//===---- ELF_x86_64.cpp -JIT linker implementation for ELF/x86-64 ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ELF/x86-64 jit-link implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JITLink/ELF_x86_64.h"
#include "llvm/ExecutionEngine/JITLink/JITLink.h"
#include "llvm/ExecutionEngine/JITLink/x86_64.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Endian.h"
#include "DefineExternalSectionStartAndEndSymbols.h"
#include "EHFrameSupportImpl.h"
#include "JITLinkGeneric.h"
#include "PerGraphGOTAndPLTStubsBuilder.h"
#define DEBUG_TYPE "jitlink"
using namespace llvm;
using namespace llvm::jitlink;
using namespace llvm::jitlink::ELF_x86_64_Edges;
namespace {
constexpr StringRef ELFGOTSectionName = "$__GOT";
constexpr StringRef ELFGOTSymbolName = "_GLOBAL_OFFSET_TABLE_";
class PerGraphGOTAndPLTStubsBuilder_ELF_x86_64
: public PerGraphGOTAndPLTStubsBuilder<
PerGraphGOTAndPLTStubsBuilder_ELF_x86_64> {
public:
static const uint8_t NullGOTEntryContent[8];
static const uint8_t StubContent[6];
using PerGraphGOTAndPLTStubsBuilder<
PerGraphGOTAndPLTStubsBuilder_ELF_x86_64>::PerGraphGOTAndPLTStubsBuilder;
bool isGOTEdgeToFix(Edge &E) const {
if (E.getKind() == GOTOFF64) {
// We need to make sure that the GOT section exists, but don't otherwise
// need to fix up this edge.
getGOTSection();
return false;
}
return E.getKind() == PCRel32GOT || E.getKind() == PCRel32GOTLoad ||
E.getKind() == PCRel64GOT || E.getKind() == GOT64;
}
Symbol &createGOTEntry(Symbol &Target) {
auto &GOTEntryBlock = G.createContentBlock(
getGOTSection(), getGOTEntryBlockContent(), 0, 8, 0);
GOTEntryBlock.addEdge(Pointer64, 0, Target, 0);
return G.addAnonymousSymbol(GOTEntryBlock, 0, 8, false, false);
}
void fixGOTEdge(Edge &E, Symbol &GOTEntry) {
// If this is a PCRel32GOT/PCRel64GOT then change it to an ordinary
// PCRel32/PCRel64. If it is a PCRel32GOTLoad then leave it as-is for now:
// We will use the kind to check for GOT optimization opportunities in the
// optimizeMachO_x86_64_GOTAndStubs pass below.
// If it's a GOT64 leave it as is.
switch (E.getKind()) {
case PCRel32GOT:
E.setKind(PCRel32);
break;
case PCRel64GOT:
E.setKind(PCRel64);
break;
case GOT64:
break;
case PCRel32GOTLoad:
break;
default:
llvm_unreachable("Unexpected GOT edge kind");
}
E.setTarget(GOTEntry);
// Leave the edge addend as-is.
}
bool isExternalBranchEdge(Edge &E) {
return E.getKind() == Branch32 && !E.getTarget().isDefined();
}
Symbol &createPLTStub(Symbol &Target) {
auto &StubContentBlock =
G.createContentBlock(getStubsSection(), getStubBlockContent(), 0, 1, 0);
// Re-use GOT entries for stub targets.
auto &GOTEntrySymbol = getGOTEntry(Target);
StubContentBlock.addEdge(PCRel32, 2, GOTEntrySymbol, -4);
return G.addAnonymousSymbol(StubContentBlock, 0, 6, true, false);
}
void fixPLTEdge(Edge &E, Symbol &Stub) {
assert(E.getKind() == Branch32 && "Not a Branch32 edge?");
// Set the edge kind to Branch32ToStub. We will use this to check for stub
// optimization opportunities in the optimize ELF_x86_64_GOTAndStubs pass
// below.
E.setKind(Branch32ToStub);
E.setTarget(Stub);
}
private:
Section &getGOTSection() const {
if (!GOTSection)
GOTSection = &G.createSection(ELFGOTSectionName, sys::Memory::MF_READ);
return *GOTSection;
}
Section &getStubsSection() const {
if (!StubsSection) {
auto StubsProt = static_cast<sys::Memory::ProtectionFlags>(
sys::Memory::MF_READ | sys::Memory::MF_EXEC);
StubsSection = &G.createSection("$__STUBS", StubsProt);
}
return *StubsSection;
}
ArrayRef<char> getGOTEntryBlockContent() {
return {reinterpret_cast<const char *>(NullGOTEntryContent),
sizeof(NullGOTEntryContent)};
}
ArrayRef<char> getStubBlockContent() {
return {reinterpret_cast<const char *>(StubContent), sizeof(StubContent)};
}
mutable Section *GOTSection = nullptr;
mutable Section *StubsSection = nullptr;
};
const char *const DwarfSectionNames[] = {
#define HANDLE_DWARF_SECTION(ENUM_NAME, ELF_NAME, CMDLINE_NAME, OPTION) \
ELF_NAME,
#include "llvm/BinaryFormat/Dwarf.def"
#undef HANDLE_DWARF_SECTION
};
} // namespace
const uint8_t PerGraphGOTAndPLTStubsBuilder_ELF_x86_64::NullGOTEntryContent[8] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
const uint8_t PerGraphGOTAndPLTStubsBuilder_ELF_x86_64::StubContent[6] = {
0xFF, 0x25, 0x00, 0x00, 0x00, 0x00};
static const char *CommonSectionName = "__common";
static Error optimizeELF_x86_64_GOTAndStubs(LinkGraph &G) {
LLVM_DEBUG(dbgs() << "Optimizing GOT entries and stubs:\n");
for (auto *B : G.blocks())
for (auto &E : B->edges())
if (E.getKind() == PCRel32GOTLoad) {
// Replace GOT load with LEA only for MOVQ instructions.
constexpr uint8_t MOVQRIPRel[] = {0x48, 0x8b};
if (E.getOffset() < 3 ||
strncmp(B->getContent().data() + E.getOffset() - 3,
reinterpret_cast<const char *>(MOVQRIPRel), 2) != 0)
continue;
auto &GOTBlock = E.getTarget().getBlock();
assert(GOTBlock.getSize() == G.getPointerSize() &&
"GOT entry block should be pointer sized");
assert(GOTBlock.edges_size() == 1 &&
"GOT entry should only have one outgoing edge");
auto &GOTTarget = GOTBlock.edges().begin()->getTarget();
JITTargetAddress EdgeAddr = B->getAddress() + E.getOffset();
JITTargetAddress TargetAddr = GOTTarget.getAddress();
int64_t Displacement = TargetAddr - EdgeAddr + 4;
if (Displacement >= std::numeric_limits<int32_t>::min() &&
Displacement <= std::numeric_limits<int32_t>::max()) {
// Change the edge kind as we don't go through GOT anymore. This is
// for formal correctness only. Technically, the two relocation kinds
// are resolved the same way.
E.setKind(PCRel32);
E.setTarget(GOTTarget);
auto *BlockData = reinterpret_cast<uint8_t *>(
const_cast<char *>(B->getContent().data()));
BlockData[E.getOffset() - 2] = 0x8d;
LLVM_DEBUG({
dbgs() << " Replaced GOT load wih LEA:\n ";
printEdge(dbgs(), *B, E, getELFX86RelocationKindName(E.getKind()));
dbgs() << "\n";
});
}
} else if (E.getKind() == Branch32ToStub) {
auto &StubBlock = E.getTarget().getBlock();
assert(
StubBlock.getSize() ==
sizeof(PerGraphGOTAndPLTStubsBuilder_ELF_x86_64::StubContent) &&
"Stub block should be stub sized");
assert(StubBlock.edges_size() == 1 &&
"Stub block should only have one outgoing edge");
auto &GOTBlock = StubBlock.edges().begin()->getTarget().getBlock();
assert(GOTBlock.getSize() == G.getPointerSize() &&
"GOT block should be pointer sized");
assert(GOTBlock.edges_size() == 1 &&
"GOT block should only have one outgoing edge");
auto &GOTTarget = GOTBlock.edges().begin()->getTarget();
JITTargetAddress EdgeAddr = B->getAddress() + E.getOffset();
JITTargetAddress TargetAddr = GOTTarget.getAddress();
int64_t Displacement = TargetAddr - EdgeAddr + 4;
if (Displacement >= std::numeric_limits<int32_t>::min() &&
Displacement <= std::numeric_limits<int32_t>::max()) {
E.setKind(Branch32);
E.setTarget(GOTTarget);
LLVM_DEBUG({
dbgs() << " Replaced stub branch with direct branch:\n ";
printEdge(dbgs(), *B, E, getELFX86RelocationKindName(E.getKind()));
dbgs() << "\n";
});
}
}
return Error::success();
}
static bool isDwarfSection(StringRef SectionName) {
return llvm::is_contained(DwarfSectionNames, SectionName);
}
namespace llvm {
namespace jitlink {
// This should become a template as the ELFFile is so a lot of this could become
// generic
class ELFLinkGraphBuilder_x86_64 {
private:
Section *CommonSection = nullptr;
// TODO hack to get this working
// Find a better way
using SymbolTable = object::ELFFile<object::ELF64LE>::Elf_Shdr;
// For now we just assume
using SymbolMap = std::map<int32_t, Symbol *>;
SymbolMap JITSymbolTable;
Section &getCommonSection() {
if (!CommonSection) {
auto Prot = static_cast<sys::Memory::ProtectionFlags>(
sys::Memory::MF_READ | sys::Memory::MF_WRITE);
CommonSection = &G->createSection(CommonSectionName, Prot);
}
return *CommonSection;
}
static Expected<ELF_x86_64_Edges::ELFX86RelocationKind>
getRelocationKind(const uint32_t Type) {
switch (Type) {
case ELF::R_X86_64_PC32:
return ELF_x86_64_Edges::ELFX86RelocationKind::PCRel32;
case ELF::R_X86_64_PC64:
case ELF::R_X86_64_GOTPC64:
return ELF_x86_64_Edges::ELFX86RelocationKind::Delta64;
case ELF::R_X86_64_64:
return ELF_x86_64_Edges::ELFX86RelocationKind::Pointer64;
case ELF::R_X86_64_GOTPCREL:
case ELF::R_X86_64_GOTPCRELX:
case ELF::R_X86_64_REX_GOTPCRELX:
return ELF_x86_64_Edges::ELFX86RelocationKind::PCRel32GOTLoad;
case ELF::R_X86_64_GOTPCREL64:
return ELF_x86_64_Edges::ELFX86RelocationKind::PCRel64GOT;
case ELF::R_X86_64_GOT64:
return ELF_x86_64_Edges::ELFX86RelocationKind::GOT64;
case ELF::R_X86_64_GOTOFF64:
return ELF_x86_64_Edges::ELFX86RelocationKind::GOTOFF64;
case ELF::R_X86_64_PLT32:
return ELF_x86_64_Edges::ELFX86RelocationKind::Branch32;
}
return make_error<JITLinkError>("Unsupported x86-64 relocation:" +
formatv("{0:d}", Type));
}
std::unique_ptr<LinkGraph> G;
// This could be a template
const object::ELFFile<object::ELF64LE> &Obj;
object::ELFFile<object::ELF64LE>::Elf_Shdr_Range sections;
SymbolTable SymTab;
bool isRelocatable() { return Obj.getHeader().e_type == llvm::ELF::ET_REL; }
support::endianness
getEndianness(const object::ELFFile<object::ELF64LE> &Obj) {
return Obj.isLE() ? support::little : support::big;
}
// This could also just become part of a template
unsigned getPointerSize(const object::ELFFile<object::ELF64LE> &Obj) {
return Obj.getHeader().getFileClass() == ELF::ELFCLASS64 ? 8 : 4;
}
// We don't technically need this right now
// But for now going to keep it as it helps me to debug things
Error createNormalizedSymbols() {
LLVM_DEBUG(dbgs() << "Creating normalized symbols...\n");
for (auto SecRef : sections) {
if (SecRef.sh_type != ELF::SHT_SYMTAB &&
SecRef.sh_type != ELF::SHT_DYNSYM)
continue;
auto Symbols = Obj.symbols(&SecRef);
// TODO: Currently I use this function to test things
// I also want to leave it to see if its common between MACH and elf
// so for now I just want to continue even if there is an error
if (errorToBool(Symbols.takeError()))
continue;
auto StrTabSec = Obj.getSection(SecRef.sh_link);
if (!StrTabSec)
return StrTabSec.takeError();
auto StringTable = Obj.getStringTable(**StrTabSec);
if (!StringTable)
return StringTable.takeError();
for (auto SymRef : *Symbols) {
Optional<StringRef> Name;
if (auto NameOrErr = SymRef.getName(*StringTable))
Name = *NameOrErr;
else
return NameOrErr.takeError();
LLVM_DEBUG({
dbgs() << " value = " << formatv("{0:x16}", SymRef.getValue())
<< ", type = " << formatv("{0:x2}", SymRef.getType())
<< ", binding = " << formatv("{0:x2}", SymRef.getBinding())
<< ", size = "
<< formatv("{0:x16}", static_cast<uint64_t>(SymRef.st_size))
<< ", info = " << formatv("{0:x2}", SymRef.st_info)
<< " :" << (Name ? *Name : "<anonymous symbol>") << "\n";
});
}
}
return Error::success();
}
Error createNormalizedSections() {
LLVM_DEBUG(dbgs() << "Creating normalized sections...\n");
for (auto &SecRef : sections) {
auto Name = Obj.getSectionName(SecRef);
if (!Name)
return Name.takeError();
// Skip Dwarf sections.
if (isDwarfSection(*Name)) {
LLVM_DEBUG({
dbgs() << *Name
<< " is a debug section: No graph section will be created.\n";
});
continue;
}
sys::Memory::ProtectionFlags Prot;
if (SecRef.sh_flags & ELF::SHF_EXECINSTR) {
Prot = static_cast<sys::Memory::ProtectionFlags>(sys::Memory::MF_READ |
sys::Memory::MF_EXEC);
} else {
Prot = static_cast<sys::Memory::ProtectionFlags>(sys::Memory::MF_READ |
sys::Memory::MF_WRITE);
}
uint64_t Address = SecRef.sh_addr;
uint64_t Size = SecRef.sh_size;
uint64_t Flags = SecRef.sh_flags;
uint64_t Alignment = SecRef.sh_addralign;
const char *Data = nullptr;
// for now we just use this to skip the "undefined" section, probably need
// to revist
if (Size == 0)
continue;
// FIXME: Use flags.
(void)Flags;
LLVM_DEBUG({
dbgs() << " " << *Name << ": " << formatv("{0:x16}", Address) << " -- "
<< formatv("{0:x16}", Address + Size) << ", align: " << Alignment
<< " Flags: " << formatv("{0:x}", Flags) << "\n";
});
if (SecRef.sh_type != ELF::SHT_NOBITS) {
// .sections() already checks that the data is not beyond the end of
// file
auto contents = Obj.getSectionContentsAsArray<char>(SecRef);
if (!contents)
return contents.takeError();
Data = contents->data();
// TODO protection flags.
// for now everything is
auto §ion = G->createSection(*Name, Prot);
// Do this here because we have it, but move it into graphify later
G->createContentBlock(section, ArrayRef<char>(Data, Size), Address,
Alignment, 0);
if (SecRef.sh_type == ELF::SHT_SYMTAB)
// TODO: Dynamic?
SymTab = SecRef;
} else {
auto &Section = G->createSection(*Name, Prot);
G->createZeroFillBlock(Section, Size, Address, Alignment, 0);
}
}
return Error::success();
}
Error addRelocations() {
LLVM_DEBUG(dbgs() << "Adding relocations\n");
// TODO a partern is forming of iterate some sections but only give me
// ones I am interested, i should abstract that concept some where
for (auto &SecRef : sections) {
if (SecRef.sh_type != ELF::SHT_RELA && SecRef.sh_type != ELF::SHT_REL)
continue;
// TODO can the elf obj file do this for me?
if (SecRef.sh_type == ELF::SHT_REL)
return make_error<llvm::StringError>("Shouldn't have REL in x64",
llvm::inconvertibleErrorCode());
auto RelSectName = Obj.getSectionName(SecRef);
if (!RelSectName)
return RelSectName.takeError();
LLVM_DEBUG({
dbgs() << "Adding relocations from section " << *RelSectName << "\n";
});
auto UpdateSection = Obj.getSection(SecRef.sh_info);
if (!UpdateSection)
return UpdateSection.takeError();
auto UpdateSectionName = Obj.getSectionName(**UpdateSection);
if (!UpdateSectionName)
return UpdateSectionName.takeError();
// Don't process relocations for debug sections.
if (isDwarfSection(*UpdateSectionName)) {
LLVM_DEBUG({
dbgs() << " Target is dwarf section " << *UpdateSectionName
<< ". Skipping.\n";
});
continue;
} else
LLVM_DEBUG({
dbgs() << " For target section " << *UpdateSectionName << "\n";
});
auto JITSection = G->findSectionByName(*UpdateSectionName);
if (!JITSection)
return make_error<llvm::StringError>(
"Refencing a a section that wasn't added to graph" +
*UpdateSectionName,
llvm::inconvertibleErrorCode());
auto Relocations = Obj.relas(SecRef);
if (!Relocations)
return Relocations.takeError();
for (const auto &Rela : *Relocations) {
auto Type = Rela.getType(false);
LLVM_DEBUG({
dbgs() << "Relocation Type: " << Type << "\n"
<< "Name: " << Obj.getRelocationTypeName(Type) << "\n";
});
auto SymbolIndex = Rela.getSymbol(false);
auto Symbol = Obj.getRelocationSymbol(Rela, &SymTab);
if (!Symbol)
return Symbol.takeError();
auto BlockToFix = *(JITSection->blocks().begin());
auto *TargetSymbol = JITSymbolTable[SymbolIndex];
if (!TargetSymbol) {
return make_error<llvm::StringError>(
"Could not find symbol at given index, did you add it to "
"JITSymbolTable? index: " + std::to_string(SymbolIndex)
+ ", shndx: " + std::to_string((*Symbol)->st_shndx) +
" Size of table: " + std::to_string(JITSymbolTable.size()),
llvm::inconvertibleErrorCode());
}
uint64_t Addend = Rela.r_addend;
JITTargetAddress FixupAddress =
(*UpdateSection)->sh_addr + Rela.r_offset;
LLVM_DEBUG({
dbgs() << "Processing relocation at "
<< format("0x%016" PRIx64, FixupAddress) << "\n";
});
auto Kind = getRelocationKind(Type);
if (!Kind)
return Kind.takeError();
LLVM_DEBUG({
Edge GE(*Kind, FixupAddress - BlockToFix->getAddress(), *TargetSymbol,
Addend);
printEdge(dbgs(), *BlockToFix, GE,
getELFX86RelocationKindName(*Kind));
dbgs() << "\n";
});
BlockToFix->addEdge(*Kind, FixupAddress - BlockToFix->getAddress(),
*TargetSymbol, Addend);
}
}
return Error::success();
}
Error graphifyRegularSymbols() {
// TODO: ELF supports beyond SHN_LORESERVE,
// need to perf test how a vector vs map handles those cases
std::vector<std::vector<object::ELFFile<object::ELF64LE>::Elf_Shdr_Range *>>
SecIndexToSymbols;
LLVM_DEBUG(dbgs() << "Creating graph symbols...\n");
for (auto SecRef : sections) {
if (SecRef.sh_type != ELF::SHT_SYMTAB &&
SecRef.sh_type != ELF::SHT_DYNSYM)
continue;
auto Symbols = Obj.symbols(&SecRef);
if (!Symbols)
return Symbols.takeError();
auto StrTabSec = Obj.getSection(SecRef.sh_link);
if (!StrTabSec)
return StrTabSec.takeError();
auto StringTable = Obj.getStringTable(**StrTabSec);
if (!StringTable)
return StringTable.takeError();
auto Name = Obj.getSectionName(SecRef);
if (!Name)
return Name.takeError();
LLVM_DEBUG(dbgs() << "Processing symbol section " << *Name << ":\n");
auto Section = G->findSectionByName(*Name);
if (!Section)
return make_error<llvm::StringError>("Could not find a section " +
*Name,
llvm::inconvertibleErrorCode());
// we only have one for now
auto blocks = Section->blocks();
if (blocks.empty())
return make_error<llvm::StringError>("Section has no block",
llvm::inconvertibleErrorCode());
int SymbolIndex = -1;
for (auto SymRef : *Symbols) {
++SymbolIndex;
auto Type = SymRef.getType();
if (Type == ELF::STT_FILE || SymbolIndex == 0)
continue;
// these should do it for now
// if(Type != ELF::STT_NOTYPE &&
// Type != ELF::STT_OBJECT &&
// Type != ELF::STT_FUNC &&
// Type != ELF::STT_SECTION &&
// Type != ELF::STT_COMMON) {
// continue;
// }
auto Name = SymRef.getName(*StringTable);
// I am not sure on If this is going to hold as an invariant. Revisit.
if (!Name)
return Name.takeError();
if (SymRef.isCommon()) {
// Symbols in SHN_COMMON refer to uninitialized data. The st_value
// field holds alignment constraints.
Symbol &S =
G->addCommonSymbol(*Name, Scope::Default, getCommonSection(), 0,
SymRef.st_size, SymRef.getValue(), false);
JITSymbolTable[SymbolIndex] = &S;
continue;
}
// Map Visibility and Binding to Scope and Linkage:
Linkage L = Linkage::Strong;
Scope S = Scope::Default;
switch (SymRef.getBinding()) {
case ELF::STB_LOCAL:
S = Scope::Local;
break;
case ELF::STB_GLOBAL:
// Nothing to do here.
break;
case ELF::STB_WEAK:
L = Linkage::Weak;
break;
default:
return make_error<StringError>("Unrecognized symbol binding for " +
*Name,
inconvertibleErrorCode());
}
switch (SymRef.getVisibility()) {
case ELF::STV_DEFAULT:
case ELF::STV_PROTECTED:
// FIXME: Make STV_DEFAULT symbols pre-emptible? This probably needs
// Orc support.
// Otherwise nothing to do here.
break;
case ELF::STV_HIDDEN:
// Default scope -> Hidden scope. No effect on local scope.
if (S == Scope::Default)
S = Scope::Hidden;
break;
case ELF::STV_INTERNAL:
return make_error<StringError>("Unrecognized symbol visibility for " +
*Name,
inconvertibleErrorCode());
}
if (SymRef.isDefined() &&
(Type == ELF::STT_NOTYPE || Type == ELF::STT_FUNC ||
Type == ELF::STT_OBJECT || Type == ELF::STT_SECTION)) {
auto DefinedSection = Obj.getSection(SymRef.st_shndx);
if (!DefinedSection)
return DefinedSection.takeError();
auto sectName = Obj.getSectionName(**DefinedSection);
if (!sectName)
return Name.takeError();
// Skip debug section symbols.
if (isDwarfSection(*sectName))
continue;
auto JitSection = G->findSectionByName(*sectName);
if (!JitSection)
return make_error<llvm::StringError>(
"Could not find the JitSection " + *sectName,
llvm::inconvertibleErrorCode());
auto bs = JitSection->blocks();
if (bs.empty())
return make_error<llvm::StringError>(
"Section has no block", llvm::inconvertibleErrorCode());
auto *B = *bs.begin();
LLVM_DEBUG({ dbgs() << " " << *Name << " at index " << SymbolIndex << "\n"; });
if (SymRef.getType() == ELF::STT_SECTION)
*Name = *sectName;
auto &Sym = G->addDefinedSymbol(
*B, SymRef.getValue(), *Name, SymRef.st_size, L, S,
SymRef.getType() == ELF::STT_FUNC, false);
JITSymbolTable[SymbolIndex] = &Sym;
} else if (SymRef.isUndefined() && SymRef.isExternal()) {
auto &Sym = G->addExternalSymbol(*Name, SymRef.st_size, L);
JITSymbolTable[SymbolIndex] = &Sym;
} else
LLVM_DEBUG({
dbgs()
<< "Not creating graph symbol for normalized symbol at index "
<< SymbolIndex << ", \"" << *Name << "\"\n";
});
// TODO: The following has to be implmented.
// leaving commented out to save time for future patchs
/*
G->addAbsoluteSymbol(*Name, SymRef.getValue(), SymRef.st_size,
Linkage::Strong, Scope::Default, false);
*/
}
}
return Error::success();
}
public:
ELFLinkGraphBuilder_x86_64(StringRef FileName,
const object::ELFFile<object::ELF64LE> &Obj)
: G(std::make_unique<LinkGraph>(
FileName.str(), Triple("x86_64-unknown-linux"), getPointerSize(Obj),
getEndianness(Obj), getELFX86RelocationKindName)),
Obj(Obj) {}
Expected<std::unique_ptr<LinkGraph>> buildGraph() {
// Sanity check: we only operate on relocatable objects.
if (!isRelocatable())
return make_error<JITLinkError>("Object is not a relocatable ELF");
auto Secs = Obj.sections();
if (!Secs) {
return Secs.takeError();
}
sections = *Secs;
if (auto Err = createNormalizedSections())
return std::move(Err);
if (auto Err = createNormalizedSymbols())
return std::move(Err);
if (auto Err = graphifyRegularSymbols())
return std::move(Err);
if (auto Err = addRelocations())
return std::move(Err);
return std::move(G);
}
};
class ELFJITLinker_x86_64 : public JITLinker<ELFJITLinker_x86_64> {
friend class JITLinker<ELFJITLinker_x86_64>;
public:
ELFJITLinker_x86_64(std::unique_ptr<JITLinkContext> Ctx,
std::unique_ptr<LinkGraph> G,
PassConfiguration PassConfig)
: JITLinker(std::move(Ctx), std::move(G), std::move(PassConfig)) {
getPassConfig().PostAllocationPasses.push_back(
[this](LinkGraph &G) { return getOrCreateGOTSymbol(G); });
}
private:
Symbol *GOTSymbol = nullptr;
Error getOrCreateGOTSymbol(LinkGraph &G) {
auto DefineExternalGOTSymbolIfPresent =
createDefineExternalSectionStartAndEndSymbolsPass(
[&](LinkGraph &LG, Symbol &Sym) -> SectionRangeSymbolDesc {
if (Sym.getName() == ELFGOTSymbolName)
if (auto *GOTSection = G.findSectionByName(ELFGOTSectionName)) {
GOTSymbol = &Sym;
return {*GOTSection, true};
}
return {};
});
// Try to attach _GLOBAL_OFFSET_TABLE_ to the GOT if it's defined as an
// external.
if (auto Err = DefineExternalGOTSymbolIfPresent(G))
return Err;
// If we succeeded then we're done.
if (GOTSymbol)
return Error::success();
// Otherwise look for a GOT section: If it already has a start symbol we'll
// record it, otherwise we'll create our own.
// If there's a GOT section but we didn't find an external GOT symbol...
if (auto *GOTSection = G.findSectionByName(ELFGOTSectionName)) {
// Check for an existing defined symbol.
for (auto *Sym : GOTSection->symbols())
if (Sym->getName() == ELFGOTSymbolName) {
GOTSymbol = Sym;
return Error::success();
}
// If there's no defined symbol then create one.
SectionRange SR(*GOTSection);
if (SR.empty())
GOTSymbol = &G.addAbsoluteSymbol(ELFGOTSymbolName, 0, 0,
Linkage::Strong, Scope::Local, true);
else
GOTSymbol =
&G.addDefinedSymbol(*SR.getFirstBlock(), 0, ELFGOTSymbolName, 0,
Linkage::Strong, Scope::Local, false, true);
}
return Error::success();
}
Error applyFixup(LinkGraph &G, Block &B, const Edge &E,
char *BlockWorkingMem) const {
using namespace ELF_x86_64_Edges;
using namespace llvm::support;
char *FixupPtr = BlockWorkingMem + E.getOffset();
JITTargetAddress FixupAddress = B.getAddress() + E.getOffset();
switch (E.getKind()) {
case ELFX86RelocationKind::Branch32:
case ELFX86RelocationKind::Branch32ToStub:
case ELFX86RelocationKind::PCRel32:
case ELFX86RelocationKind::PCRel32GOTLoad: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
if (LLVM_LIKELY(x86_64::isInRangeForImmS32(Value)))
*(little32_t *)FixupPtr = Value;
else
return makeTargetOutOfRangeError(G, B, E);
break;
}
case ELFX86RelocationKind::PCRel64: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
*(little64_t *)FixupPtr = Value;
break;
}
case ELFX86RelocationKind::Pointer64: {
int64_t Value = E.getTarget().getAddress() + E.getAddend();
*(ulittle64_t *)FixupPtr = Value;
break;
}
case ELFX86RelocationKind::Delta32: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
if (LLVM_LIKELY(x86_64::isInRangeForImmS32(Value)))
*(little32_t *)FixupPtr = Value;
else
return makeTargetOutOfRangeError(G, B, E);
break;
}
case ELFX86RelocationKind::Delta64: {
int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
*(little64_t *)FixupPtr = Value;
break;
}
case ELFX86RelocationKind::NegDelta32: {
int64_t Value = FixupAddress - E.getTarget().getAddress() + E.getAddend();
if (LLVM_LIKELY(x86_64::isInRangeForImmS32(Value)))
*(little32_t *)FixupPtr = Value;
else
return makeTargetOutOfRangeError(G, B, E);
break;
}
case ELFX86RelocationKind::NegDelta64: {
int64_t Value = FixupAddress - E.getTarget().getAddress() + E.getAddend();
*(little64_t *)FixupPtr = Value;
break;
}
case ELFX86RelocationKind::GOT64:
case ELFX86RelocationKind::GOTOFF64: {
// GOT64: Offset of GOT entry within GOT.
// GOTOFF64: Offset from GOT base to target.
// The expressions are the same in both cases, but in the GOT64 case the
// edge will have been fixed to point at the GOT entry, and in the
// GOTOFF64 case it will still point at the original target.
assert(GOTSymbol && "No GOT section symbol");
int64_t Value =
E.getTarget().getAddress() - GOTSymbol->getAddress() + E.getAddend();
*(little64_t *)FixupPtr = Value;
break;
}
default:
LLVM_DEBUG({
dbgs() << "Bad edge: " << getELFX86RelocationKindName(E.getKind())
<< "\n";
});
llvm_unreachable("Unsupported relocation");
}
return Error::success();
}
};
Expected<std::unique_ptr<LinkGraph>>
createLinkGraphFromELFObject_x86_64(MemoryBufferRef ObjectBuffer) {
LLVM_DEBUG({
dbgs() << "Building jitlink graph for new input "
<< ObjectBuffer.getBufferIdentifier() << "...\n";
});
auto ELFObj = object::ObjectFile::createELFObjectFile(ObjectBuffer);
if (!ELFObj)
return ELFObj.takeError();
auto &ELFObjFile = cast<object::ELFObjectFile<object::ELF64LE>>(**ELFObj);
return ELFLinkGraphBuilder_x86_64((*ELFObj)->getFileName(),
ELFObjFile.getELFFile())
.buildGraph();
}
static SectionRangeSymbolDesc
identifyELFSectionStartAndEndSymbols(LinkGraph &G, Symbol &Sym) {
constexpr StringRef StartSymbolPrefix = "__start";
constexpr StringRef EndSymbolPrefix = "__end";
auto SymName = Sym.getName();
if (SymName.startswith(StartSymbolPrefix)) {
if (auto *Sec =
G.findSectionByName(SymName.drop_front(StartSymbolPrefix.size())))
return {*Sec, true};
} else if (SymName.startswith(EndSymbolPrefix)) {
if (auto *Sec =
G.findSectionByName(SymName.drop_front(EndSymbolPrefix.size())))
return {*Sec, false};
}
return {};
}
void link_ELF_x86_64(std::unique_ptr<LinkGraph> G,
std::unique_ptr<JITLinkContext> Ctx) {
PassConfiguration Config;
if (Ctx->shouldAddDefaultTargetPasses(G->getTargetTriple())) {
Config.PrePrunePasses.push_back(EHFrameSplitter(".eh_frame"));
Config.PrePrunePasses.push_back(EHFrameEdgeFixer(
".eh_frame", G->getPointerSize(), Delta64, Delta32, NegDelta32));
Config.PrePrunePasses.push_back(EHFrameNullTerminator(".eh_frame"));
// Construct a JITLinker and run the link function.
// Add a mark-live pass.
if (auto MarkLive = Ctx->getMarkLivePass(G->getTargetTriple()))
Config.PrePrunePasses.push_back(std::move(MarkLive));
else
Config.PrePrunePasses.push_back(markAllSymbolsLive);
// Add an in-place GOT/Stubs pass.
Config.PostPrunePasses.push_back(
PerGraphGOTAndPLTStubsBuilder_ELF_x86_64::asPass);
// Resolve any external section start / end symbols.
Config.PostAllocationPasses.push_back(
createDefineExternalSectionStartAndEndSymbolsPass(
identifyELFSectionStartAndEndSymbols));
// Add GOT/Stubs optimizer pass.
Config.PreFixupPasses.push_back(optimizeELF_x86_64_GOTAndStubs);
}
if (auto Err = Ctx->modifyPassConfig(*G, Config))
return Ctx->notifyFailed(std::move(Err));
ELFJITLinker_x86_64::link(std::move(Ctx), std::move(G), std::move(Config));
}
const char *getELFX86RelocationKindName(Edge::Kind R) {
switch (R) {
case Branch32:
return "Branch32";
case Branch32ToStub:
return "Branch32ToStub";
case Pointer32:
return "Pointer32";
case Pointer64:
return "Pointer64";
case Pointer64Anon:
return "Pointer64Anon";
case PCRel32:
return "PCRel32";
case PCRel32Minus1:
return "PCRel32Minus1";
case PCRel32Minus2:
return "PCRel32Minus2";
case PCRel32Minus4:
return "PCRel32Minus4";
case PCRel32Anon:
return "PCRel32Anon";
case PCRel32Minus1Anon:
return "PCRel32Minus1Anon";
case PCRel32Minus2Anon:
return "PCRel32Minus2Anon";
case PCRel32Minus4Anon:
return "PCRel32Minus4Anon";
case PCRel32GOTLoad:
return "PCRel32GOTLoad";
case PCRel32GOT:
return "PCRel32GOT";
case PCRel32TLV:
return "PCRel32TLV";
case Delta32:
return "Delta32";
case Delta64:
return "Delta64";
case NegDelta32:
return "NegDelta32";
case NegDelta64:
return "NegDelta64";
}
return getGenericEdgeKindName(static_cast<Edge::Kind>(R));
}
} // end namespace jitlink
} // end namespace llvm