a variadic method, a method using
  // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
  // thunk requires a return adjustment, since that is impossible with musttail.
  if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
    if (Thunk && !Thunk->Return.isEmpty()) {
      if (IsUnprototyped)
        CGM.ErrorUnsupported(
            MD, "return-adjusting thunk with incomplete parameter type");
      else if (CurFnInfo->isVariadic())
        llvm_unreachable("shouldn't try to emit musttail return-adjusting "
                         "thunks for variadic functions");
      else
        CGM.ErrorUnsupported(
            MD, "non-trivial argument copy for return-adjusting thunk");
    }
    EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
    return;
  }

  // Start building CallArgs.
  CallArgList CallArgs;
  QualType ThisType = MD->getThisType();
  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);

  if (isa<CXXDestructorDecl>(MD))
    CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);

#ifndef NDEBUG
  unsigned PrefixArgs = CallArgs.size() - 1;
#endif
  // Add the rest of the arguments.
  for (const ParmVarDecl *PD : MD->parameters())
    EmitDelegateCallArg(CallArgs, PD, SourceLocation());

  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();

#ifndef NDEBUG
  const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
      CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
  assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
         CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
         CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
  assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
         similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
                 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
  assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
  for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
    assert(similar(CallFnInfo.arg_begin()[i].info,
                   CallFnInfo.arg_begin()[i].type,
                   CurFnInfo->arg_begin()[i].info,
                   CurFnInfo->arg_begin()[i].type));
#endif

  // Determine whether we have a return value slot to use.
  QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
                            ? ThisType
                            : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
                                  ? CGM.getContext().VoidPtrTy
                                  : FPT->getReturnType();
  ReturnValueSlot Slot;
  if (!ResultType->isVoidType() &&
      (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
       hasAggregateEvaluationKind(ResultType)))
    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
                           /*IsUnused=*/false, /*IsExternallyDestructed=*/true);

  // Now emit our call.
  llvm::CallBase *CallOrInvoke;
  RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
                       CallArgs, &CallOrInvoke);

  // Consider return adjustment if we have ThunkInfo.
  if (Thunk && !Thunk->Return.isEmpty())
    RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
  else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
    Call->setTailCallKind(llvm::CallInst::TCK_Tail);

  // Emit return.
  if (!ResultType->isVoidType() && Slot.isNull())
    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);

  // Disable the final ARC autorelease.
  AutoreleaseResult = false;

  FinishThunk();
}

void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
                                        llvm::Value *AdjustedThisPtr,
                                        llvm::FunctionCallee Callee) {
  // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
  // to translate AST arguments into LLVM IR arguments.  For thunks, we know
  // that the caller prototype more or less matches the callee prototype with
  // the exception of 'this'.
  SmallVector<llvm::Value *, 8> Args;
  for (llvm::Argument &A : CurFn->args())
    Args.push_back(&A);

  // Set the adjusted 'this' pointer.
  const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
  if (ThisAI.isDirect()) {
    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
    int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
    llvm::Type *ThisType = Args[ThisArgNo]->getType();
    if (ThisType != AdjustedThisPtr->getType())
      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
    Args[ThisArgNo] = AdjustedThisPtr;
  } else {
    assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
    Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
    llvm::Type *ThisType = ThisAddr.getElementType();
    if (ThisType != AdjustedThisPtr->getType())
      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
    Builder.CreateStore(AdjustedThisPtr, ThisAddr);
  }

  // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
  // don't actually want to run them.
  llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
  Call->setTailCallKind(llvm::CallInst::TCK_MustTail);

  // Apply the standard set of call attributes.
  unsigned CallingConv;
  llvm::AttributeList Attrs;
  CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
                             Attrs, CallingConv, /*AttrOnCallSite=*/true,
                             /*IsThunk=*/false);
  Call->setAttributes(Attrs);
  Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));

  if (Call->getType()->isVoidTy())
    Builder.CreateRetVoid();
  else
    Builder.CreateRet(Call);

  // Finish the function to maintain CodeGenFunction invariants.
  // FIXME: Don't emit unreachable code.
  EmitBlock(createBasicBlock());

  FinishThunk();
}

void CodeGenFunction::generateThunk(llvm::Function *Fn,
                                    const CGFunctionInfo &FnInfo, GlobalDecl GD,
                                    const ThunkInfo &Thunk,
                                    bool IsUnprototyped) {
  StartThunk(Fn, GD, FnInfo, IsUnprototyped);
  // Create a scope with an artificial location for the body of this function.
  auto AL = ApplyDebugLocation::CreateArtificial(*this);

  // Get our callee. Use a placeholder type if this method is unprototyped so
  // that CodeGenModule doesn't try to set attributes.
  llvm::Type *Ty;
  if (IsUnprototyped)
    Ty = llvm::StructType::get(getLLVMContext());
  else
    Ty = CGM.getTypes().GetFunctionType(FnInfo);

  llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);

  // Fix up the function type for an unprototyped musttail call.
  if (IsUnprototyped)
    Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());

  // Make the call and return the result.
  EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
                            &Thunk, IsUnprototyped);
}

static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
                                  bool IsUnprototyped, bool ForVTable) {
  // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
  // provide thunks for us.
  if (CGM.getTarget().getCXXABI().isMicrosoft())
    return true;

  // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
  // definitions of the main method. Therefore, emitting thunks with the vtable
  // is purely an optimization. Emit the thunk if optimizations are enabled and
  // all of the parameter types are complete.
  if (ForVTable)
    return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;

  // Always emit thunks along with the method definition.
  return true;
}

llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
                                               const ThunkInfo &TI,
                                               bool ForVTable) {
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());

  // First, get a declaration. Compute the mangled name. Don't worry about
  // getting the function prototype right, since we may only need this
  // declaration to fill in a vtable slot.
  SmallString<256> Name;
  MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
  llvm::raw_svector_ostream Out(Name);
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
    MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
  else
    MCtx.mangleThunk(MD, TI, Out);
  llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
  llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);

  // If we don't need to emit a definition, return this declaration as is.
  bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
      MD->getType()->castAs<FunctionType>());
  if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
    return Thunk;

  // Arrange a function prototype appropriate for a function definition. In some
  // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
  const CGFunctionInfo &FnInfo =
      IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
                     : CGM.getTypes().arrangeGlobalDeclaration(GD);
  llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);

  // If the type of the underlying GlobalValue is wrong, we'll have to replace
  // it. It should be a declaration.
  llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
  if (ThunkFn->getFunctionType() != ThunkFnTy) {
    llvm::GlobalValue *OldThunkFn = ThunkFn;

    assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");

    // Remove the name from the old thunk function and get a new thunk.
    OldThunkFn->setName(StringRef());
    ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
                                     Name.str(), &CGM.getModule());
    CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);

    // If needed, replace the old thunk with a bitcast.
    if (!OldThunkFn->use_empty()) {
      llvm::Constant *NewPtrForOldDecl =
          llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
      OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
    }

    // Remove the old thunk.
    OldThunkFn->eraseFromParent();
  }

  bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
  bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;

  if (!ThunkFn->isDeclaration()) {
    if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
      // There is already a thunk emitted for this function, do nothing.
      return ThunkFn;
    }

    setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
    return ThunkFn;
  }

  // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
  // that the return type is meaningless. These thunks can be used to call
  // functions with differing return types, and the caller is required to cast
  // the prototype appropriately to extract the correct value.
  if (IsUnprototyped)
    ThunkFn->addFnAttr("thunk");

  CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);

  // Thunks for variadic methods are special because in general variadic
  // arguments cannot be perfectly forwarded. In the general case, clang
  // implements such thunks by cloning the original function body. However, for
  // thunks with no return adjustment on targets that support musttail, we can
  // use musttail to perfectly forward the variadic arguments.
  bool ShouldCloneVarArgs = false;
  if (!IsUnprototyped && ThunkFn->isVarArg()) {
    ShouldCloneVarArgs = true;
    if (TI.Return.isEmpty()) {
      switch (CGM.getTriple().getArch()) {
      case llvm::Triple::x86_64:
      case llvm::Triple::x86:
      case llvm::Triple::aarch64:
        ShouldCloneVarArgs = false;
        break;
      default:
        break;
      }
    }
  }

  if (ShouldCloneVarArgs) {
    if (UseAvailableExternallyLinkage)
      return ThunkFn;
    ThunkFn =
        CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
  } else {
    // Normal thunk body generation.
    CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
  }

  setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
  return ThunkFn;
}

void CodeGenVTables::EmitThunks(GlobalDecl GD) {
  const CXXMethodDecl *MD =
    cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();

  // We don't need to generate thunks for the base destructor.
  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
    return;

  const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
      VTContext->getThunkInfo(GD);

  if (!ThunkInfoVector)
    return;

  for (const ThunkInfo& Thunk : *ThunkInfoVector)
    maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
}

void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
                                          llvm::Constant *component,
                                          unsigned vtableAddressPoint,
                                          bool vtableHasLocalLinkage,
                                          bool isCompleteDtor) const {
  // No need to get the offset of a nullptr.
  if (component->isNullValue())
    return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));

  auto *globalVal =
      cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
  llvm::Module &module = CGM.getModule();

  // We don't want to copy the linkage of the vtable exactly because we still
  // want the stub/proxy to be emitted for properly calculating the offset.
  // Examples where there would be no symbol emitted are available_externally
  // and private linkages.
  auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage
                                           : llvm::GlobalValue::ExternalLinkage;

  llvm::Constant *target;
  if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
    target = llvm::DSOLocalEquivalent::get(func);
  } else {
    llvm::SmallString<16> rttiProxyName(globalVal->getName());
    rttiProxyName.append(".rtti_proxy");

    // The RTTI component may not always be emitted in the same linkage unit as
    // the vtable. As a general case, we can make a dso_local proxy to the RTTI
    // that points to the actual RTTI struct somewhere. This will result in a
    // GOTPCREL relocation when taking the relative offset to the proxy.
    llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
    if (!proxy) {
      proxy = new llvm::GlobalVariable(module, globalVal->getType(),
                                       /*isConstant=*/true, stubLinkage,
                                       globalVal, rttiProxyName);
      proxy->setDSOLocal(true);
      proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
      if (!proxy->hasLocalLinkage()) {
        proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
        proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
      }
    }
    target = proxy;
  }

  builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
                                      /*position=*/vtableAddressPoint);
}

bool CodeGenVTables::useRelativeLayout() const {
  return CGM.getTarget().getCXXABI().isItaniumFamily() &&
         CGM.getItaniumVTableContext().isRelativeLayout();
}

llvm::Type *CodeGenVTables::getVTableComponentType() const {
  if (useRelativeLayout())
    return CGM.Int32Ty;
  return CGM.Int8PtrTy;
}

static void AddPointerLayoutOffset(const CodeGenModule &CGM,
                                   ConstantArrayBuilder &builder,
                                   CharUnits offset) {
  builder.add(llvm::ConstantExpr::getIntToPtr(
      llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
      CGM.Int8PtrTy));
}

static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
                                    ConstantArrayBuilder &builder,
                                    CharUnits offset) {
  builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
}

void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
                                        const VTableLayout &layout,
                                        unsigned componentIndex,
                                        llvm::Constant *rtti,
                                        unsigned &nextVTableThunkIndex,
                                        unsigned vtableAddressPoint,
                                        bool vtableHasLocalLinkage) {
  auto &component = layout.vtable_components()[componentIndex];

  auto addOffsetConstant =
      useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;

  switch (component.getKind()) {
  case VTableComponent::CK_VCallOffset:
    return addOffsetConstant(CGM, builder, component.getVCallOffset());

  case VTableComponent::CK_VBaseOffset:
    return addOffsetConstant(CGM, builder, component.getVBaseOffset());

  case VTableComponent::CK_OffsetToTop:
    return addOffsetConstant(CGM, builder, component.getOffsetToTop());

  case VTableComponent::CK_RTTI:
    if (useRelativeLayout())
      return addRelativeComponent(builder, rtti, vtableAddressPoint,
                                  vtableHasLocalLinkage,
                                  /*isCompleteDtor=*/false);
    else
      return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));

  case VTableComponent::CK_FunctionPointer:
  case VTableComponent::CK_CompleteDtorPointer:
  case VTableComponent::CK_DeletingDtorPointer: {
    GlobalDecl GD = component.getGlobalDecl();

    if (CGM.getLangOpts().CUDA) {
      // Emit NULL for methods we can't codegen on this
      // side. Otherwise we'd end up with vtable with unresolved
      // references.
      const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
      // OK on device side: functions w/ __device__ attribute
      // OK on host side: anything except __device__-only functions.
      bool CanEmitMethod =
          CGM.getLangOpts().CUDAIsDevice
              ? MD->hasAttr<CUDADeviceAttr>()
              : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
      if (!CanEmitMethod)
        return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy));
      // Method is acceptable, continue processing as usual.
    }

    auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
      // FIXME(PR43094): When merging comdat groups, lld can select a local
      // symbol as the signature symbol even though it cannot be accessed
      // outside that symbol's TU. The relative vtables ABI would make
      // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
      // depending on link order, the comdat groups could resolve to the one
      // with the local symbol. As a temporary solution, fill these components
      // with zero. We shouldn't be calling these in the first place anyway.
      if (useRelativeLayout())
        return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);

      // For NVPTX devices in OpenMP emit special functon as null pointers,
      // otherwise linking ends up with unresolved references.
      if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
          CGM.getTriple().isNVPTX())
        return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
      llvm::FunctionType *fnTy =
          llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
      llvm::Constant *fn = cast<llvm::Constant>(
          CGM.CreateRuntimeFunction(fnTy, name).getCallee());
      if (auto f = dyn_cast<llvm::Function>(fn))
        f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
      return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
    };

    llvm::Constant *fnPtr;

    // Pure virtual member functions.
    if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
      if (!PureVirtualFn)
        PureVirtualFn =
            getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
      fnPtr = PureVirtualFn;

    // Deleted virtual member functions.
    } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
      if (!DeletedVirtualFn)
        DeletedVirtualFn =
            getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
      fnPtr = DeletedVirtualFn;

    // Thunks.
    } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
               layout.vtable_thunks()[nextVTableThunkIndex].first ==
                   componentIndex) {
      auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;

      nextVTableThunkIndex++;
      fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);

    // Otherwise we can use the method definition directly.
    } else {
      llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
      fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
    }

    if (useRelativeLayout()) {
      return addRelativeComponent(
          builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
          component.getKind() == VTableComponent::CK_CompleteDtorPointer);
    } else
      return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy));
  }

  case VTableComponent::CK_UnusedFunctionPointer:
    if (useRelativeLayout())
      return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
    else
      return builder.addNullPointer(CGM.Int8PtrTy);
  }

  llvm_unreachable("Unexpected vtable component kind");
}

llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
  SmallVector<llvm::Type *, 4> tys;
  llvm::Type *componentType = getVTableComponentType();
  for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
    tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));

  return llvm::StructType::get(CGM.getLLVMContext(), tys);
}

void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
                                             const VTableLayout &layout,
                                             llvm::Constant *rtti,
                                             bool vtableHasLocalLinkage) {
  llvm::Type *componentType = getVTableComponentType();

  const auto &addressPoints = layout.getAddressPointIndices();
  unsigned nextVTableThunkIndex = 0;
  for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
       vtableIndex != endIndex; ++vtableIndex) {
    auto vtableElem = builder.beginArray(componentType);

    size_t vtableStart = layout.getVTableOffset(vtableIndex);
    size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
    for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
         ++componentIndex) {
      addVTableComponent(vtableElem, layout, componentIndex, rtti,
                         nextVTableThunkIndex, addressPoints[vtableIndex],
                         vtableHasLocalLinkage);
    }
    vtableElem.finishAndAddTo(builder);
  }
}

llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
    const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
    llvm::GlobalVariable::LinkageTypes Linkage,
    VTableAddressPointsMapTy &AddressPoints) {
  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    DI->completeClassData(Base.getBase());

  std::unique_ptr<VTableLayout> VTLayout(
      getItaniumVTableContext().createConstructionVTableLayout(
          Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));

  // Add the address points.
  AddressPoints = VTLayout->getAddressPoints();

  // Get the mangled construction vtable name.
  SmallString<256> OutName;
  llvm::raw_svector_ostream Out(OutName);
  cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
      .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
                           Base.getBase(), Out);
  SmallString<256> Name(OutName);

  bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
  bool VTableAliasExists =
      UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
  if (VTableAliasExists) {
    // We previously made the vtable hidden and changed its name.
    Name.append(".local");
  }

  llvm::Type *VTType = getVTableType(*VTLayout);

  // Construction vtable symbols are not part of the Itanium ABI, so we cannot
  // guarantee that they actually will be available externally. Instead, when
  // emitting an available_externally VTT, we provide references to an internal
  // linkage construction vtable. The ABI only requires complete-object vtables
  // to be the same for all instances of a type, not construction vtables.
  if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
    Linkage = llvm::GlobalVariable::InternalLinkage;

  unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);

  // Create the variable that will hold the construction vtable.
  llvm::GlobalVariable *VTable =
      CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);

  // V-tables are always unnamed_addr.
  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);

  llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
      CGM.getContext().getTagDeclType(Base.getBase()));

  // Create and set the initializer.
  ConstantInitBuilder builder(CGM);
  auto components = builder.beginStruct();
  createVTableInitializer(components, *VTLayout, RTTI,
                          VTable->hasLocalLinkage());
  components.finishAndSetAsInitializer(VTable);

  // Set properties only after the initializer has been set to ensure that the
  // GV is treated as definition and not declaration.
  assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
  CGM.setGVProperties(VTable, RD);

  CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());

  if (UsingRelativeLayout && !VTable->isDSOLocal())
    GenerateRelativeVTableAlias(VTable, OutName);

  return VTable;
}

// If the VTable is not dso_local, then we will not be able to indicate that
// the VTable does not need a relocation and move into rodata. A frequent
// time this can occur is for classes that should be made public from a DSO
// (like in libc++). For cases like these, we can make the vtable hidden or
// private and create a public alias with the same visibility and linkage as
// the original vtable type.
void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
                                                 llvm::StringRef AliasNameRef) {
  assert(getItaniumVTableContext().isRelativeLayout() &&
         "Can only use this if the relative vtable ABI is used");
  assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
                                  "not guaranteed to be dso_local");

  // If the vtable is available_externally, we shouldn't (or need to) generate
  // an alias for it in the first place since the vtable won't actually by
  // emitted in this compilation unit.
  if (VTable->hasAvailableExternallyLinkage())
    return;

  // Create a new string in the event the alias is already the name of the
  // vtable. Using the reference directly could lead to use of an inititialized
  // value in the module's StringMap.
  llvm::SmallString<256> AliasName(AliasNameRef);
  VTable->setName(AliasName + ".local");

  auto Linkage = VTable->getLinkage();
  assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
         "Invalid vtable alias linkage");

  llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
  if (!VTableAlias) {
    VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
                                            VTable->getAddressSpace(), Linkage,
                                            AliasName, &CGM.getModule());
  } else {
    assert(VTableAlias->getValueType() == VTable->getValueType());
    assert(VTableAlias->getLinkage() == Linkage);
  }
  VTableAlias->setVisibility(VTable->getVisibility());
  VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());

  // Both of these imply dso_local for the vtable.
  if (!VTable->hasComdat()) {
    // If this is in a comdat, then we shouldn't make the linkage private due to
    // an issue in lld where private symbols can be used as the key symbol when
    // choosing the prevelant group. This leads to "relocation refers to a
    // symbol in a discarded section".
    VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
  } else {
    // We should at least make this hidden since we don't want to expose it.
    VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
  }

  VTableAlias->setAliasee(VTable);
}

static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
                                                const CXXRecordDecl *RD) {
  return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
         CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
}

/// Compute the required linkage of the vtable for the given class.
///
/// Note that we only call this at the end of the translation unit.
llvm::GlobalVariable::LinkageTypes
CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
  if (!RD->isExternallyVisible())
    return llvm::GlobalVariable::InternalLinkage;

  // We're at the end of the translation unit, so the current key
  // function is fully correct.
  const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
  if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
    // If this class has a key function, use that to determine the
    // linkage of the vtable.
    const FunctionDecl *def = nullptr;
    if (keyFunction->hasBody(def))
      keyFunction = cast<CXXMethodDecl>(def);

    switch (keyFunction->getTemplateSpecializationKind()) {
      case TSK_Undeclared:
      case TSK_ExplicitSpecialization:
        assert((def || CodeGenOpts.OptimizationLevel > 0 ||
                CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
               "Shouldn't query vtable linkage without key function, "
               "optimizations, or debug info");
        if (!def && CodeGenOpts.OptimizationLevel > 0)
          return llvm::GlobalVariable::AvailableExternallyLinkage;

        if (keyFunction->isInlined())
          return !Context.getLangOpts().AppleKext ?
                   llvm::GlobalVariable::LinkOnceODRLinkage :
                   llvm::Function::InternalLinkage;

        return llvm::GlobalVariable::ExternalLinkage;

      case TSK_ImplicitInstantiation:
        return !Context.getLangOpts().AppleKext ?
                 llvm::GlobalVariable::LinkOnceODRLinkage :
                 llvm::Function::InternalLinkage;

      case TSK_ExplicitInstantiationDefinition:
        return !Context.getLangOpts().AppleKext ?
                 llvm::GlobalVariable::WeakODRLinkage :
                 llvm::Function::InternalLinkage;

      case TSK_ExplicitInstantiationDeclaration:
        llvm_unreachable("Should not have been asked to emit this");
    }
  }

  // -fapple-kext mode does not support weak linkage, so we must use
  // internal linkage.
  if (Context.getLangOpts().AppleKext)
    return llvm::Function::InternalLinkage;

  llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
      llvm::GlobalValue::LinkOnceODRLinkage;
  llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
      llvm::GlobalValue::WeakODRLinkage;
  if (RD->hasAttr<DLLExportAttr>()) {
    // Cannot discard exported vtables.
    DiscardableODRLinkage = NonDiscardableODRLinkage;
  } else if (RD->hasAttr<DLLImportAttr>()) {
    // Imported vtables are available externally.
    DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
    NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
  }

  switch (RD->getTemplateSpecializationKind()) {
    case TSK_Undeclared:
    case TSK_ExplicitSpecialization:
    case TSK_ImplicitInstantiation:
      return DiscardableODRLinkage;

    case TSK_ExplicitInstantiationDeclaration:
      // Explicit instantiations in MSVC do not provide vtables, so we must emit
      // our own.
      if (getTarget().getCXXABI().isMicrosoft())
        return DiscardableODRLinkage;
      return shouldEmitAvailableExternallyVTable(*this, RD)
                 ? llvm::GlobalVariable::AvailableExternallyLinkage
                 : llvm::GlobalVariable::ExternalLinkage;

    case TSK_ExplicitInstantiationDefinition:
      return NonDiscardableODRLinkage;
  }

  llvm_unreachable("Invalid TemplateSpecializationKind!");
}

/// This is a callback from Sema to tell us that a particular vtable is
/// required to be emitted in this translation unit.
///
/// This is only called for vtables that _must_ be emitted (mainly due to key
/// functions).  For weak vtables, CodeGen tracks when they are needed and
/// emits them as-needed.
void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
  VTables.GenerateClassData(theClass);
}

void
CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    DI->completeClassData(RD);

  if (RD->getNumVBases())
    CGM.getCXXABI().emitVirtualInheritanceTables(RD);

  CGM.getCXXABI().emitVTableDefinitions(*this, RD);
}

/// At this point in the translation unit, does it appear that can we
/// rely on the vtable being defined elsewhere in the program?
///
/// The response is really only definitive when called at the end of
/// the translation unit.
///
/// The only semantic restriction here is that the object file should
/// not contain a vtable definition when that vtable is defined
/// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
/// vtables when unnecessary.
bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
  assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");

  // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
  // emit them even if there is an explicit template instantiation.
  if (CGM.getTarget().getCXXABI().isMicrosoft())
    return false;

  // If we have an explicit instantiation declaration (and not a
  // definition), the vtable is defined elsewhere.
  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
  if (TSK == TSK_ExplicitInstantiationDeclaration)
    return true;

  // Otherwise, if the class is an instantiated template, the
  // vtable must be defined here.
  if (TSK == TSK_ImplicitInstantiation ||
      TSK == TSK_ExplicitInstantiationDefinition)
    return false;

  // Otherwise, if the class doesn't have a key function (possibly
  // anymore), the vtable must be defined here.
  const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
  if (!keyFunction)
    return false;

  // Otherwise, if we don't have a definition of the key function, the
  // vtable must be defined somewhere else.
  return !keyFunction->hasBody();
}

/// Given that we're currently at the end of the translation unit, and
/// we've emitted a reference to the vtable for this class, should
/// we define that vtable?
static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
                                                   const CXXRecordDecl *RD) {
  // If vtable is internal then it has to be done.
  if (!CGM.getVTables().isVTableExternal(RD))
    return true;

  // If it's external then maybe we will need it as available_externally.
  return shouldEmitAvailableExternallyVTable(CGM, RD);
}

/// Given that at some point we emitted a reference to one or more
/// vtables, and that we are now at the end of the translation unit,
/// decide whether we should emit them.
void CodeGenModule::EmitDeferredVTables() {
#ifndef NDEBUG
  // Remember the size of DeferredVTables, because we're going to assume
  // that this entire operation doesn't modify it.
  size_t savedSize = DeferredVTables.size();
#endif

  for (const CXXRecordDecl *RD : DeferredVTables)
    if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
      VTables.GenerateClassData(RD);
    else if (shouldOpportunisticallyEmitVTables())
      OpportunisticVTables.push_back(RD);

  assert(savedSize == DeferredVTables.size() &&
         "deferred extra vtables during vtable emission?");
  DeferredVTables.clear();
}

bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) {
  if (!getCodeGenOpts().LTOVisibilityPublicStd)
    return false;

  const DeclContext *DC = RD;
  while (1) {
    auto *D = cast<Decl>(DC);
    DC = DC->getParent();
    if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
      if (auto *ND = dyn_cast<NamespaceDecl>(D))
        if (const IdentifierInfo *II = ND->getIdentifier())
          if (II->isStr("std") || II->isStr("stdext"))
            return true;
      break;
    }
  }

  return false;
}

bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
  LinkageInfo LV = RD->getLinkageAndVisibility();
  if (!isExternallyVisible(LV.getLinkage()))
    return true;

  if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
    return false;

  if (getTriple().isOSBinFormatCOFF()) {
    if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
      return false;
  } else {
    if (LV.getVisibility() != HiddenVisibility)
      return false;
  }

  return !HasLTOVisibilityPublicStd(RD);
}

llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
    const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
  // If we have already visited this RD (which means this is a recursive call
  // since the initial call should have an empty Visited set), return the max
  // visibility. The recursive calls below compute the min between the result
  // of the recursive call and the current TypeVis, so returning the max here
  // ensures that it will have no effect on the current TypeVis.
  if (!Visited.insert(RD).second)
    return llvm::GlobalObject::VCallVisibilityTranslationUnit;

  LinkageInfo LV = RD->getLinkageAndVisibility();
  llvm::GlobalObject::VCallVisibility TypeVis;
  if (!isExternallyVisible(LV.getLinkage()))
    TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
  else if (HasHiddenLTOVisibility(RD))
    TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
  else
    TypeVis = llvm::GlobalObject::VCallVisibilityPublic;

  for (auto B : RD->bases())
    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
      TypeVis = std::min(
          TypeVis,
          GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));

  for (auto B : RD->vbases())
    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
      TypeVis = std::min(
          TypeVis,
          GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));

  return TypeVis;
}

void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
                                           llvm::GlobalVariable *VTable,
                                           const VTableLayout &VTLayout) {
  if (!getCodeGenOpts().LTOUnit)
    return;

  CharUnits PointerWidth =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));

  typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
  std::vector<AddressPoint> AddressPoints;
  for (auto &&AP : VTLayout.getAddressPoints())
    AddressPoints.push_back(std::make_pair(
        AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
                                AP.second.AddressPointIndex));

  // Sort the address points for determinism.
  llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
                                   const AddressPoint &AP2) {
    if (&AP1 == &AP2)
      return false;

    std::string S1;
    llvm::raw_string_ostream O1(S1);
    getCXXABI().getMangleContext().mangleTypeName(
        QualType(AP1.first->getTypeForDecl(), 0), O1);
    O1.flush();

    std::string S2;
    llvm::raw_string_ostream O2(S2);
    getCXXABI().getMangleContext().mangleTypeName(
        QualType(AP2.first->getTypeForDecl(), 0), O2);
    O2.flush();

    if (S1 < S2)
      return true;
    if (S1 != S2)
      return false;

    return AP1.second < AP2.second;
  });

  ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
  for (auto AP : AddressPoints) {
    // Create type metadata for the address point.
    AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);

    // The class associated with each address point could also potentially be
    // used for indirect calls via a member function pointer, so we need to
    // annotate the address of each function pointer with the appropriate member
    // function pointer type.
    for (unsigned I = 0; I != Comps.size(); ++I) {
      if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
        continue;
      llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
          Context.getMemberPointerType(
              Comps[I].getFunctionDecl()->getType(),
              Context.getRecordType(AP.first).getTypePtr()));
      VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
    }
  }

  if (getCodeGenOpts().VirtualFunctionElimination ||
      getCodeGenOpts().WholeProgramVTables) {
    llvm::DenseSet<const CXXRecordDecl *> Visited;
    llvm::GlobalObject::VCallVisibility TypeVis =
        GetVCallVisibilityLevel(RD, Visited);
    if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
      VTable->setVCallVisibilityMetadata(TypeVis);
  }
}