/*
* validator/val_secalgo.h - validator security algorithm functions.
*
* Copyright (c) 2012, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains helper functions for the validator module.
* The functions take buffers with raw data and convert to library calls.
*/
#ifndef VALIDATOR_VAL_SECALGO_H
#define VALIDATOR_VAL_SECALGO_H
struct sldns_buffer;
struct secalgo_hash;
/** Return size of nsec3 hash algorithm, 0 if not supported */
size_t nsec3_hash_algo_size_supported(int id);
/**
* Hash a single hash call of an NSEC3 hash algorithm.
* Iterations and salt are done by the caller.
* @param algo: nsec3 hash algorithm.
* @param buf: the buffer to digest
* @param len: length of buffer to digest.
* @param res: result stored here (must have sufficient space).
* @return false on failure.
*/
int secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
unsigned char* res);
/**
* Calculate the sha256 hash for the data buffer into the result.
* @param buf: buffer to digest.
* @param len: length of the buffer to digest.
* @param res: result is stored here (space 256/8 bytes).
*/
void secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res);
/**
* Start a hash of type sha384. Allocates structure, then inits it,
* so that a series of updates can be performed, before the final result.
* @return hash structure. NULL on malloc failure or no support.
*/
struct secalgo_hash* secalgo_hash_create_sha384(void);
/**
* Start a hash of type sha512. Allocates structure, then inits it,
* so that a series of updates can be performed, before the final result.
* @return hash structure. NULL on malloc failure or no support.
*/
struct secalgo_hash* secalgo_hash_create_sha512(void);
/**
* Update a hash with more information to add to it.
* @param hash: the hash that is updated.
* @param data: data to add.
* @param len: length of data.
* @return false on failure.
*/
int secalgo_hash_update(struct secalgo_hash* hash, uint8_t* data, size_t len);
/**
* Get the final result of the hash.
* @param hash: the hash that has had updates to it.
* @param result: where to store the result.
* @param maxlen: length of the result buffer, eg. size of the allocation.
* If not large enough the routine fails.
* @param resultlen: the length of the result, returned to the caller.
* How much of maxlen is used.
* @return false on failure.
*/
int secalgo_hash_final(struct secalgo_hash* hash, uint8_t* result,
size_t maxlen, size_t* resultlen);
/**
* Delete the hash structure.
* @param hash: the hash to delete.
*/
void secalgo_hash_delete(struct secalgo_hash* hash);
/**
* Return size of DS digest according to its hash algorithm.
* @param algo: DS digest algo.
* @return size in bytes of digest, or 0 if not supported.
*/
size_t ds_digest_size_supported(int algo);
/**
* @param algo: the DS digest algo
* @param buf: the buffer to digest
* @param len: length of buffer to digest.
* @param res: result stored here (must have sufficient space).
* @return false on failure.
*/
int secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
unsigned char* res);
/** return true if DNSKEY algorithm id is supported */
int dnskey_algo_id_is_supported(int id);
/**
* Check a canonical sig+rrset and signature against a dnskey
* @param buf: buffer with data to verify, the first rrsig part and the
* canonicalized rrset.
* @param algo: DNSKEY algorithm.
* @param sigblock: signature rdata field from RRSIG
* @param sigblock_len: length of sigblock data.
* @param key: public key data from DNSKEY RR.
* @param keylen: length of keydata.
* @param reason: bogus reason in more detail.
* @return secure if verification succeeded, bogus on crypto failure,
* unchecked on format errors and alloc failures.
*/
enum sec_status verify_canonrrset(struct sldns_buffer* buf, int algo,
unsigned char* sigblock, unsigned int sigblock_len,
unsigned char* key, unsigned int keylen, char** reason);
#endif /* VALIDATOR_VAL_SECALGO_H */