;; ARM Cortex-A7 pipeline description
;; Copyright (C) 2012-2020 Free Software Foundation, Inc.
;;
;; Contributed by ARM Ltd.
;; Based on cortex-a5.md which was originally contributed by CodeSourcery.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
(define_attr "cortex_a7_neon_type"
"neon_mul, neon_mla, neon_other"
(cond [
(eq_attr "type" "neon_mul_b, neon_mul_b_q,\
neon_mul_h, neon_mul_h_q,\
neon_mul_s, neon_mul_s_q,\
neon_mul_b_long, neon_mul_h_long,\
neon_mul_s_long, neon_mul_h_scalar,\
neon_mul_h_scalar_q, neon_mul_s_scalar,\
neon_mul_s_scalar_q, neon_mul_h_scalar_long,\
neon_mul_s_scalar_long,\
neon_sat_mul_b, neon_sat_mul_b_q,\
neon_sat_mul_h, neon_sat_mul_h_q,\
neon_sat_mul_s, neon_sat_mul_s_q,\
neon_sat_mul_b_long, neon_sat_mul_h_long,\
neon_sat_mul_s_long,\
neon_sat_mul_h_scalar, neon_sat_mul_h_scalar_q,\
neon_sat_mul_s_scalar, neon_sat_mul_s_scalar_q,\
neon_sat_mul_h_scalar_long,\
neon_sat_mul_s_scalar_long,\
neon_fp_mul_s, neon_fp_mul_s_q,\
neon_fp_mul_s_scalar, neon_fp_mul_s_scalar_q")
(const_string "neon_mul")
(eq_attr "type" "neon_mla_b, neon_mla_b_q, neon_mla_h,\
neon_mla_h_q, neon_mla_s, neon_mla_s_q,\
neon_mla_b_long, neon_mla_h_long,\
neon_mla_s_long,\
neon_mla_h_scalar, neon_mla_h_scalar_q,\
neon_mla_s_scalar, neon_mla_s_scalar_q,\
neon_mla_h_scalar_long, neon_mla_s_scalar_long,\
neon_sat_mla_b_long, neon_sat_mla_h_long,\
neon_sat_mla_s_long,\
neon_sat_mla_h_scalar_long,\
neon_sat_mla_s_scalar_long,\
neon_fp_mla_s, neon_fp_mla_s_q,\
neon_fp_mla_s_scalar, neon_fp_mla_s_scalar_q")
(const_string "neon_mla")]
(const_string "neon_other")))
(define_automaton "cortex_a7")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Functional units.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The Cortex-A7 pipeline integer and vfp pipeline.
;; The decode is the same for all instructions, so do not model it.
;; We only model the first execution stage because
;; instructions always advance one stage per cycle in order.
;; We model all of the LS, Branch, ALU, MAC and FPU pipelines together.
(define_cpu_unit "cortex_a7_ex1, cortex_a7_ex2" "cortex_a7")
(define_reservation "cortex_a7_both" "cortex_a7_ex1+cortex_a7_ex2")
(define_cpu_unit "cortex_a7_branch" "cortex_a7")
;; Cortex-A7 is in order and can dual-issue under limited circumstances.
;; ex2 can be reserved only after ex1 is reserved.
(final_presence_set "cortex_a7_ex2" "cortex_a7_ex1")
;; Pseudo-unit for blocking the multiply pipeline when a double-precision
;; multiply is in progress.
(define_cpu_unit "cortex_a7_fpmul_pipe" "cortex_a7")
;; The floating-point add pipeline (ex1/f1 stage), used to model the usage
;; of the add pipeline by fmac instructions, etc.
(define_cpu_unit "cortex_a7_fpadd_pipe" "cortex_a7")
;; Floating-point div/sqrt (long latency, out-of-order completion).
(define_cpu_unit "cortex_a7_fp_div_sqrt" "cortex_a7")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branches.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; A direct branch can dual issue either as younger or older instruction,
;; but branches cannot dual issue with branches.
;; No latency as there is no result.
(define_insn_reservation "cortex_a7_branch" 0
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "branch"))
"(cortex_a7_ex2|cortex_a7_ex1)+cortex_a7_branch")
;; Call cannot dual-issue as an older instruction. It can dual-issue
;; as a younger instruction, or single-issue. Call cannot dual-issue
;; with another branch instruction. The result is available the next
;; cycle.
(define_insn_reservation "cortex_a7_call" 1
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "call"))
"(cortex_a7_ex2|cortex_a7_both)+cortex_a7_branch")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instruction with an immediate operand can dual-issue.
(define_insn_reservation "cortex_a7_alu_imm" 2
(and (eq_attr "tune" "cortexa7")
(ior (eq_attr "type" "adr,alu_imm,alus_imm,logic_imm,logics_imm,\
mov_imm,mvn_imm,extend")
(and (eq_attr "type" "mov_reg,mov_shift,mov_shift_reg")
(not (eq_attr "length" "8")))))
"cortex_a7_ex2|cortex_a7_ex1")
;; ALU instruction with register operands can dual-issue
;; with a younger immediate-based instruction.
(define_insn_reservation "cortex_a7_alu_sreg" 2
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "alu_sreg,alus_sreg,logic_reg,logics_reg,\
adc_imm,adcs_imm,adc_reg,adcs_reg,\
bfm,clz,rbit,rev,alu_dsp_reg,\
shift_imm,shift_reg,mov_reg,mvn_reg"))
"cortex_a7_ex1")
(define_insn_reservation "cortex_a7_alu_shift" 2
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "alu_shift_imm,alus_shift_imm,\
logic_shift_imm,logics_shift_imm,\
alu_shift_reg,alus_shift_reg,\
logic_shift_reg,logics_shift_reg,\
mov_shift,mov_shift_reg,\
mvn_shift,mvn_shift_reg,\
mrs,multiple"))
"cortex_a7_ex1")
;; Forwarding path for unshifted operands.
(define_bypass 1 "cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_alu_shift"
"cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_mul")
(define_bypass 1 "cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_alu_shift"
"cortex_a7_store*"
"arm_no_early_store_addr_dep")
(define_bypass 1 "cortex_a7_alu_imm,cortex_a7_alu_sreg,cortex_a7_alu_shift"
"cortex_a7_alu_shift"
"arm_no_early_alu_shift_dep")
;; The multiplier pipeline can forward results from wr stage only so
;; there's no need to specify bypasses.
;; Multiply instructions cannot dual-issue.
(define_insn_reservation "cortex_a7_mul" 2
(and (eq_attr "tune" "cortexa7")
(ior (eq_attr "mul32" "yes")
(eq_attr "widen_mul64" "yes")))
"cortex_a7_both")
;; Forward the result of a multiply operation to the accumulator
;; of the following multiply and accumulate instruction.
(define_bypass 1 "cortex_a7_mul"
"cortex_a7_mul"
"arm_mac_accumulator_is_result")
;; The latency depends on the operands, so we use an estimate here.
(define_insn_reservation "cortex_a7_idiv" 5
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "udiv,sdiv"))
"cortex_a7_both*5")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/store instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Address-generation happens in the issue stage.
;; Double-word accesses can be issued in a single cycle,
;; and occupy only one pipeline stage.
(define_insn_reservation "cortex_a7_load1" 2
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "load_byte,load_4"))
"cortex_a7_ex1")
(define_insn_reservation "cortex_a7_store1" 0
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "store_4"))
"cortex_a7_ex1")
(define_insn_reservation "cortex_a7_load2" 2
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "load_8"))
"cortex_a7_both")
(define_insn_reservation "cortex_a7_store2" 0
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "store_8"))
"cortex_a7_both")
(define_insn_reservation "cortex_a7_load3" 3
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "load_12"))
"cortex_a7_both, cortex_a7_ex1")
(define_insn_reservation "cortex_a7_store3" 0
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "store_16"))
"cortex_a7_both, cortex_a7_ex1")
(define_insn_reservation "cortex_a7_load4" 3
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "load_16"))
"cortex_a7_both, cortex_a7_both")
(define_insn_reservation "cortex_a7_store4" 0
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "store_12"))
"cortex_a7_both, cortex_a7_both")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point arithmetic.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Neon integer, neon floating point, and single-precision floating
;; point instructions of the same type have the same timing
;; characteristics, but neon instructions cannot dual-issue.
(define_insn_reservation "cortex_a7_fpalu" 4
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov,\
f_cvt, f_cvtf2i, f_cvti2f, fcmps, fcmpd"))
"cortex_a7_ex1+cortex_a7_fpadd_pipe")
;; For fconsts and fconstd, 8-bit immediate data is passed directly from
;; f1 to f3 (which I think reduces the latency by one cycle).
(define_insn_reservation "cortex_a7_fconst" 3
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "fconsts,fconstd"))
"cortex_a7_ex1+cortex_a7_fpadd_pipe")
;; We should try not to attempt to issue a single-precision multiplication in
;; the middle of a double-precision multiplication operation (the usage of
;; cortex_a7_fpmul_pipe).
(define_insn_reservation "cortex_a7_fpmuls" 4
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "fmuls"))
"cortex_a7_ex1+cortex_a7_fpmul_pipe")
(define_insn_reservation "cortex_a7_neon_mul" 4
(and (eq_attr "tune" "cortexa7")
(eq_attr "cortex_a7_neon_type" "neon_mul"))
"(cortex_a7_both+cortex_a7_fpmul_pipe)*2")
(define_insn_reservation "cortex_a7_fpmacs" 8
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "fmacs,ffmas"))
"cortex_a7_ex1+cortex_a7_fpmul_pipe")
(define_insn_reservation "cortex_a7_neon_mla" 8
(and (eq_attr "tune" "cortexa7")
(eq_attr "cortex_a7_neon_type" "neon_mla"))
"cortex_a7_both+cortex_a7_fpmul_pipe")
(define_bypass 4 "cortex_a7_fpmacs,cortex_a7_neon_mla"
"cortex_a7_fpmacs,cortex_a7_neon_mla"
"arm_mac_accumulator_is_result")
;; Non-multiply instructions can issue between two cycles of a
;; double-precision multiply.
(define_insn_reservation "cortex_a7_fpmuld" 7
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "fmuld"))
"cortex_a7_ex1+cortex_a7_fpmul_pipe, cortex_a7_fpmul_pipe*3")
(define_insn_reservation "cortex_a7_fpmacd" 11
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "fmacd"))
"cortex_a7_ex1+cortex_a7_fpmul_pipe, cortex_a7_fpmul_pipe*3")
(define_insn_reservation "cortex_a7_fpfmad" 8
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "ffmad"))
"cortex_a7_ex1+cortex_a7_fpmul_pipe, cortex_a7_fpmul_pipe*4")
(define_bypass 7 "cortex_a7_fpmacd"
"cortex_a7_fpmacd,cortex_a7_fpfmad"
"arm_mac_accumulator_is_result")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point divide/square root instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a7_fdivs" 16
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "fdivs, fsqrts"))
"cortex_a7_ex1+cortex_a7_fp_div_sqrt, cortex_a7_fp_div_sqrt * 13")
(define_insn_reservation "cortex_a7_fdivd" 31
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "fdivd, fsqrtd"))
"cortex_a7_ex1+cortex_a7_fp_div_sqrt, cortex_a7_fp_div_sqrt * 28")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP to/from core transfers.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Core-to-VFP transfers.
(define_insn_reservation "cortex_a7_r2f" 4
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "f_mcr,f_mcrr"))
"cortex_a7_both")
(define_insn_reservation "cortex_a7_f2r" 2
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "f_mrc,f_mrrc"))
"cortex_a7_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP flag transfer.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Fuxne: The flag forwarding from fmstat to the second instruction is
;; not modeled at present.
(define_insn_reservation "cortex_a7_f_flags" 4
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "f_flag"))
"cortex_a7_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP load/store.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a7_f_loads" 4
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "f_loads"))
"cortex_a7_ex1")
(define_insn_reservation "cortex_a7_f_loadd" 4
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "f_loadd"))
"cortex_a7_both")
(define_insn_reservation "cortex_a7_f_stores" 0
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "f_stores"))
"cortex_a7_ex1")
(define_insn_reservation "cortex_a7_f_stored" 0
(and (eq_attr "tune" "cortexa7")
(eq_attr "type" "f_stored"))
"cortex_a7_both")
;; Load-to-use for floating-point values has a penalty of one cycle,
;; i.e. a latency of two.
(define_bypass 2 "cortex_a7_f_loads, cortex_a7_f_loadd"
"cortex_a7_fpalu,\
cortex_a7_fpmuls,cortex_a7_fpmacs,\
cortex_a7_fpmuld,cortex_a7_fpmacd, cortex_a7_fpfmad,\
cortex_a7_fdivs, cortex_a7_fdivd,\
cortex_a7_f2r")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; NEON
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Simple modeling for all neon instructions not covered earlier.
(define_insn_reservation "cortex_a7_neon" 4
(and (eq_attr "tune" "cortexa7")
(and (eq_attr "is_neon_type" "yes")
(eq_attr "cortex_a7_neon_type" "neon_other")))
"cortex_a7_both*2")