Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
/* CTF dict creation.
   Copyright (C) 2019-2022 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
#include <zlib.h>

#include <elf.h>
#include "elf-bfd.h"

/* Symtypetab sections.  */

/* Symtypetab emission flags.  */

#define CTF_SYMTYPETAB_EMIT_FUNCTION 0x1
#define CTF_SYMTYPETAB_EMIT_PAD 0x2
#define CTF_SYMTYPETAB_FORCE_INDEXED 0x4

/* Properties of symtypetab emission, shared by symtypetab section
   sizing and symtypetab emission itself.  */

typedef struct emit_symtypetab_state
{
  /* True if linker-reported symbols are being filtered out.  symfp is set if
     this is true: otherwise, indexing is forced and the symflags indicate as
     much. */
  int filter_syms;

  /* True if symbols are being sorted.  */
  int sort_syms;

  /* Flags for symtypetab emission.  */
  int symflags;

  /* The dict to which the linker has reported symbols.  */
  ctf_dict_t *symfp;

  /* The maximum number of objects seen.  */
  size_t maxobjt;

  /* The maximum number of func info entris seen.  */
  size_t maxfunc;
} emit_symtypetab_state_t;

/* Determine if a symbol is "skippable" and should never appear in the
   symtypetab sections.  */

int
ctf_symtab_skippable (ctf_link_sym_t *sym)
{
  /* Never skip symbols whose name is not yet known.  */
  if (sym->st_nameidx_set)
    return 0;

  return (sym->st_name == NULL || sym->st_name[0] == 0
	  || sym->st_shndx == SHN_UNDEF
	  || strcmp (sym->st_name, "_START_") == 0
	  || strcmp (sym->st_name, "_END_") == 0
	  || (sym->st_type == STT_OBJECT && sym->st_shndx == SHN_EXTABS
	      && sym->st_value == 0));
}

/* Get the number of symbols in a symbol hash, the count of symbols, the maximum
   seen, the eventual size, without any padding elements, of the func/data and
   (if generated) index sections, and the size of accumulated padding elements.
   The linker-reported set of symbols is found in SYMFP: it may be NULL if
   symbol filtering is not desired, in which case CTF_SYMTYPETAB_FORCE_INDEXED
   will always be set in the flags.

   Also figure out if any symbols need to be moved to the variable section, and
   add them (if not already present).  */

_libctf_nonnull_ ((1,3,4,5,6,7,8))
static int
symtypetab_density (ctf_dict_t *fp, ctf_dict_t *symfp, ctf_dynhash_t *symhash,
		    size_t *count, size_t *max, size_t *unpadsize,
		    size_t *padsize, size_t *idxsize, int flags)
{
  ctf_next_t *i = NULL;
  const void *name;
  const void *ctf_sym;
  ctf_dynhash_t *linker_known = NULL;
  int err;
  int beyond_max = 0;

  *count = 0;
  *max = 0;
  *unpadsize = 0;
  *idxsize = 0;
  *padsize = 0;

  if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
    {
      /* Make a dynhash citing only symbols reported by the linker of the
	 appropriate type, then traverse all potential-symbols we know the types
	 of, removing them from linker_known as we go.  Once this is done, the
	 only symbols remaining in linker_known are symbols we don't know the
	 types of: we must emit pads for those symbols that are below the
	 maximum symbol we will emit (any beyond that are simply skipped).

	 If there are none, this symtypetab will be empty: just report that.  */

      if (!symfp->ctf_dynsyms)
	return 0;

      if ((linker_known = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
					      NULL, NULL)) == NULL)
	return (ctf_set_errno (fp, ENOMEM));

      while ((err = ctf_dynhash_cnext (symfp->ctf_dynsyms, &i,
				       &name, &ctf_sym)) == 0)
	{
	  ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;

	  if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	       && sym->st_type != STT_FUNC)
	      || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		  && sym->st_type != STT_OBJECT))
	    continue;

	  if (ctf_symtab_skippable (sym))
	    continue;

	  /* This should only be true briefly before all the names are
	     finalized, long before we get this far.  */
	  if (!ctf_assert (fp, !sym->st_nameidx_set))
	    return -1;				/* errno is set for us.  */

	  if (ctf_dynhash_cinsert (linker_known, name, ctf_sym) < 0)
	    {
	      ctf_dynhash_destroy (linker_known);
	      return (ctf_set_errno (fp, ENOMEM));
	    }
	}
      if (err != ECTF_NEXT_END)
	{
	  ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols during "
				  "serialization"));
	  ctf_dynhash_destroy (linker_known);
	  return (ctf_set_errno (fp, err));
	}
    }

  while ((err = ctf_dynhash_cnext (symhash, &i, &name, NULL)) == 0)
    {
      ctf_link_sym_t *sym;

      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  /* Linker did not report symbol in symtab.  Remove it from the
	     set of known data symbols and continue.  */
	  if ((sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, name)) == NULL)
	    {
	      ctf_dynhash_remove (symhash, name);
	      continue;
	    }

	  /* We don't remove skippable symbols from the symhash because we don't
	     want them to be migrated into variables.  */
	  if (ctf_symtab_skippable (sym))
	    continue;

	  if ((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	      && sym->st_type != STT_FUNC)
	    {
	      ctf_err_warn (fp, 1, 0, _("symbol %s (%x) added to CTF as a "
					"function but is of type %x.  "
					"The symbol type lookup tables "
					"are probably corrupted"),
			    sym->st_name, sym->st_symidx, sym->st_type);
	      ctf_dynhash_remove (symhash, name);
	      continue;
	    }
	  else if (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		   && sym->st_type != STT_OBJECT)
	    {
	      ctf_err_warn (fp, 1, 0, _("symbol %s (%x) added to CTF as a "
					"data object but is of type %x.  "
					"The symbol type lookup tables "
					"are probably corrupted"),
			    sym->st_name, sym->st_symidx, sym->st_type);
	      ctf_dynhash_remove (symhash, name);
	      continue;
	    }

	  ctf_dynhash_remove (linker_known, name);
	}
      *unpadsize += sizeof (uint32_t);
      (*count)++;

      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  if (*max < sym->st_symidx)
	    *max = sym->st_symidx;
	}
      else
	(*max)++;
    }
  if (err != ECTF_NEXT_END)
    {
      ctf_err_warn (fp, 0, err, _("iterating over CTF symtypetab during "
				  "serialization"));
      ctf_dynhash_destroy (linker_known);
      return (ctf_set_errno (fp, err));
    }

  if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
    {
      while ((err = ctf_dynhash_cnext (linker_known, &i, NULL, &ctf_sym)) == 0)
	{
	  ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;

	  if (sym->st_symidx > *max)
	    beyond_max++;
	}
      if (err != ECTF_NEXT_END)
	{
	  ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols "
				      "during CTF serialization"));
	  ctf_dynhash_destroy (linker_known);
	  return (ctf_set_errno (fp, err));
	}
    }

  *idxsize = *count * sizeof (uint32_t);
  if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
    *padsize = (ctf_dynhash_elements (linker_known) - beyond_max) * sizeof (uint32_t);

  ctf_dynhash_destroy (linker_known);
  return 0;
}

/* Emit an objt or func symtypetab into DP in a particular order defined by an
   array of ctf_link_sym_t or symbol names passed in.  The index has NIDX
   elements in it: unindexed output would terminate at symbol OUTMAX and is in
   any case no larger than SIZE bytes.  Some index elements are expected to be
   skipped: see symtypetab_density.  The linker-reported set of symbols (if any)
   is found in SYMFP. */
static int
emit_symtypetab (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
		 ctf_link_sym_t **idx, const char **nameidx, uint32_t nidx,
		 uint32_t outmax, int size, int flags)
{
  uint32_t i;
  uint32_t *dpp = dp;
  ctf_dynhash_t *symhash;

  ctf_dprintf ("Emitting table of size %i, outmax %u, %u symtypetab entries, "
	       "flags %i\n", size, outmax, nidx, flags);

  /* Empty table? Nothing to do.  */
  if (size == 0)
    return 0;

  if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
    symhash = fp->ctf_funchash;
  else
    symhash = fp->ctf_objthash;

  for (i = 0; i < nidx; i++)
    {
      const char *sym_name;
      void *type;

      /* If we have a linker-reported set of symbols, we may be given that set
	 to work from, or a set of symbol names.  In both cases we want to look
	 at the corresponding linker-reported symbol (if any).  */
      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  ctf_link_sym_t *this_link_sym;

	  if (idx)
	    this_link_sym = idx[i];
	  else
	    this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, nameidx[i]);

	  /* Unreported symbol number.  No pad, no nothing.  */
	  if (!this_link_sym)
	    continue;

	  /* Symbol of the wrong type, or skippable?  This symbol is not in this
	     table.  */
	  if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	       && this_link_sym->st_type != STT_FUNC)
	      || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		  && this_link_sym->st_type != STT_OBJECT))
	    continue;

	  if (ctf_symtab_skippable (this_link_sym))
	    continue;

	  sym_name = this_link_sym->st_name;

	  /* Linker reports symbol of a different type to the symbol we actually
	     added?  Skip the symbol.  No pad, since the symbol doesn't actually
	     belong in this table at all.  (Warned about in
	     symtypetab_density.)  */
	  if ((this_link_sym->st_type == STT_FUNC)
	      && (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
	    continue;

	  if ((this_link_sym->st_type == STT_OBJECT)
	      && (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
	    continue;
	}
      else
	sym_name = nameidx[i];

      /* Symbol in index but no type set? Silently skip and (optionally)
	 pad.  (In force-indexed mode, this is also where we track symbols of
	 the wrong type for this round of insertion.)  */
      if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
	{
	  if (flags & CTF_SYMTYPETAB_EMIT_PAD)
	    *dpp++ = 0;
	  continue;
	}

      if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) < size))
	return -1;				/* errno is set for us.  */

      *dpp++ = (ctf_id_t) (uintptr_t) type;

      /* When emitting unindexed output, all later symbols are pads: stop
	 early.  */
      if ((flags & CTF_SYMTYPETAB_EMIT_PAD) && idx[i]->st_symidx == outmax)
	break;
    }

  return 0;
}

/* Emit an objt or func symtypetab index into DP in a paticular order defined by
   an array of symbol names passed in.  Stop at NIDX.  The linker-reported set
   of symbols (if any) is found in SYMFP. */
static int
emit_symtypetab_index (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
		       const char **idx, uint32_t nidx, int size, int flags)
{
  uint32_t i;
  uint32_t *dpp = dp;
  ctf_dynhash_t *symhash;

  ctf_dprintf ("Emitting index of size %i, %u entries reported by linker, "
	       "flags %i\n", size, nidx, flags);

  /* Empty table? Nothing to do.  */
  if (size == 0)
    return 0;

  if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
    symhash = fp->ctf_funchash;
  else
    symhash = fp->ctf_objthash;

  /* Indexes should always be unpadded.  */
  if (!ctf_assert (fp, !(flags & CTF_SYMTYPETAB_EMIT_PAD)))
    return -1;					/* errno is set for us.  */

  for (i = 0; i < nidx; i++)
    {
      const char *sym_name;
      void *type;

      if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
	{
	  ctf_link_sym_t *this_link_sym;

	  this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, idx[i]);

	  /* This is an index: unreported symbols should never appear in it.  */
	  if (!ctf_assert (fp, this_link_sym != NULL))
	    return -1;				/* errno is set for us.  */

	  /* Symbol of the wrong type, or skippable?  This symbol is not in this
	     table.  */
	  if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
	       && this_link_sym->st_type != STT_FUNC)
	      || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
		  && this_link_sym->st_type != STT_OBJECT))
	    continue;

	  if (ctf_symtab_skippable (this_link_sym))
	    continue;

	  sym_name = this_link_sym->st_name;

	  /* Linker reports symbol of a different type to the symbol we actually
	     added?  Skip the symbol.  */
	  if ((this_link_sym->st_type == STT_FUNC)
	      && (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
	    continue;

	  if ((this_link_sym->st_type == STT_OBJECT)
	      && (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
	    continue;
	}
      else
	sym_name = idx[i];

      /* Symbol in index and reported by linker, but no type set? Silently skip
	 and (optionally) pad.  (In force-indexed mode, this is also where we
	 track symbols of the wrong type for this round of insertion.)  */
      if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
	continue;

      ctf_str_add_ref (fp, sym_name, dpp++);

      if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) <= size))
	return -1;				/* errno is set for us.  */
    }

  return 0;
}

/* Delete symbols that have been assigned names from the variable section.  Must
   be called from within ctf_serialize, because that is the only place you can
   safely delete variables without messing up ctf_rollback.  */

static int
symtypetab_delete_nonstatics (ctf_dict_t *fp, ctf_dict_t *symfp)
{
  ctf_dvdef_t *dvd, *nvd;
  ctf_id_t type;

  for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
    {
      nvd = ctf_list_next (dvd);

      if ((((type = (ctf_id_t) (uintptr_t)
	     ctf_dynhash_lookup (fp->ctf_objthash, dvd->dvd_name)) > 0)
	   || (type = (ctf_id_t) (uintptr_t)
	       ctf_dynhash_lookup (fp->ctf_funchash, dvd->dvd_name)) > 0)
	  && ctf_dynhash_lookup (symfp->ctf_dynsyms, dvd->dvd_name) != NULL
	  && type == dvd->dvd_type)
	ctf_dvd_delete (fp, dvd);
    }

  return 0;
}

/* Figure out the sizes of the symtypetab sections, their indexed state,
   etc.  */
static int
ctf_symtypetab_sect_sizes (ctf_dict_t *fp, emit_symtypetab_state_t *s,
			   ctf_header_t *hdr, size_t *objt_size,
			   size_t *func_size, size_t *objtidx_size,
			   size_t *funcidx_size)
{
  size_t nfuncs, nobjts;
  size_t objt_unpadsize, func_unpadsize, objt_padsize, func_padsize;

  /* If doing a writeout as part of linking, and the link flags request it,
     filter out reported symbols from the variable section, and filter out all
     other symbols from the symtypetab sections.  (If we are not linking, the
     symbols are sorted; if we are linking, don't bother sorting if we are not
     filtering out reported symbols: this is almost certaily an ld -r and only
     the linker is likely to consume these symtypetabs again.  The linker
     doesn't care what order the symtypetab entries is in, since it only
     iterates over symbols and does not use the ctf_lookup_by_symbol* API.)  */

  s->sort_syms = 1;
  if (fp->ctf_flags & LCTF_LINKING)
    {
      s->filter_syms = !(fp->ctf_link_flags & CTF_LINK_NO_FILTER_REPORTED_SYMS);
      if (!s->filter_syms)
	s->sort_syms = 0;
    }

  /* Find the dict to which the linker has reported symbols, if any.  */

  if (s->filter_syms)
    {
      if (!fp->ctf_dynsyms && fp->ctf_parent && fp->ctf_parent->ctf_dynsyms)
	s->symfp = fp->ctf_parent;
      else
	s->symfp = fp;
    }

  /* If not filtering, keep all potential symbols in an unsorted, indexed
     dict.  */
  if (!s->filter_syms)
    s->symflags = CTF_SYMTYPETAB_FORCE_INDEXED;
  else
    hdr->cth_flags |= CTF_F_IDXSORTED;

  if (!ctf_assert (fp, (s->filter_syms && s->symfp)
		   || (!s->filter_syms && !s->symfp
		       && ((s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED) != 0))))
    return -1;

  /* Work out the sizes of the object and function sections, and work out the
     number of pad (unassigned) symbols in each, and the overall size of the
     sections.  */

  if (symtypetab_density (fp, s->symfp, fp->ctf_objthash, &nobjts, &s->maxobjt,
			  &objt_unpadsize, &objt_padsize, objtidx_size,
			  s->symflags) < 0)
    return -1;					/* errno is set for us.  */

  ctf_dprintf ("Object symtypetab: %i objects, max %i, unpadded size %i, "
	       "%i bytes of pads, index size %i\n", (int) nobjts,
	       (int) s->maxobjt, (int) objt_unpadsize, (int) objt_padsize,
	       (int) *objtidx_size);

  if (symtypetab_density (fp, s->symfp, fp->ctf_funchash, &nfuncs, &s->maxfunc,
			  &func_unpadsize, &func_padsize, funcidx_size,
			  s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
    return -1;					/* errno is set for us.  */

  ctf_dprintf ("Function symtypetab: %i functions, max %i, unpadded size %i, "
	       "%i bytes of pads, index size %i\n", (int) nfuncs,
	       (int) s->maxfunc, (int) func_unpadsize, (int) func_padsize,
	       (int) *funcidx_size);

  /* It is worth indexing each section if it would save space to do so, due to
     reducing the number of pads sufficiently.  A pad is the same size as a
     single index entry: but index sections compress relatively poorly compared
     to constant pads, so it takes a lot of contiguous padding to equal one
     index section entry.  It would be nice to be able to *verify* whether we
     would save space after compression rather than guessing, but this seems
     difficult, since it would require complete reserialization.  Regardless, if
     the linker has not reported any symbols (e.g. if this is not a final link
     but just an ld -r), we must emit things in indexed fashion just as the
     compiler does.  */

  *objt_size = objt_unpadsize;
  if (!(s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
      && ((objt_padsize + objt_unpadsize) * CTF_INDEX_PAD_THRESHOLD
	  > objt_padsize))
    {
      *objt_size += objt_padsize;
      *objtidx_size = 0;
    }

  *func_size = func_unpadsize;
  if (!(s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
      && ((func_padsize + func_unpadsize) * CTF_INDEX_PAD_THRESHOLD
	  > func_padsize))
    {
      *func_size += func_padsize;
      *funcidx_size = 0;
    }

  /* If we are filtering symbols out, those symbols that the linker has not
     reported have now been removed from the ctf_objthash and ctf_funchash.
     Delete entries from the variable section that duplicate newly-added
     symbols.  There's no need to migrate new ones in: we do that (if necessary)
     in ctf_link_deduplicating_variables.  */

  if (s->filter_syms && s->symfp->ctf_dynsyms &&
      symtypetab_delete_nonstatics (fp, s->symfp) < 0)
    return -1;

  return 0;
}

static int
ctf_emit_symtypetab_sects (ctf_dict_t *fp, emit_symtypetab_state_t *s,
			   unsigned char **tptr, size_t objt_size,
			   size_t func_size, size_t objtidx_size,
			   size_t funcidx_size)
{
  unsigned char *t = *tptr;
  size_t nsymtypes = 0;
  const char **sym_name_order = NULL;
  int err;

  /* Sort the linker's symbols into name order if need be.  */

  if ((objtidx_size != 0) || (funcidx_size != 0))
    {
      ctf_next_t *i = NULL;
      void *symname;
      const char **walk;

      if (s->filter_syms)
	{
	  if (s->symfp->ctf_dynsyms)
	    nsymtypes = ctf_dynhash_elements (s->symfp->ctf_dynsyms);
	  else
	    nsymtypes = 0;
	}
      else
	nsymtypes = ctf_dynhash_elements (fp->ctf_objthash)
	  + ctf_dynhash_elements (fp->ctf_funchash);

      if ((sym_name_order = calloc (nsymtypes, sizeof (const char *))) == NULL)
	goto oom;

      walk = sym_name_order;

      if (s->filter_syms)
	{
	  if (s->symfp->ctf_dynsyms)
	    {
	      while ((err = ctf_dynhash_next_sorted (s->symfp->ctf_dynsyms, &i,
						     &symname, NULL,
						     ctf_dynhash_sort_by_name,
						     NULL)) == 0)
		*walk++ = (const char *) symname;
	      if (err != ECTF_NEXT_END)
		goto symerr;
	    }
	}
      else
	{
	  ctf_hash_sort_f sort_fun = NULL;

	  /* Since we partition the set of symbols back into objt and func,
	     we can sort the two independently without harm.  */
	  if (s->sort_syms)
	    sort_fun = ctf_dynhash_sort_by_name;

	  while ((err = ctf_dynhash_next_sorted (fp->ctf_objthash, &i, &symname,
						 NULL, sort_fun, NULL)) == 0)
	    *walk++ = (const char *) symname;
	  if (err != ECTF_NEXT_END)
	    goto symerr;

	  while ((err = ctf_dynhash_next_sorted (fp->ctf_funchash, &i, &symname,
						 NULL, sort_fun, NULL)) == 0)
	    *walk++ = (const char *) symname;
	  if (err != ECTF_NEXT_END)
	    goto symerr;
	}
    }

  /* Emit the object and function sections, and if necessary their indexes.
     Emission is done in symtab order if there is no index, and in index
     (name) order otherwise.  */

  if ((objtidx_size == 0) && s->symfp && s->symfp->ctf_dynsymidx)
    {
      ctf_dprintf ("Emitting unindexed objt symtypetab\n");
      if (emit_symtypetab (fp, s->symfp, (uint32_t *) t,
			   s->symfp->ctf_dynsymidx, NULL,
			   s->symfp->ctf_dynsymmax + 1, s->maxobjt,
			   objt_size, s->symflags | CTF_SYMTYPETAB_EMIT_PAD) < 0)
	goto err;				/* errno is set for us.  */
    }
  else
    {
      ctf_dprintf ("Emitting indexed objt symtypetab\n");
      if (emit_symtypetab (fp, s->symfp, (uint32_t *) t, NULL,
			   sym_name_order, nsymtypes, s->maxobjt,
			   objt_size, s->symflags) < 0)
	goto err;				/* errno is set for us.  */
    }

  t += objt_size;

  if ((funcidx_size == 0) && s->symfp && s->symfp->ctf_dynsymidx)
    {
      ctf_dprintf ("Emitting unindexed func symtypetab\n");
      if (emit_symtypetab (fp, s->symfp, (uint32_t *) t,
			   s->symfp->ctf_dynsymidx, NULL,
			   s->symfp->ctf_dynsymmax + 1, s->maxfunc,
			   func_size, s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION
			   | CTF_SYMTYPETAB_EMIT_PAD) < 0)
	goto err;				/* errno is set for us.  */
    }
  else
    {
      ctf_dprintf ("Emitting indexed func symtypetab\n");
      if (emit_symtypetab (fp, s->symfp, (uint32_t *) t, NULL, sym_name_order,
			   nsymtypes, s->maxfunc, func_size,
			   s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
	goto err;				/* errno is set for us.  */
    }

  t += func_size;

  if (objtidx_size > 0)
    if (emit_symtypetab_index (fp, s->symfp, (uint32_t *) t, sym_name_order,
			       nsymtypes, objtidx_size, s->symflags) < 0)
      goto err;

  t += objtidx_size;

  if (funcidx_size > 0)
    if (emit_symtypetab_index (fp, s->symfp, (uint32_t *) t, sym_name_order,
			       nsymtypes, funcidx_size,
			       s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
      goto err;

  t += funcidx_size;
  free (sym_name_order);
  *tptr = t;

  return 0;

 oom:
  ctf_set_errno (fp, EAGAIN);
  goto err;
symerr:
  ctf_err_warn (fp, 0, err, _("error serializing symtypetabs"));
 err:
  free (sym_name_order);
  return -1;
}

/* Type section.  */

/* Iterate through the dynamic type definition list and compute the
   size of the CTF type section.  */

static size_t
ctf_type_sect_size (ctf_dict_t *fp)
{
  ctf_dtdef_t *dtd;
  size_t type_size;

  for (type_size = 0, dtd = ctf_list_next (&fp->ctf_dtdefs);
       dtd != NULL; dtd = ctf_list_next (dtd))
    {
      uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
      uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
      size_t type_ctt_size = dtd->dtd_data.ctt_size;

      /* Shrink ctf_type_t-using types from a ctf_type_t to a ctf_stype_t
	 if possible.  */

      if (kind == CTF_K_STRUCT || kind == CTF_K_UNION)
	{
	  size_t lsize = CTF_TYPE_LSIZE (&dtd->dtd_data);

	  if (lsize <= CTF_MAX_SIZE)
	    type_ctt_size = lsize;
	}

      if (type_ctt_size != CTF_LSIZE_SENT)
	type_size += sizeof (ctf_stype_t);
      else
	type_size += sizeof (ctf_type_t);

      switch (kind)
	{
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  type_size += sizeof (uint32_t);
	  break;
	case CTF_K_ARRAY:
	  type_size += sizeof (ctf_array_t);
	  break;
	case CTF_K_SLICE:
	  type_size += sizeof (ctf_slice_t);
	  break;
	case CTF_K_FUNCTION:
	  type_size += sizeof (uint32_t) * (vlen + (vlen & 1));
	  break;
	case CTF_K_STRUCT:
	case CTF_K_UNION:
	  if (type_ctt_size < CTF_LSTRUCT_THRESH)
	    type_size += sizeof (ctf_member_t) * vlen;
	  else
	    type_size += sizeof (ctf_lmember_t) * vlen;
	  break;
	case CTF_K_ENUM:
	  type_size += sizeof (ctf_enum_t) * vlen;
	  break;
	}
    }

  return type_size;
}

/* Take a final lap through the dynamic type definition list and copy the
   appropriate type records to the output buffer, noting down the strings as
   we go.  */

static void
ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
{
  unsigned char *t = *tptr;
  ctf_dtdef_t *dtd;

  for (dtd = ctf_list_next (&fp->ctf_dtdefs);
       dtd != NULL; dtd = ctf_list_next (dtd))
    {
      uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
      uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
      size_t type_ctt_size = dtd->dtd_data.ctt_size;
      size_t len;
      ctf_stype_t *copied;
      const char *name;
      size_t i;

      /* Shrink ctf_type_t-using types from a ctf_type_t to a ctf_stype_t
	 if possible.  */

      if (kind == CTF_K_STRUCT || kind == CTF_K_UNION)
	{
	  size_t lsize = CTF_TYPE_LSIZE (&dtd->dtd_data);

	  if (lsize <= CTF_MAX_SIZE)
	    type_ctt_size = lsize;
	}

      if (type_ctt_size != CTF_LSIZE_SENT)
	len = sizeof (ctf_stype_t);
      else
	len = sizeof (ctf_type_t);

      memcpy (t, &dtd->dtd_data, len);
      copied = (ctf_stype_t *) t;  /* name is at the start: constant offset.  */
      if (copied->ctt_name
	  && (name = ctf_strraw (fp, copied->ctt_name)) != NULL)
	{
	  ctf_str_add_ref (fp, name, &copied->ctt_name);
	  ctf_str_add_ref (fp, name, &dtd->dtd_data.ctt_name);
	}
      copied->ctt_size = type_ctt_size;
      t += len;

      switch (kind)
	{
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  memcpy (t, dtd->dtd_vlen, sizeof (uint32_t));
	  t += sizeof (uint32_t);
	  break;

	case CTF_K_SLICE:
	  memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_slice));
	  t += sizeof (struct ctf_slice);
	  break;

	case CTF_K_ARRAY:
	  memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_array));
	  t += sizeof (struct ctf_array);
	  break;

	case CTF_K_FUNCTION:
	  /* Functions with no args also have no vlen.  */
	  if (dtd->dtd_vlen)
	    memcpy (t, dtd->dtd_vlen, sizeof (uint32_t) * (vlen + (vlen & 1)));
	  t += sizeof (uint32_t) * (vlen + (vlen & 1));
	  break;

	  /* These need to be copied across element by element, depending on
	     their ctt_size.  */
	case CTF_K_STRUCT:
	case CTF_K_UNION:
	  {
	    ctf_lmember_t *dtd_vlen = (ctf_lmember_t *) dtd->dtd_vlen;
	    ctf_lmember_t *t_lvlen = (ctf_lmember_t *) t;
	    ctf_member_t *t_vlen = (ctf_member_t *) t;

	    for (i = 0; i < vlen; i++)
	      {
		const char *name = ctf_strraw (fp, dtd_vlen[i].ctlm_name);

		ctf_str_add_ref (fp, name, &dtd_vlen[i].ctlm_name);

		if (type_ctt_size < CTF_LSTRUCT_THRESH)
		  {
		    t_vlen[i].ctm_name = dtd_vlen[i].ctlm_name;
		    t_vlen[i].ctm_type = dtd_vlen[i].ctlm_type;
		    t_vlen[i].ctm_offset = CTF_LMEM_OFFSET (&dtd_vlen[i]);
		    ctf_str_add_ref (fp, name, &t_vlen[i].ctm_name);
		  }
		else
		  {
		    t_lvlen[i] = dtd_vlen[i];
		    ctf_str_add_ref (fp, name, &t_lvlen[i].ctlm_name);
		  }
	      }
	  }

	  if (type_ctt_size < CTF_LSTRUCT_THRESH)
	    t += sizeof (ctf_member_t) * vlen;
	  else
	    t += sizeof (ctf_lmember_t) * vlen;
	  break;

	case CTF_K_ENUM:
	  {
	    ctf_enum_t *dtd_vlen = (struct ctf_enum *) dtd->dtd_vlen;
	    ctf_enum_t *t_vlen = (struct ctf_enum *) t;

	    memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_enum) * vlen);
	    for (i = 0; i < vlen; i++)
	      {
		const char *name = ctf_strraw (fp, dtd_vlen[i].cte_name);

		ctf_str_add_ref (fp, name, &t_vlen[i].cte_name);
		ctf_str_add_ref (fp, name, &dtd_vlen[i].cte_name);
	      }
	    t += sizeof (struct ctf_enum) * vlen;

	    break;
	  }
	}
    }

  *tptr = t;
}

/* Variable section.  */

/* Sort a newly-constructed static variable array.  */

typedef struct ctf_sort_var_arg_cb
{
  ctf_dict_t *fp;
  ctf_strs_t *strtab;
} ctf_sort_var_arg_cb_t;

static int
ctf_sort_var (const void *one_, const void *two_, void *arg_)
{
  const ctf_varent_t *one = one_;
  const ctf_varent_t *two = two_;
  ctf_sort_var_arg_cb_t *arg = arg_;

  return (strcmp (ctf_strraw_explicit (arg->fp, one->ctv_name, arg->strtab),
		  ctf_strraw_explicit (arg->fp, two->ctv_name, arg->strtab)));
}

/* Overall serialization.  */

/* If the specified CTF dict is writable and has been modified, reload this dict
   with the updated type definitions, ready for serialization.  In order to make
   this code and the rest of libctf as simple as possible, we perform updates by
   taking the dynamic type definitions and creating an in-memory CTF dict
   containing the definitions, and then call ctf_simple_open_internal() on it.
   We perform one extra trick here for the benefit of callers and to keep our
   code simple: ctf_simple_open_internal() will return a new ctf_dict_t, but we
   want to keep the fp constant for the caller, so after
   ctf_simple_open_internal() returns, we use memcpy to swap the interior of the
   old and new ctf_dict_t's, and then free the old.  */
int
ctf_serialize (ctf_dict_t *fp)
{
  ctf_dict_t ofp, *nfp;
  ctf_header_t hdr, *hdrp;
  ctf_dvdef_t *dvd;
  ctf_varent_t *dvarents;
  ctf_strs_writable_t strtab;
  int err;
  int num_missed_str_refs;

  unsigned char *t;
  unsigned long i;
  size_t buf_size, type_size, objt_size, func_size;
  size_t funcidx_size, objtidx_size;
  size_t nvars;
  unsigned char *buf = NULL, *newbuf;

  emit_symtypetab_state_t symstate;
  memset (&symstate, 0, sizeof (emit_symtypetab_state_t));

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  /* Update required?  */
  if (!(fp->ctf_flags & LCTF_DIRTY))
    return 0;

  /* The strtab refs table must be empty at this stage.  Any refs already added
     will be corrupted by any modifications, including reserialization, after
     strtab finalization is complete.  Only this function, and functions it
     calls, may add refs, and all memory locations (including in the dtds)
     containing strtab offsets must be traversed as part of serialization, and
     refs added.  */

  if (!ctf_assert (fp, fp->ctf_str_num_refs == 0))
    return -1;					/* errno is set for us.  */

  /* Fill in an initial CTF header.  We will leave the label, object,
     and function sections empty and only output a header, type section,
     and string table.  The type section begins at a 4-byte aligned
     boundary past the CTF header itself (at relative offset zero).  The flag
     indicating a new-style function info section (an array of CTF_K_FUNCTION
     type IDs in the types section) is flipped on.  */

  memset (&hdr, 0, sizeof (hdr));
  hdr.cth_magic = CTF_MAGIC;
  hdr.cth_version = CTF_VERSION;

  /* This is a new-format func info section, and the symtab and strtab come out
     of the dynsym and dynstr these days.  */
  hdr.cth_flags = (CTF_F_NEWFUNCINFO | CTF_F_DYNSTR);

  if (ctf_symtypetab_sect_sizes (fp, &symstate, &hdr, &objt_size, &func_size,
				 &objtidx_size, &funcidx_size) < 0)
    return -1;					/* errno is set for us.  */

  for (nvars = 0, dvd = ctf_list_next (&fp->ctf_dvdefs);
       dvd != NULL; dvd = ctf_list_next (dvd), nvars++);

  type_size = ctf_type_sect_size (fp);

  /* Compute the size of the CTF buffer we need, sans only the string table,
     then allocate a new buffer and memcpy the finished header to the start of
     the buffer.  (We will adjust this later with strtab length info.)  */

  hdr.cth_lbloff = hdr.cth_objtoff = 0;
  hdr.cth_funcoff = hdr.cth_objtoff + objt_size;
  hdr.cth_objtidxoff = hdr.cth_funcoff + func_size;
  hdr.cth_funcidxoff = hdr.cth_objtidxoff + objtidx_size;
  hdr.cth_varoff = hdr.cth_funcidxoff + funcidx_size;
  hdr.cth_typeoff = hdr.cth_varoff + (nvars * sizeof (ctf_varent_t));
  hdr.cth_stroff = hdr.cth_typeoff + type_size;
  hdr.cth_strlen = 0;

  buf_size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;

  if ((buf = malloc (buf_size)) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  memcpy (buf, &hdr, sizeof (ctf_header_t));
  t = (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_objtoff;

  hdrp = (ctf_header_t *) buf;
  if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parname != NULL))
    ctf_str_add_ref (fp, fp->ctf_parname, &hdrp->cth_parname);
  if (fp->ctf_cuname != NULL)
    ctf_str_add_ref (fp, fp->ctf_cuname, &hdrp->cth_cuname);

  if (ctf_emit_symtypetab_sects (fp, &symstate, &t, objt_size, func_size,
				 objtidx_size, funcidx_size) < 0)
    goto err;

  assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_varoff);

  /* Work over the variable list, translating everything into ctf_varent_t's and
     prepping the string table.  */

  dvarents = (ctf_varent_t *) t;
  for (i = 0, dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL;
       dvd = ctf_list_next (dvd), i++)
    {
      ctf_varent_t *var = &dvarents[i];

      ctf_str_add_ref (fp, dvd->dvd_name, &var->ctv_name);
      var->ctv_type = (uint32_t) dvd->dvd_type;
    }
  assert (i == nvars);

  t += sizeof (ctf_varent_t) * nvars;

  assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_typeoff);

  ctf_emit_type_sect (fp, &t);

  assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_stroff);

  /* Every string added outside serialization by ctf_str_add_pending should
     now have been added by ctf_add_ref.  */
  num_missed_str_refs = ctf_dynset_elements (fp->ctf_str_pending_ref);
  if (!ctf_assert (fp, num_missed_str_refs == 0))
    goto err;					/* errno is set for us.  */

  /* Construct the final string table and fill out all the string refs with the
     final offsets.  Then purge the refs list, because we're about to move this
     strtab onto the end of the buf, invalidating all the offsets.  */
  strtab = ctf_str_write_strtab (fp);
  ctf_str_purge_refs (fp);

  if (strtab.cts_strs == NULL)
    goto oom;

  /* Now the string table is constructed, we can sort the buffer of
     ctf_varent_t's.  */
  ctf_sort_var_arg_cb_t sort_var_arg = { fp, (ctf_strs_t *) &strtab };
  ctf_qsort_r (dvarents, nvars, sizeof (ctf_varent_t), ctf_sort_var,
	       &sort_var_arg);

  if ((newbuf = ctf_realloc (fp, buf, buf_size + strtab.cts_len)) == NULL)
    {
      free (strtab.cts_strs);
      goto oom;
    }
  buf = newbuf;
  memcpy (buf + buf_size, strtab.cts_strs, strtab.cts_len);
  hdrp = (ctf_header_t *) buf;
  hdrp->cth_strlen = strtab.cts_len;
  buf_size += hdrp->cth_strlen;
  free (strtab.cts_strs);

  /* Finally, we are ready to ctf_simple_open() the new dict.  If this is
     successful, we then switch nfp and fp and free the old dict.  */

  if ((nfp = ctf_simple_open_internal ((char *) buf, buf_size, NULL, 0,
				       0, NULL, 0, fp->ctf_syn_ext_strtab,
				       1, &err)) == NULL)
    {
      free (buf);
      return (ctf_set_errno (fp, err));
    }

  (void) ctf_setmodel (nfp, ctf_getmodel (fp));

  nfp->ctf_parent = fp->ctf_parent;
  nfp->ctf_parent_unreffed = fp->ctf_parent_unreffed;
  nfp->ctf_refcnt = fp->ctf_refcnt;
  nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY;
  if (nfp->ctf_dynbase == NULL)
    nfp->ctf_dynbase = buf;		/* Make sure buf is freed on close.  */
  nfp->ctf_dthash = fp->ctf_dthash;
  nfp->ctf_dtdefs = fp->ctf_dtdefs;
  nfp->ctf_dvhash = fp->ctf_dvhash;
  nfp->ctf_dvdefs = fp->ctf_dvdefs;
  nfp->ctf_dtoldid = fp->ctf_dtoldid;
  nfp->ctf_add_processing = fp->ctf_add_processing;
  nfp->ctf_snapshots = fp->ctf_snapshots + 1;
  nfp->ctf_specific = fp->ctf_specific;
  nfp->ctf_nfuncidx = fp->ctf_nfuncidx;
  nfp->ctf_nobjtidx = fp->ctf_nobjtidx;
  nfp->ctf_objthash = fp->ctf_objthash;
  nfp->ctf_funchash = fp->ctf_funchash;
  nfp->ctf_dynsyms = fp->ctf_dynsyms;
  nfp->ctf_ptrtab = fp->ctf_ptrtab;
  nfp->ctf_pptrtab = fp->ctf_pptrtab;
  nfp->ctf_typemax = fp->ctf_typemax;
  nfp->ctf_dynsymidx = fp->ctf_dynsymidx;
  nfp->ctf_dynsymmax = fp->ctf_dynsymmax;
  nfp->ctf_ptrtab_len = fp->ctf_ptrtab_len;
  nfp->ctf_pptrtab_len = fp->ctf_pptrtab_len;
  nfp->ctf_link_inputs = fp->ctf_link_inputs;
  nfp->ctf_link_outputs = fp->ctf_link_outputs;
  nfp->ctf_errs_warnings = fp->ctf_errs_warnings;
  nfp->ctf_funcidx_names = fp->ctf_funcidx_names;
  nfp->ctf_objtidx_names = fp->ctf_objtidx_names;
  nfp->ctf_funcidx_sxlate = fp->ctf_funcidx_sxlate;
  nfp->ctf_objtidx_sxlate = fp->ctf_objtidx_sxlate;
  nfp->ctf_str_prov_offset = fp->ctf_str_prov_offset;
  nfp->ctf_syn_ext_strtab = fp->ctf_syn_ext_strtab;
  nfp->ctf_pptrtab_typemax = fp->ctf_pptrtab_typemax;
  nfp->ctf_in_flight_dynsyms = fp->ctf_in_flight_dynsyms;
  nfp->ctf_link_in_cu_mapping = fp->ctf_link_in_cu_mapping;
  nfp->ctf_link_out_cu_mapping = fp->ctf_link_out_cu_mapping;
  nfp->ctf_link_type_mapping = fp->ctf_link_type_mapping;
  nfp->ctf_link_memb_name_changer = fp->ctf_link_memb_name_changer;
  nfp->ctf_link_memb_name_changer_arg = fp->ctf_link_memb_name_changer_arg;
  nfp->ctf_link_variable_filter = fp->ctf_link_variable_filter;
  nfp->ctf_link_variable_filter_arg = fp->ctf_link_variable_filter_arg;
  nfp->ctf_symsect_little_endian = fp->ctf_symsect_little_endian;
  nfp->ctf_link_flags = fp->ctf_link_flags;
  nfp->ctf_dedup_atoms = fp->ctf_dedup_atoms;
  nfp->ctf_dedup_atoms_alloc = fp->ctf_dedup_atoms_alloc;
  memcpy (&nfp->ctf_dedup, &fp->ctf_dedup, sizeof (fp->ctf_dedup));

  nfp->ctf_snapshot_lu = fp->ctf_snapshots;

  memcpy (&nfp->ctf_lookups, fp->ctf_lookups, sizeof (fp->ctf_lookups));
  nfp->ctf_structs = fp->ctf_structs;
  nfp->ctf_unions = fp->ctf_unions;
  nfp->ctf_enums = fp->ctf_enums;
  nfp->ctf_names = fp->ctf_names;

  fp->ctf_dthash = NULL;
  ctf_str_free_atoms (nfp);
  nfp->ctf_str_atoms = fp->ctf_str_atoms;
  nfp->ctf_prov_strtab = fp->ctf_prov_strtab;
  nfp->ctf_str_pending_ref = fp->ctf_str_pending_ref;
  fp->ctf_str_atoms = NULL;
  fp->ctf_prov_strtab = NULL;
  fp->ctf_str_pending_ref = NULL;
  memset (&fp->ctf_dtdefs, 0, sizeof (ctf_list_t));
  memset (&fp->ctf_errs_warnings, 0, sizeof (ctf_list_t));
  fp->ctf_add_processing = NULL;
  fp->ctf_ptrtab = NULL;
  fp->ctf_pptrtab = NULL;
  fp->ctf_funcidx_names = NULL;
  fp->ctf_objtidx_names = NULL;
  fp->ctf_funcidx_sxlate = NULL;
  fp->ctf_objtidx_sxlate = NULL;
  fp->ctf_objthash = NULL;
  fp->ctf_funchash = NULL;
  fp->ctf_dynsyms = NULL;
  fp->ctf_dynsymidx = NULL;
  fp->ctf_link_inputs = NULL;
  fp->ctf_link_outputs = NULL;
  fp->ctf_syn_ext_strtab = NULL;
  fp->ctf_link_in_cu_mapping = NULL;
  fp->ctf_link_out_cu_mapping = NULL;
  fp->ctf_link_type_mapping = NULL;
  fp->ctf_dedup_atoms = NULL;
  fp->ctf_dedup_atoms_alloc = NULL;
  fp->ctf_parent_unreffed = 1;

  fp->ctf_dvhash = NULL;
  memset (&fp->ctf_dvdefs, 0, sizeof (ctf_list_t));
  memset (fp->ctf_lookups, 0, sizeof (fp->ctf_lookups));
  memset (&fp->ctf_in_flight_dynsyms, 0, sizeof (fp->ctf_in_flight_dynsyms));
  memset (&fp->ctf_dedup, 0, sizeof (fp->ctf_dedup));
  fp->ctf_structs.ctn_writable = NULL;
  fp->ctf_unions.ctn_writable = NULL;
  fp->ctf_enums.ctn_writable = NULL;
  fp->ctf_names.ctn_writable = NULL;

  memcpy (&ofp, fp, sizeof (ctf_dict_t));
  memcpy (fp, nfp, sizeof (ctf_dict_t));
  memcpy (nfp, &ofp, sizeof (ctf_dict_t));

  nfp->ctf_refcnt = 1;				/* Force nfp to be freed.  */
  ctf_dict_close (nfp);

  return 0;

oom:
  free (buf);
  return (ctf_set_errno (fp, EAGAIN));
err:
  free (buf);
  return -1;					/* errno is set for us.  */
}

/* File writing.  */

/* Write the compressed CTF data stream to the specified gzFile descriptor.  The
   whole stream is compressed, and cannot be read by CTF opening functions in
   this library until it is decompressed.  (The functions below this one leave
   the header uncompressed, and the CTF opening functions work on them without
   manual decompression.)

   No support for (testing-only) endian-flipping.  */
int
ctf_gzwrite (ctf_dict_t *fp, gzFile fd)
{
  const unsigned char *buf;
  ssize_t resid;
  ssize_t len;

  resid = sizeof (ctf_header_t);
  buf = (unsigned char *) fp->ctf_header;
  while (resid != 0)
    {
      if ((len = gzwrite (fd, buf, resid)) <= 0)
	return (ctf_set_errno (fp, errno));
      resid -= len;
      buf += len;
    }

  resid = fp->ctf_size;
  buf = fp->ctf_buf;
  while (resid != 0)
    {
      if ((len = gzwrite (fd, buf, resid)) <= 0)
	return (ctf_set_errno (fp, errno));
      resid -= len;
      buf += len;
    }

  return 0;
}

/* Optionally compress the specified CTF data stream and return it as a new
   dynamically-allocated string.  Possibly write it with reversed
   endianness.  */
unsigned char *
ctf_write_mem (ctf_dict_t *fp, size_t *size, size_t threshold)
{
  unsigned char *buf;
  unsigned char *bp;
  ctf_header_t *hp;
  unsigned char *flipped, *src;
  ssize_t header_len = sizeof (ctf_header_t);
  ssize_t compress_len;
  int flip_endian;
  int uncompressed;
  int rc;

  flip_endian = getenv ("LIBCTF_WRITE_FOREIGN_ENDIAN") != NULL;
  uncompressed = (fp->ctf_size < threshold);

  if (ctf_serialize (fp) < 0)
    return NULL;				/* errno is set for us.  */

  compress_len = compressBound (fp->ctf_size);
  if (fp->ctf_size < threshold)
    compress_len = fp->ctf_size;
  if ((buf = malloc (compress_len
		     + sizeof (struct ctf_header))) == NULL)
    {
      ctf_set_errno (fp, ENOMEM);
      ctf_err_warn (fp, 0, 0, _("ctf_write_mem: cannot allocate %li bytes"),
		    (unsigned long) (compress_len + sizeof (struct ctf_header)));
      return NULL;
    }

  hp = (ctf_header_t *) buf;
  memcpy (hp, fp->ctf_header, header_len);
  bp = buf + sizeof (struct ctf_header);
  *size = sizeof (struct ctf_header);

  if (uncompressed)
    hp->cth_flags &= ~CTF_F_COMPRESS;
  else
    hp->cth_flags |= CTF_F_COMPRESS;

  src = fp->ctf_buf;
  flipped = NULL;

  if (flip_endian)
    {
      if ((flipped = malloc (fp->ctf_size)) == NULL)
	{
	  ctf_set_errno (fp, ENOMEM);
	  ctf_err_warn (fp, 0, 0, _("ctf_write_mem: cannot allocate %li bytes"),
			(unsigned long) (fp->ctf_size + sizeof (struct ctf_header)));
	  return NULL;
	}
      ctf_flip_header (hp);
      memcpy (flipped, fp->ctf_buf, fp->ctf_size);
      if (ctf_flip (fp, fp->ctf_header, flipped, 1) < 0)
	{
	  free (buf);
	  free (flipped);
	  return NULL;				/* errno is set for us.  */
	}
      src = flipped;
    }

  if (uncompressed)
    {
      memcpy (bp, src, fp->ctf_size);
      *size += fp->ctf_size;
    }
  else
    {
      if ((rc = compress (bp, (uLongf *) &compress_len,
			  src, fp->ctf_size)) != Z_OK)
	{
	  ctf_set_errno (fp, ECTF_COMPRESS);
	  ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
	  free (buf);
	  return NULL;
	}
      *size += compress_len;
    }

  free (flipped);

  return buf;
}

/* Compress the specified CTF data stream and write it to the specified file
   descriptor.  */
int
ctf_compress_write (ctf_dict_t *fp, int fd)
{
  unsigned char *buf;
  unsigned char *bp;
  size_t tmp;
  ssize_t buf_len;
  ssize_t len;
  int err = 0;

  if ((buf = ctf_write_mem (fp, &tmp, 0)) == NULL)
    return -1;					/* errno is set for us.  */

  buf_len = tmp;
  bp = buf;

  while (buf_len > 0)
    {
      if ((len = write (fd, bp, buf_len)) < 0)
	{
	  err = ctf_set_errno (fp, errno);
	  ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing"));
	  goto ret;
	}
      buf_len -= len;
      bp += len;
    }

ret:
  free (buf);
  return err;
}

/* Write the uncompressed CTF data stream to the specified file descriptor.  */
int
ctf_write (ctf_dict_t *fp, int fd)
{
  unsigned char *buf;
  unsigned char *bp;
  size_t tmp;
  ssize_t buf_len;
  ssize_t len;
  int err = 0;

  if ((buf = ctf_write_mem (fp, &tmp, (size_t) -1)) == NULL)
    return -1;					/* errno is set for us.  */

  buf_len = tmp;
  bp = buf;

  while (buf_len > 0)
    {
      if ((len = write (fd, bp, buf_len)) < 0)
	{
	  err = ctf_set_errno (fp, errno);
	  ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing"));
	  goto ret;
	}
      buf_len -= len;
      bp += len;
    }

ret:
  free (buf);
  return err;
}