Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
;; Predicate definitions for IA-64.
;; Copyright (C) 2004-2020 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.

;; True if OP is a valid operand for the MEM of a CALL insn.
(define_predicate "call_operand"
  (ior (match_code "symbol_ref")
       (match_operand 0 "register_operand")))

;; True if OP refers to any kind of symbol.
;; For roughly the same reasons that pmode_register_operand exists, this
;; predicate ignores its mode argument.
(define_special_predicate "symbolic_operand" 
   (match_code "symbol_ref,const,label_ref"))

;; True if OP is a SYMBOL_REF which refers to a function.
(define_predicate "function_operand"
  (and (match_code "symbol_ref")
       (match_test "SYMBOL_REF_FUNCTION_P (op)")))

;; True if OP refers to a symbol in the sdata section.
(define_predicate "sdata_symbolic_operand" 
  (match_code "symbol_ref,const")
{
  HOST_WIDE_INT offset = 0, size = 0;

  switch (GET_CODE (op))
    {
    case CONST:
      op = XEXP (op, 0);
      if (GET_CODE (op) != PLUS
	  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
	  || GET_CODE (XEXP (op, 1)) != CONST_INT)
	return false;
      offset = INTVAL (XEXP (op, 1));
      op = XEXP (op, 0);
      /* FALLTHRU */

    case SYMBOL_REF:
      if (CONSTANT_POOL_ADDRESS_P (op))
	{
	  size = GET_MODE_SIZE (get_pool_mode (op));
	  if (size > ia64_section_threshold)
	    return false;
	}
      else
	{
	  tree t;

	  if (!SYMBOL_REF_LOCAL_P (op) || !SYMBOL_REF_SMALL_P (op))
	    return false;

	  /* Note that in addition to DECLs, we can get various forms
	     of constants here.  */
	  t = SYMBOL_REF_DECL (op);
	  if (DECL_P (t))
	    {
	      /* Common symbol isn't placed in small data section.  */
	      if (DECL_COMMON (t))
		return false;
	      t = DECL_SIZE_UNIT (t);
	    }
	  else
	    t = TYPE_SIZE_UNIT (TREE_TYPE (t));
	  if (t && tree_fits_shwi_p (t))
	    {
	      size = tree_to_shwi (t);
	      if (size < 0)
		size = 0;
	    }
	}

      /* Deny the stupid user trick of addressing outside the object.  Such
	 things quickly result in GPREL22 relocation overflows.  Of course,
	 they're also highly undefined.  From a pure pedant's point of view
	 they deserve a slap on the wrist (such as provided by a relocation
	 overflow), but that just leads to bugzilla noise.  */
      return (offset >= 0 && offset <= size);

    default:
      gcc_unreachable ();
    }
})

;; True if OP refers to a local symbol [+any offset].
;; To be encoded as:
;;   movl % = @gprel(symbol+offset)
;;   add  % = %, gp
(define_predicate "local_symbolic_operand64"
  (match_code "symbol_ref,const")
{
  switch (GET_CODE (op))
    {
    case CONST:
      op = XEXP (op, 0);
      if (GET_CODE (op) != PLUS
	  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
	  || GET_CODE (XEXP (op, 1)) != CONST_INT)
	return false;
      op = XEXP (op, 0);
      /* FALLTHRU */

    case SYMBOL_REF:
	return SYMBOL_REF_LOCAL_P (op);

    default:
      gcc_unreachable ();
    }
})

;; True if OP refers to a symbol in the small address area.
(define_predicate "small_addr_symbolic_operand" 
  (match_code "symbol_ref,const")
{
  switch (GET_CODE (op))
    {
    case CONST:
      op = XEXP (op, 0);
      if (GET_CODE (op) != PLUS
	  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
	  || GET_CODE (XEXP (op, 1)) != CONST_INT)
	return false;
      op = XEXP (op, 0);
      /* FALLTHRU */

    case SYMBOL_REF:
      return SYMBOL_REF_SMALL_ADDR_P (op);

    default:
      gcc_unreachable ();
    }
})

;; True if OP refers to a symbol with which we may use any offset.
(define_predicate "any_offset_symbol_operand"
  (match_code "symbol_ref")
{
  if (TARGET_NO_PIC || TARGET_AUTO_PIC)
    return true;
  if (SYMBOL_REF_SMALL_ADDR_P (op))
    return true;
  if (SYMBOL_REF_FUNCTION_P (op))
    return false;
  if (sdata_symbolic_operand (op, mode))
    return true;
  return false;
})

;; True if OP refers to a symbol with which we may use 14-bit aligned offsets.
;; False if OP refers to a symbol with which we may not use any offset at any
;; time.
(define_predicate "aligned_offset_symbol_operand"
  (and (match_code "symbol_ref")
       (match_test "! SYMBOL_REF_FUNCTION_P (op)")))

;; True if OP refers to a symbol, and is appropriate for a GOT load.
(define_predicate "got_symbolic_operand" 
  (match_operand 0 "symbolic_operand" "")
{
  HOST_WIDE_INT addend = 0;

  switch (GET_CODE (op))
    {
    case LABEL_REF:
      return true;

    case CONST:
      /* Accept only (plus (symbol_ref) (const_int)).  */
      op = XEXP (op, 0);
      if (GET_CODE (op) != PLUS
	  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
          || GET_CODE (XEXP (op, 1)) != CONST_INT)
        return false;

      addend = INTVAL (XEXP (op, 1));
      op = XEXP (op, 0);
      /* FALLTHRU */

    case SYMBOL_REF:
      /* These symbols shouldn't be used with got loads.  */
      if (SYMBOL_REF_SMALL_ADDR_P (op))
	return false;
      if (SYMBOL_REF_TLS_MODEL (op) != 0)
	return false;

      if (any_offset_symbol_operand (op, mode))
	return true;

      /* The low 14 bits of the constant have been forced to zero
	 so that we do not use up so many GOT entries.  Prevent cse
	 from undoing this.  */
      if (aligned_offset_symbol_operand (op, mode))
	return (addend & 0x3fff) == 0;

      return addend == 0;

    default:
      gcc_unreachable ();
    }
})

;; Return true if OP is a valid thread local storage symbolic operand.
(define_predicate "tls_symbolic_operand"
  (match_code "symbol_ref,const")
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
      return SYMBOL_REF_TLS_MODEL (op) != 0;

    case CONST:
      op = XEXP (op, 0);
      if (GET_CODE (op) != PLUS
	  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
	  || GET_CODE (XEXP (op, 1)) != CONST_INT)
	return false;

      /* We only allow certain offsets for certain tls models.  */
      switch (SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
	{
	case TLS_MODEL_GLOBAL_DYNAMIC:
	case TLS_MODEL_LOCAL_DYNAMIC:
	  return false;

	case TLS_MODEL_INITIAL_EXEC:
	  return (INTVAL (XEXP (op, 1)) & 0x3fff) == 0;

	case TLS_MODEL_LOCAL_EXEC:
	  return true;

	default:
	  return false;
	}

    default:
      gcc_unreachable ();
    }
})

;; Return true if OP is a local-dynamic thread local storage symbolic operand.
(define_predicate "ld_tls_symbolic_operand"
  (and (match_code "symbol_ref")
       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_DYNAMIC")))

;; Return true if OP is an initial-exec thread local storage symbolic operand.
(define_predicate "ie_tls_symbolic_operand"
  (match_code "symbol_ref,const")
{
  switch (GET_CODE (op))
    {
    case CONST:
      op = XEXP (op, 0);
      if (GET_CODE (op) != PLUS
	  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
	  || GET_CODE (XEXP (op, 1)) != CONST_INT
	  || (INTVAL (XEXP (op, 1)) & 0x3fff) != 0)
	return false;
      op = XEXP (op, 0);
      /* FALLTHRU */

    case SYMBOL_REF:
      return SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_INITIAL_EXEC;

    default:
      gcc_unreachable ();
    }
})

;; Return true if OP is a local-exec thread local storage symbolic operand.
(define_predicate "le_tls_symbolic_operand"
  (match_code "symbol_ref,const")
{
  switch (GET_CODE (op))
    {
    case CONST:
      op = XEXP (op, 0);
      if (GET_CODE (op) != PLUS
          || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
          || GET_CODE (XEXP (op, 1)) != CONST_INT)
        return false;
      op = XEXP (op, 0);
      /* FALLTHRU */

    case SYMBOL_REF:
      return SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_EXEC;

    default:
      gcc_unreachable ();
    }
})

;; Like nonimmediate_operand, but don't allow MEMs that try to use a
;; POST_MODIFY with a REG as displacement.
(define_predicate "destination_operand"
  (and (match_operand 0 "nonimmediate_operand")
       (match_test "GET_CODE (op) != MEM
		    || GET_CODE (XEXP (op, 0)) != POST_MODIFY
		    || GET_CODE (XEXP (XEXP (XEXP (op, 0), 1), 1)) != REG")))

;; Like destination_operand, but don't allow any post-increments.
(define_predicate "not_postinc_destination_operand"
  (and (match_operand 0 "nonimmediate_operand")
       (match_test "GET_CODE (op) != MEM
        || GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC")))

;; Like memory_operand, but don't allow post-increments.
(define_predicate "not_postinc_memory_operand"
  (and (match_operand 0 "memory_operand")
       (match_test "GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC")))

;; True if OP is a general operand, with some restrictions on symbols.
(define_predicate "move_operand"
  (match_operand 0 "general_operand")
{
  switch (GET_CODE (op))
    {
    case CONST:
      {
	HOST_WIDE_INT addend;

	/* Accept only (plus (symbol_ref) (const_int)).  */
	op = XEXP (op, 0);
	if (GET_CODE (op) != PLUS
	    || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
            || GET_CODE (XEXP (op, 1)) != CONST_INT)
	  return false;

	addend = INTVAL (XEXP (op, 1));
	op = XEXP (op, 0);

	/* After reload, we want to allow any offset whatsoever.  This
	   allows reload the opportunity to avoid spilling addresses to
	   the stack, and instead simply substitute in the value from a
	   REG_EQUIV.  We'll split this up again when splitting the insn.  */
	if (reload_in_progress || reload_completed)
	  return true;

	/* Some symbol types we allow to use with any offset.  */
	if (any_offset_symbol_operand (op, mode))
	  return true;

	/* Some symbol types we allow offsets with the low 14 bits of the
	   constant forced to zero so that we do not use up so many GOT
	   entries.  We want to prevent cse from undoing this.  */
	if (aligned_offset_symbol_operand (op, mode))
	  return (addend & 0x3fff) == 0;

	/* The remaining symbol types may never be used with an offset.  */
	return false;
      }

    default:
      return true;
    }
})

;; Like move_operand but don't allow post-increments.
(define_predicate "not_postinc_move_operand"
  (and (match_operand 0 "move_operand")
       (match_test "GET_CODE (op) != MEM
        || GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC")))

;; True if OP is a register operand that is (or could be) a GR reg.
(define_predicate "gr_register_operand"
  (match_operand 0 "register_operand")
{
  unsigned int regno;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  regno = REGNO (op);
  return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
})

;; True if OP is a register operand that is (or could be) an FR reg.
(define_predicate "fr_register_operand"
  (match_operand 0 "register_operand")
{
  unsigned int regno;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  regno = REGNO (op);
  return (regno >= FIRST_PSEUDO_REGISTER || FR_REGNO_P (regno));
})

;; True if OP is a register operand that is (or could be) a GR/FR reg.
(define_predicate "grfr_register_operand"
  (match_operand 0 "register_operand")
{
  unsigned int regno;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  regno = REGNO (op);
  return (regno >= FIRST_PSEUDO_REGISTER
	  || GENERAL_REGNO_P (regno)
	  || FR_REGNO_P (regno));
})

;; True if OP is a nonimmediate operand that is (or could be) a GR reg.
(define_predicate "gr_nonimmediate_operand"
  (match_operand 0 "nonimmediate_operand")
{
  unsigned int regno;

  if (GET_CODE (op) == MEM)
    return true;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  regno = REGNO (op);
  return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
})

;; True if OP is a nonimmediate operand that is (or could be) a FR reg.
(define_predicate "fr_nonimmediate_operand"
  (match_operand 0 "nonimmediate_operand")
{
  unsigned int regno;

  if (GET_CODE (op) == MEM)
    return true;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  regno = REGNO (op);
  return (regno >= FIRST_PSEUDO_REGISTER || FR_REGNO_P (regno));
})

;; True if OP is a nonimmediate operand that is (or could be) a GR/FR reg.
(define_predicate "grfr_nonimmediate_operand"
  (match_operand 0 "nonimmediate_operand")
{
  unsigned int regno;

  if (GET_CODE (op) == MEM)
    return true;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  regno = REGNO (op);
  return (regno >= FIRST_PSEUDO_REGISTER
	  || GENERAL_REGNO_P (regno)
	  || FR_REGNO_P (regno));
})

;; True if OP is a GR register operand, or zero.
(define_predicate "gr_reg_or_0_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int,const_double,const_vector")
	    (match_test "op == CONST0_RTX (GET_MODE (op))"))))

;; True if OP is a GR register operand, or a 5-bit immediate operand.
(define_predicate "gr_reg_or_5bit_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int")
	    (match_test "INTVAL (op) >= 0 && INTVAL (op) < 32"))))

;; True if OP is a GR register operand, or a 6-bit immediate operand.
(define_predicate "gr_reg_or_6bit_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int")
	    (match_test "satisfies_constraint_M (op)"))))

;; True if OP is a GR register operand, or an 8-bit immediate operand.
(define_predicate "gr_reg_or_8bit_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int")
	    (match_test "satisfies_constraint_K (op)"))))

;; True if OP is a GR/FR register operand, or an 8-bit immediate operand.
(define_predicate "grfr_reg_or_8bit_operand"
  (ior (match_operand 0 "grfr_register_operand")
       (and (match_code "const_int")
	    (match_test "satisfies_constraint_K (op)"))))

;; True if OP is a register operand, or an 8-bit adjusted immediate operand.
(define_predicate "gr_reg_or_8bit_adjusted_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int")
	    (match_test "satisfies_constraint_L (op)"))))

;; True if OP is a register operand, or is valid for both an 8-bit
;; immediate and an 8-bit adjusted immediate operand.  This is necessary
;; because when we emit a compare, we don't know what the condition will be,
;; so we need the union of the immediates accepted by GT and LT.
(define_predicate "gr_reg_or_8bit_and_adjusted_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int")
	    (match_test "satisfies_constraint_K (op)
                         && satisfies_constraint_L (op)"))))

;; True if OP is a register operand, or a 14-bit immediate operand.
(define_predicate "gr_reg_or_14bit_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int")
	    (match_test "satisfies_constraint_I (op)"))))

;;  True if OP is a register operand, or a 22-bit immediate operand.
(define_predicate "gr_reg_or_22bit_operand"
  (ior (match_operand 0 "gr_register_operand")
       (and (match_code "const_int")
	    (match_test "satisfies_constraint_J (op)"))))

;; True if OP is a 7-bit immediate operand.
(define_predicate "dshift_count_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= 0 && INTVAL (op) < 128")))

;; True if OP is a 6-bit immediate operand.
(define_predicate "shift_count_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_M (op)")))

;; True if OP-1 is a 6-bit immediate operand, used in extr instruction.
(define_predicate "extr_len_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_M (GEN_INT (INTVAL (op) - 1))")))

;; True if OP is a 5-bit immediate operand.
(define_predicate "shift_32bit_count_operand"
   (and (match_code "const_int")
        (match_test "INTVAL (op) >= 0 && INTVAL (op) < 32")))

;; True if OP is one of the immediate values 2, 4, 8, or 16.
(define_predicate "shladd_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) == 2 || INTVAL (op) == 4 ||
	            INTVAL (op) == 8 || INTVAL (op) == 16")))

;; True if OP is one of the immediate values 1, 2, 3, or 4.
(define_predicate "shladd_log2_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= 1 && INTVAL (op) <= 4")))

;; True if OP is one of the immediate values  -16, -8, -4, -1, 1, 4, 8, 16.
(define_predicate "fetchadd_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) == -16 || INTVAL (op) == -8 ||
                    INTVAL (op) == -4  || INTVAL (op) == -1 ||
                    INTVAL (op) == 1   || INTVAL (op) == 4  ||
                    INTVAL (op) == 8   || INTVAL (op) == 16")))

;; True if OP is one of the immediate values 0, 7, 15, 16
(define_predicate "pmpyshr_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) == 0 || INTVAL (op) == 7
		    || INTVAL (op) == 15 || INTVAL (op) == 16")))

;; True if OP is 0..3.
(define_predicate "const_int_2bit_operand"
  (and (match_code "const_int")
        (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 3")))

;; True if OP is a floating-point constant zero, one, or a register.
(define_predicate "fr_reg_or_fp01_operand"
  (ior (match_operand 0 "fr_register_operand")
       (and (match_code "const_double")
	    (match_test "satisfies_constraint_G (op)"))))

;; Like fr_reg_or_fp01_operand, but don't allow any SUBREGs.
(define_predicate "xfreg_or_fp01_operand"
  (and (match_operand 0 "fr_reg_or_fp01_operand")
       (not (match_code "subreg"))))

;; Like fr_reg_or_fp01_operand, but don't allow 0 if flag_signed_zero is set.
;; Using f0 as the second arg to fadd or fsub, or as the third arg to fma or
;; fms can cause a zero result to have the wrong sign.
(define_predicate "fr_reg_or_signed_fp01_operand"
  (ior (match_operand 0 "fr_register_operand")
       (and (match_code "const_double")
	    (match_test "satisfies_constraint_Z (op)"))))

;; Like fr_reg_or_signed_fp01_operand, but don't allow any SUBREGs.
(define_predicate "xfreg_or_signed_fp01_operand"
  (and (match_operand 0 "fr_reg_or_signed_fp01_operand")
       (not (match_code "subreg"))))

;; True if OP is a constant zero, or a register.
(define_predicate "fr_reg_or_0_operand"
  (ior (match_operand 0 "fr_register_operand")
       (and (match_code "const_double,const_vector")
	    (match_test "op == CONST0_RTX (GET_MODE (op))"))))

;; Return 1 if OP is a valid comparison operator for "cbranch" instructions.
;; If we're assuming that FP operations cannot generate user-visible traps,
;; then we can use the FP unordered-signaling instructions to implement the
;; FP unordered-quiet comparison predicates.
(define_predicate "ia64_cbranch_operator"
  (if_then_else (match_test "flag_trapping_math")
		(ior (match_operand 0 "ordered_comparison_operator")
		      (match_code "ordered,unordered"))
		(and (match_operand 0 "comparison_operator")
		      (not (match_code "uneq,ltgt")))))

;; True if this is a comparison operator, which accepts a normal 8-bit
;; signed immediate operand.
(define_predicate "normal_comparison_operator"
  (match_code "eq,ne,gt,le,gtu,leu"))

;; True if this is a comparison operator, which accepts an adjusted 8-bit
;; signed immediate operand.
(define_predicate "adjusted_comparison_operator"
  (match_code "lt,ge,ltu,geu"))

;; True if this is a signed inequality operator.
(define_predicate "signed_inequality_operator"
  (match_code "ge,gt,le,lt"))

;; True if this operator is valid for predication.
(define_predicate "predicate_operator"
  (match_code "eq,ne"))

;; True if this operator can be used in a conditional operation.
(define_predicate "condop_operator"
  (match_code "plus,minus,ior,xor,and"))

;; These three are hardware registers that can only be addressed in
;; DImode.  It's not strictly necessary to test mode == DImode here,
;; but it makes decent insurance against someone writing a
;; match_operand wrong.

;; True if this is the ar.lc register.
(define_predicate "ar_lc_reg_operand"
  (and (match_code "reg")
       (match_test "mode == DImode && REGNO (op) == AR_LC_REGNUM")))

;; True if this is the ar.ccv register.
(define_predicate "ar_ccv_reg_operand"
  (and (match_code "reg")
       (match_test "mode == DImode && REGNO (op) == AR_CCV_REGNUM")))

;; True if this is the ar.pfs register.
(define_predicate "ar_pfs_reg_operand"
  (and (match_code "reg")
       (match_test "mode == DImode && REGNO (op) == AR_PFS_REGNUM")))

;; True if OP is valid as a base register in a reg + offset address.
;; ??? Should I copy the flag_omit_frame_pointer and cse_not_expected
;; checks from pa.c basereg_operand as well?  Seems to be OK without them
;; in test runs.
(define_predicate "basereg_operand"
  (match_operand 0 "register_operand")
{
  return REG_P (op) && REG_POINTER (op);
})

;; True if this is the right-most vector element; for mux1 @brcst.
(define_predicate "mux1_brcst_element"
  (and (match_code "const_int")
       (match_test "INTVAL (op) == (TARGET_BIG_ENDIAN ? 7 : 0)")))