/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
This file is consumed by genmatch which produces gimple-match.c
and generic-match.c from it.
Copyright (C) 2014-2020 Free Software Foundation, Inc.
Contributed by Richard Biener <rguenther@suse.de>
and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Generic tree predicates we inherit. */
(define_predicates
integer_onep integer_zerop integer_all_onesp integer_minus_onep
integer_each_onep integer_truep integer_nonzerop
real_zerop real_onep real_minus_onep
zerop
initializer_each_zero_or_onep
CONSTANT_CLASS_P
tree_expr_nonnegative_p
tree_expr_nonzero_p
integer_valued_real_p
integer_pow2p
uniform_integer_cst_p
HONOR_NANS
uniform_vector_p)
/* Operator lists. */
(define_operator_list tcc_comparison
lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
(define_operator_list inverted_tcc_comparison
ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
(define_operator_list inverted_tcc_comparison_with_nans
unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
(define_operator_list swapped_tcc_comparison
gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
(define_operator_list simple_comparison lt le eq ne ge gt)
(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
#include "cfn-operators.pd"
/* Define operand lists for math rounding functions {,i,l,ll}FN,
where the versions prefixed with "i" return an int, those prefixed with
"l" return a long and those prefixed with "ll" return a long long.
Also define operand lists:
X<FN>F for all float functions, in the order i, l, ll
X<FN> for all double functions, in the same order
X<FN>L for all long double functions, in the same order. */
#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
(define_operator_list X##FN##F BUILT_IN_I##FN##F \
BUILT_IN_L##FN##F \
BUILT_IN_LL##FN##F) \
(define_operator_list X##FN BUILT_IN_I##FN \
BUILT_IN_L##FN \
BUILT_IN_LL##FN) \
(define_operator_list X##FN##L BUILT_IN_I##FN##L \
BUILT_IN_L##FN##L \
BUILT_IN_LL##FN##L)
DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
/* Binary operations and their associated IFN_COND_* function. */
(define_operator_list UNCOND_BINARY
plus minus
mult trunc_div trunc_mod rdiv
min max
bit_and bit_ior bit_xor
lshift rshift)
(define_operator_list COND_BINARY
IFN_COND_ADD IFN_COND_SUB
IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
IFN_COND_MIN IFN_COND_MAX
IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
IFN_COND_SHL IFN_COND_SHR)
/* Same for ternary operations. */
(define_operator_list UNCOND_TERNARY
IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
(define_operator_list COND_TERNARY
IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
/* With nop_convert? combine convert? and view_convert? in one pattern
plus conditionalize on tree_nop_conversion_p conversions. */
(match (nop_convert @0)
(convert @0)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
(match (nop_convert @0)
(view_convert @0)
(if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
&& known_eq (TYPE_VECTOR_SUBPARTS (type),
TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
&& tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
ABSU_EXPR returns unsigned absolute value of the operand and the operand
of the ABSU_EXPR will have the corresponding signed type. */
(simplify (abs (convert @0))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& !TYPE_UNSIGNED (TREE_TYPE (@0))
&& element_precision (type) > element_precision (TREE_TYPE (@0)))
(with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
(convert (absu:utype @0)))))
/* Simplifications of operations with one constant operand and
simplifications to constants or single values. */
(for op (plus pointer_plus minus bit_ior bit_xor)
(simplify
(op @0 integer_zerop)
(non_lvalue @0)))
/* 0 +p index -> (type)index */
(simplify
(pointer_plus integer_zerop @1)
(non_lvalue (convert @1)))
/* ptr - 0 -> (type)ptr */
(simplify
(pointer_diff @0 integer_zerop)
(convert @0))
/* See if ARG1 is zero and X + ARG1 reduces to X.
Likewise if the operands are reversed. */
(simplify
(plus:c @0 real_zerop@1)
(if (fold_real_zero_addition_p (type, @1, 0))
(non_lvalue @0)))
/* See if ARG1 is zero and X - ARG1 reduces to X. */
(simplify
(minus @0 real_zerop@1)
(if (fold_real_zero_addition_p (type, @1, 1))
(non_lvalue @0)))
/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
if not -frounding-math. For sNaNs the first operation would raise
exceptions but turn the result into qNan, so the second operation
would not raise it. */
(for inner_op (plus minus)
(for outer_op (plus minus)
(simplify
(outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
(if (real_zerop (@1)
&& real_zerop (@2)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (type))
(with { bool inner_plus = ((inner_op == PLUS_EXPR)
^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
bool outer_plus
= ((outer_op == PLUS_EXPR)
^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
(if (outer_plus && !inner_plus)
(outer_op @0 @2)
@3))))))
/* Simplify x - x.
This is unsafe for certain floats even in non-IEEE formats.
In IEEE, it is unsafe because it does wrong for NaNs.
Also note that operand_equal_p is always false if an operand
is volatile. */
(simplify
(minus @0 @0)
(if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
{ build_zero_cst (type); }))
(simplify
(pointer_diff @@0 @0)
{ build_zero_cst (type); })
(simplify
(mult @0 integer_zerop@1)
@1)
/* Maybe fold x * 0 to 0. The expressions aren't the same
when x is NaN, since x * 0 is also NaN. Nor are they the
same in modes with signed zeros, since multiplying a
negative value by 0 gives -0, not +0. */
(simplify
(mult @0 real_zerop@1)
(if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
@1))
/* In IEEE floating point, x*1 is not equivalent to x for snans.
Likewise for complex arithmetic with signed zeros. */
(simplify
(mult @0 real_onep)
(if (!HONOR_SNANS (type)
&& (!HONOR_SIGNED_ZEROS (type)
|| !COMPLEX_FLOAT_TYPE_P (type)))
(non_lvalue @0)))
/* Transform x * -1.0 into -x. */
(simplify
(mult @0 real_minus_onep)
(if (!HONOR_SNANS (type)
&& (!HONOR_SIGNED_ZEROS (type)
|| !COMPLEX_FLOAT_TYPE_P (type)))
(negate @0)))
/* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
(simplify
(mult SSA_NAME@1 SSA_NAME@2)
(if (INTEGRAL_TYPE_P (type)
&& get_nonzero_bits (@1) == 1
&& get_nonzero_bits (@2) == 1)
(bit_and @1 @2)))
/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
unless the target has native support for the former but not the latter. */
(simplify
(mult @0 VECTOR_CST@1)
(if (initializer_each_zero_or_onep (@1)
&& !HONOR_SNANS (type)
&& !HONOR_SIGNED_ZEROS (type))
(with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
(if (itype
&& (!VECTOR_MODE_P (TYPE_MODE (type))
|| (VECTOR_MODE_P (TYPE_MODE (itype))
&& optab_handler (and_optab,
TYPE_MODE (itype)) != CODE_FOR_nothing)))
(view_convert (bit_and:itype (view_convert @0)
(ne @1 { build_zero_cst (type); })))))))
(for cmp (gt ge lt le)
outp (convert convert negate negate)
outn (negate negate convert convert)
/* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
/* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
/* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
/* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
(simplify
(mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
(if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
(outp (abs @0))))
/* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
/* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
/* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
/* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
(simplify
(mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
(if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
(outn (abs @0)))))
/* Transform X * copysign (1.0, X) into abs(X). */
(simplify
(mult:c @0 (COPYSIGN_ALL real_onep @0))
(if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
(abs @0)))
/* Transform X * copysign (1.0, -X) into -abs(X). */
(simplify
(mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
(if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
(negate (abs @0))))
/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
(simplify
(COPYSIGN_ALL REAL_CST@0 @1)
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
(COPYSIGN_ALL (negate @0) @1)))
/* X * 1, X / 1 -> X. */
(for op (mult trunc_div ceil_div floor_div round_div exact_div)
(simplify
(op @0 integer_onep)
(non_lvalue @0)))
/* (A / (1 << B)) -> (A >> B).
Only for unsigned A. For signed A, this would not preserve rounding
toward zero.
For example: (-1 / ( 1 << B)) != -1 >> B.
Also also widening conversions, like:
(A / (unsigned long long) (1U << B)) -> (A >> B)
or
(A / (unsigned long long) (1 << B)) -> (A >> B).
If the left shift is signed, it can be done only if the upper bits
of A starting from shift's type sign bit are zero, as
(unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
so it is valid only if A >> 31 is zero. */
(simplify
(trunc_div @0 (convert? (lshift integer_onep@1 @2)))
(if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
&& (!VECTOR_TYPE_P (type)
|| target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
|| target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
&& (useless_type_conversion_p (type, TREE_TYPE (@1))
|| (element_precision (type) >= element_precision (TREE_TYPE (@1))
&& (TYPE_UNSIGNED (TREE_TYPE (@1))
|| (element_precision (type)
== element_precision (TREE_TYPE (@1)))
|| (INTEGRAL_TYPE_P (type)
&& (tree_nonzero_bits (@0)
& wi::mask (element_precision (TREE_TYPE (@1)) - 1,
true,
element_precision (type))) == 0)))))
(rshift @0 @2)))
/* Preserve explicit divisions by 0: the C++ front-end wants to detect
undefined behavior in constexpr evaluation, and assuming that the division
traps enables better optimizations than these anyway. */
(for div (trunc_div ceil_div floor_div round_div exact_div)
/* 0 / X is always zero. */
(simplify
(div integer_zerop@0 @1)
/* But not for 0 / 0 so that we can get the proper warnings and errors. */
(if (!integer_zerop (@1))
@0))
/* X / -1 is -X. */
(simplify
(div @0 integer_minus_onep@1)
(if (!TYPE_UNSIGNED (type))
(negate @0)))
/* X / X is one. */
(simplify
(div @0 @0)
/* But not for 0 / 0 so that we can get the proper warnings and errors.
And not for _Fract types where we can't build 1. */
(if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
{ build_one_cst (type); }))
/* X / abs (X) is X < 0 ? -1 : 1. */
(simplify
(div:C @0 (abs @0))
(if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type))
(cond (lt @0 { build_zero_cst (type); })
{ build_minus_one_cst (type); } { build_one_cst (type); })))
/* X / -X is -1. */
(simplify
(div:C @0 (negate @0))
(if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
&& TYPE_OVERFLOW_UNDEFINED (type))
{ build_minus_one_cst (type); })))
/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly
for MOD instead of DIV. */
(for floor_divmod (floor_div floor_mod)
trunc_divmod (trunc_div trunc_mod)
(simplify
(floor_divmod @0 @1)
(if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
&& TYPE_UNSIGNED (type))
(trunc_divmod @0 @1))))
/* Combine two successive divisions. Note that combining ceil_div
and floor_div is trickier and combining round_div even more so. */
(for div (trunc_div exact_div)
(simplify
(div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
(with {
wi::overflow_type overflow;
wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (type), &overflow);
}
(if (div == EXACT_DIV_EXPR
|| optimize_successive_divisions_p (@2, @3))
(if (!overflow)
(div @0 { wide_int_to_tree (type, mul); })
(if (TYPE_UNSIGNED (type)
|| mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
{ build_zero_cst (type); }))))))
/* Combine successive multiplications. Similar to above, but handling
overflow is different. */
(simplify
(mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
(with {
wi::overflow_type overflow;
wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (type), &overflow);
}
/* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
otherwise undefined overflow implies that @0 must be zero. */
(if (!overflow || TYPE_OVERFLOW_WRAPS (type))
(mult @0 { wide_int_to_tree (type, mul); }))))
/* Optimize A / A to 1.0 if we don't care about
NaNs or Infinities. */
(simplify
(rdiv @0 @0)
(if (FLOAT_TYPE_P (type)
&& ! HONOR_NANS (type)
&& ! HONOR_INFINITIES (type))
{ build_one_cst (type); }))
/* Optimize -A / A to -1.0 if we don't care about
NaNs or Infinities. */
(simplify
(rdiv:C @0 (negate @0))
(if (FLOAT_TYPE_P (type)
&& ! HONOR_NANS (type)
&& ! HONOR_INFINITIES (type))
{ build_minus_one_cst (type); }))
/* PR71078: x / abs(x) -> copysign (1.0, x) */
(simplify
(rdiv:C (convert? @0) (convert? (abs @0)))
(if (SCALAR_FLOAT_TYPE_P (type)
&& ! HONOR_NANS (type)
&& ! HONOR_INFINITIES (type))
(switch
(if (types_match (type, float_type_node))
(BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
(if (types_match (type, double_type_node))
(BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
(if (types_match (type, long_double_type_node))
(BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
/* In IEEE floating point, x/1 is not equivalent to x for snans. */
(simplify
(rdiv @0 real_onep)
(if (!HONOR_SNANS (type))
(non_lvalue @0)))
/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
(simplify
(rdiv @0 real_minus_onep)
(if (!HONOR_SNANS (type))
(negate @0)))
(if (flag_reciprocal_math)
/* Convert (A/B)/C to A/(B*C). */
(simplify
(rdiv (rdiv:s @0 @1) @2)
(rdiv @0 (mult @1 @2)))
/* Canonicalize x / (C1 * y) to (x * C2) / y. */
(simplify
(rdiv @0 (mult:s @1 REAL_CST@2))
(with
{ tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
(if (tem)
(rdiv (mult @0 { tem; } ) @1))))
/* Convert A/(B/C) to (A/B)*C */
(simplify
(rdiv @0 (rdiv:s @1 @2))
(mult (rdiv @0 @1) @2)))
/* Simplify x / (- y) to -x / y. */
(simplify
(rdiv @0 (negate @1))
(rdiv (negate @0) @1))
(if (flag_unsafe_math_optimizations)
/* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
Since C / x may underflow to zero, do this only for unsafe math. */
(for op (lt le gt ge)
neg_op (gt ge lt le)
(simplify
(op (rdiv REAL_CST@0 @1) real_zerop@2)
(if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
(switch
(if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
(op @1 @2))
/* For C < 0, use the inverted operator. */
(if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
(neg_op @1 @2)))))))
/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
(for div (trunc_div ceil_div floor_div round_div exact_div)
(simplify
(div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (integer_pow2p (@2)
&& tree_int_cst_sgn (@2) > 0
&& tree_nop_conversion_p (type, TREE_TYPE (@0))
&& wi::to_wide (@2) + wi::to_wide (@1) == 0)
(rshift (convert @0)
{ build_int_cst (integer_type_node,
wi::exact_log2 (wi::to_wide (@2))); }))))
/* If ARG1 is a constant, we can convert this to a multiply by the
reciprocal. This does not have the same rounding properties,
so only do this if -freciprocal-math. We can actually
always safely do it if ARG1 is a power of two, but it's hard to
tell if it is or not in a portable manner. */
(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
(simplify
(rdiv @0 cst@1)
(if (optimize)
(if (flag_reciprocal_math
&& !real_zerop (@1))
(with
{ tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
(if (tem)
(mult @0 { tem; } )))
(if (cst != COMPLEX_CST)
(with { tree inverse = exact_inverse (type, @1); }
(if (inverse)
(mult @0 { inverse; } ))))))))
(for mod (ceil_mod floor_mod round_mod trunc_mod)
/* 0 % X is always zero. */
(simplify
(mod integer_zerop@0 @1)
/* But not for 0 % 0 so that we can get the proper warnings and errors. */
(if (!integer_zerop (@1))
@0))
/* X % 1 is always zero. */
(simplify
(mod @0 integer_onep)
{ build_zero_cst (type); })
/* X % -1 is zero. */
(simplify
(mod @0 integer_minus_onep@1)
(if (!TYPE_UNSIGNED (type))
{ build_zero_cst (type); }))
/* X % X is zero. */
(simplify
(mod @0 @0)
/* But not for 0 % 0 so that we can get the proper warnings and errors. */
(if (!integer_zerop (@0))
{ build_zero_cst (type); }))
/* (X % Y) % Y is just X % Y. */
(simplify
(mod (mod@2 @0 @1) @1)
@2)
/* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
(simplify
(mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
(if (ANY_INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type)
&& wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (type)))
{ build_zero_cst (type); }))
/* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
modulo and comparison, since it is simpler and equivalent. */
(for cmp (eq ne)
(simplify
(cmp (mod @0 integer_pow2p@2) integer_zerop@1)
(if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
(with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
(cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
/* X % -C is the same as X % C. */
(simplify
(trunc_mod @0 INTEGER_CST@1)
(if (TYPE_SIGN (type) == SIGNED
&& !TREE_OVERFLOW (@1)
&& wi::neg_p (wi::to_wide (@1))
&& !TYPE_OVERFLOW_TRAPS (type)
/* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
&& !sign_bit_p (@1, @1))
(trunc_mod @0 (negate @1))))
/* X % -Y is the same as X % Y. */
(simplify
(trunc_mod @0 (convert? (negate @1)))
(if (INTEGRAL_TYPE_P (type)
&& !TYPE_UNSIGNED (type)
&& !TYPE_OVERFLOW_TRAPS (type)
&& tree_nop_conversion_p (type, TREE_TYPE (@1))
/* Avoid this transformation if X might be INT_MIN or
Y might be -1, because we would then change valid
INT_MIN % -(-1) into invalid INT_MIN % -1. */
&& (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
|| expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
(TREE_TYPE (@1))))))
(trunc_mod @0 (convert @1))))
/* X - (X / Y) * Y is the same as X % Y. */
(simplify
(minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
(if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
(convert (trunc_mod @0 @1))))
/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
i.e. "X % C" into "X & (C - 1)", if X and C are positive.
Also optimize A % (C << N) where C is a power of 2,
to A & ((C << N) - 1). */
(match (power_of_two_cand @1)
INTEGER_CST@1)
(match (power_of_two_cand @1)
(lshift INTEGER_CST@1 @2))
(for mod (trunc_mod floor_mod)
(simplify
(mod @0 (convert? (power_of_two_cand@1 @2)))
(if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
/* Allow any integral conversions of the divisor, except
conversion from narrower signed to wider unsigned type
where if @1 would be negative power of two, the divisor
would not be a power of two. */
&& INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
|| TYPE_UNSIGNED (TREE_TYPE (@1))
|| !TYPE_UNSIGNED (type))
&& integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
(with { tree utype = TREE_TYPE (@1);
if (!TYPE_OVERFLOW_WRAPS (utype))
utype = unsigned_type_for (utype); }
(bit_and @0 (convert (minus (convert:utype @1)
{ build_one_cst (utype); })))))))
/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
(simplify
(trunc_div (mult @0 integer_pow2p@1) @1)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
(bit_and @0 { wide_int_to_tree
(type, wi::mask (TYPE_PRECISION (type)
- wi::exact_log2 (wi::to_wide (@1)),
false, TYPE_PRECISION (type))); })))
/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
(simplify
(mult (trunc_div @0 integer_pow2p@1) @1)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
(bit_and @0 (negate @1))))
/* Simplify (t * 2) / 2) -> t. */
(for div (trunc_div ceil_div floor_div round_div exact_div)
(simplify
(div (mult:c @0 @1) @1)
(if (ANY_INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type))
@0)))
(for op (negate abs)
/* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
(for coss (COS COSH)
(simplify
(coss (op @0))
(coss @0)))
/* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
(for pows (POW)
(simplify
(pows (op @0) REAL_CST@1)
(with { HOST_WIDE_INT n; }
(if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
(pows @0 @1)))))
/* Likewise for powi. */
(for pows (POWI)
(simplify
(pows (op @0) INTEGER_CST@1)
(if ((wi::to_wide (@1) & 1) == 0)
(pows @0 @1))))
/* Strip negate and abs from both operands of hypot. */
(for hypots (HYPOT)
(simplify
(hypots (op @0) @1)
(hypots @0 @1))
(simplify
(hypots @0 (op @1))
(hypots @0 @1)))
/* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
(for copysigns (COPYSIGN_ALL)
(simplify
(copysigns (op @0) @1)
(copysigns @0 @1))))
/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
(simplify
(mult (abs@1 @0) @1)
(mult @0 @0))
/* Convert absu(x)*absu(x) -> x*x. */
(simplify
(mult (absu@1 @0) @1)
(mult (convert@2 @0) @2))
/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
(for coss (COS COSH)
copysigns (COPYSIGN)
(simplify
(coss (copysigns @0 @1))
(coss @0)))
/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
(for pows (POW)
copysigns (COPYSIGN)
(simplify
(pows (copysigns @0 @2) REAL_CST@1)
(with { HOST_WIDE_INT n; }
(if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
(pows @0 @1)))))
/* Likewise for powi. */
(for pows (POWI)
copysigns (COPYSIGN)
(simplify
(pows (copysigns @0 @2) INTEGER_CST@1)
(if ((wi::to_wide (@1) & 1) == 0)
(pows @0 @1))))
(for hypots (HYPOT)
copysigns (COPYSIGN)
/* hypot(copysign(x, y), z) -> hypot(x, z). */
(simplify
(hypots (copysigns @0 @1) @2)
(hypots @0 @2))
/* hypot(x, copysign(y, z)) -> hypot(x, y). */
(simplify
(hypots @0 (copysigns @1 @2))
(hypots @0 @1)))
/* copysign(x, CST) -> [-]abs (x). */
(for copysigns (COPYSIGN_ALL)
(simplify
(copysigns @0 REAL_CST@1)
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
(negate (abs @0))
(abs @0))))
/* copysign(copysign(x, y), z) -> copysign(x, z). */
(for copysigns (COPYSIGN_ALL)
(simplify
(copysigns (copysigns @0 @1) @2)
(copysigns @0 @2)))
/* copysign(x,y)*copysign(x,y) -> x*x. */
(for copysigns (COPYSIGN_ALL)
(simplify
(mult (copysigns@2 @0 @1) @2)
(mult @0 @0)))
/* ccos(-x) -> ccos(x). Similarly for ccosh. */
(for ccoss (CCOS CCOSH)
(simplify
(ccoss (negate @0))
(ccoss @0)))
/* cabs(-x) and cos(conj(x)) -> cabs(x). */
(for ops (conj negate)
(for cabss (CABS)
(simplify
(cabss (ops @0))
(cabss @0))))
/* Fold (a * (1 << b)) into (a << b) */
(simplify
(mult:c @0 (convert? (lshift integer_onep@1 @2)))
(if (! FLOAT_TYPE_P (type)
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(lshift @0 @2)))
/* Fold (1 << (C - x)) where C = precision(type) - 1
into ((1 << C) >> x). */
(simplify
(lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
(if (INTEGRAL_TYPE_P (type)
&& wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
&& single_use (@1))
(if (TYPE_UNSIGNED (type))
(rshift (lshift @0 @2) @3)
(with
{ tree utype = unsigned_type_for (type); }
(convert (rshift (lshift (convert:utype @0) @2) @3))))))
/* Fold (C1/X)*C2 into (C1*C2)/X. */
(simplify
(mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
(if (flag_associative_math
&& single_use (@3))
(with
{ tree tem = const_binop (MULT_EXPR, type, @0, @2); }
(if (tem)
(rdiv { tem; } @1)))))
/* Simplify ~X & X as zero. */
(simplify
(bit_and:c (convert? @0) (convert? (bit_not @0)))
{ build_zero_cst (type); })
/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
(simplify
(bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
(if (TYPE_UNSIGNED (type))
(bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
(for bitop (bit_and bit_ior)
cmp (eq ne)
/* PR35691: Transform
(x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
(x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
(simplify
(bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
(cmp (bit_ior @0 (convert @1)) @2)))
/* Transform:
(x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
(x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
(simplify
(bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
(cmp (bit_and @0 (convert @1)) @2))))
/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
(simplify
(minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
(minus (bit_xor @0 @1) @1))
(simplify
(minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
(if (~wi::to_wide (@2) == wi::to_wide (@1))
(minus (bit_xor @0 @1) @1)))
/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
(simplify
(minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
(minus @1 (bit_xor @0 @1)))
/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
(for op (bit_ior bit_xor plus)
(simplify
(op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
(bit_xor @0 @1))
(simplify
(op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
(if (~wi::to_wide (@2) == wi::to_wide (@1))
(bit_xor @0 @1))))
/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
(simplify
(bit_ior:c (bit_xor:c @0 @1) @0)
(bit_ior @0 @1))
/* (a & ~b) | (a ^ b) --> a ^ b */
(simplify
(bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
@2)
/* (a & ~b) ^ ~a --> ~(a & b) */
(simplify
(bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
(bit_not (bit_and @0 @1)))
/* (~a & b) ^ a --> (a | b) */
(simplify
(bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
(bit_ior @0 @1))
/* (a | b) & ~(a ^ b) --> a & b */
(simplify
(bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
(bit_and @0 @1))
/* a | ~(a ^ b) --> a | ~b */
(simplify
(bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
(bit_ior @0 (bit_not @1)))
/* (a | b) | (a &^ b) --> a | b */
(for op (bit_and bit_xor)
(simplify
(bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
@2))
/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
(simplify
(bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
@2)
/* ~(~a & b) --> a | ~b */
(simplify
(bit_not (bit_and:cs (bit_not @0) @1))
(bit_ior @0 (bit_not @1)))
/* ~(~a | b) --> a & ~b */
(simplify
(bit_not (bit_ior:cs (bit_not @0) @1))
(bit_and @0 (bit_not @1)))
/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
#if GIMPLE
(simplify
(bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
(bit_xor @0 @1)))
#endif
/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
((A & N) + B) & M -> (A + B) & M
Similarly if (N & M) == 0,
((A | N) + B) & M -> (A + B) & M
and for - instead of + (or unary - instead of +)
and/or ^ instead of |.
If B is constant and (B & M) == 0, fold into A & M. */
(for op (plus minus)
(for bitop (bit_and bit_ior bit_xor)
(simplify
(bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
(with
{ tree pmop[2];
tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
@3, @4, @1, ERROR_MARK, NULL_TREE,
NULL_TREE, pmop); }
(if (utype)
(convert (bit_and (op (convert:utype { pmop[0]; })
(convert:utype { pmop[1]; }))
(convert:utype @2))))))
(simplify
(bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
(with
{ tree pmop[2];
tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
NULL_TREE, NULL_TREE, @1, bitop, @3,
@4, pmop); }
(if (utype)
(convert (bit_and (op (convert:utype { pmop[0]; })
(convert:utype { pmop[1]; }))
(convert:utype @2)))))))
(simplify
(bit_and (op:s @0 @1) INTEGER_CST@2)
(with
{ tree pmop[2];
tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
NULL_TREE, NULL_TREE, @1, ERROR_MARK,
NULL_TREE, NULL_TREE, pmop); }
(if (utype)
(convert (bit_and (op (convert:utype { pmop[0]; })
(convert:utype { pmop[1]; }))
(convert:utype @2)))))))
(for bitop (bit_and bit_ior bit_xor)
(simplify
(bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
(with
{ tree pmop[2];
tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
bitop, @2, @3, NULL_TREE, ERROR_MARK,
NULL_TREE, NULL_TREE, pmop); }
(if (utype)
(convert (bit_and (negate (convert:utype { pmop[0]; }))
(convert:utype @1)))))))
/* X % Y is smaller than Y. */
(for cmp (lt ge)
(simplify
(cmp (trunc_mod @0 @1) @1)
(if (TYPE_UNSIGNED (TREE_TYPE (@0)))
{ constant_boolean_node (cmp == LT_EXPR, type); })))
(for cmp (gt le)
(simplify
(cmp @1 (trunc_mod @0 @1))
(if (TYPE_UNSIGNED (TREE_TYPE (@0)))
{ constant_boolean_node (cmp == GT_EXPR, type); })))
/* x | ~0 -> ~0 */
(simplify
(bit_ior @0 integer_all_onesp@1)
@1)
/* x | 0 -> x */
(simplify
(bit_ior @0 integer_zerop)
@0)
/* x & 0 -> 0 */
(simplify
(bit_and @0 integer_zerop@1)
@1)
/* ~x | x -> -1 */
/* ~x ^ x -> -1 */
/* ~x + x -> -1 */
(for op (bit_ior bit_xor plus)
(simplify
(op:c (convert? @0) (convert? (bit_not @0)))
(convert { build_all_ones_cst (TREE_TYPE (@0)); })))
/* x ^ x -> 0 */
(simplify
(bit_xor @0 @0)
{ build_zero_cst (type); })
/* Canonicalize X ^ ~0 to ~X. */
(simplify
(bit_xor @0 integer_all_onesp@1)
(bit_not @0))
/* x & ~0 -> x */
(simplify
(bit_and @0 integer_all_onesp)
(non_lvalue @0))
/* x & x -> x, x | x -> x */
(for bitop (bit_and bit_ior)
(simplify
(bitop @0 @0)
(non_lvalue @0)))
/* x & C -> x if we know that x & ~C == 0. */
#if GIMPLE
(simplify
(bit_and SSA_NAME@0 INTEGER_CST@1)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
@0))
#endif
/* x + (x & 1) -> (x + 1) & ~1 */
(simplify
(plus:c @0 (bit_and:s @0 integer_onep@1))
(bit_and (plus @0 @1) (bit_not @1)))
/* x & ~(x & y) -> x & ~y */
/* x | ~(x | y) -> x | ~y */
(for bitop (bit_and bit_ior)
(simplify
(bitop:c @0 (bit_not (bitop:cs @0 @1)))
(bitop @0 (bit_not @1))))
/* (~x & y) | ~(x | y) -> ~x */
(simplify
(bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
@2)
/* (x | y) ^ (x | ~y) -> ~x */
(simplify
(bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
(bit_not @0))
/* (x & y) | ~(x | y) -> ~(x ^ y) */
(simplify
(bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
(bit_not (bit_xor @0 @1)))
/* (~x | y) ^ (x ^ y) -> x | ~y */
(simplify
(bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
(bit_ior @0 (bit_not @1)))
/* (x ^ y) | ~(x | y) -> ~(x & y) */
(simplify
(bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
(bit_not (bit_and @0 @1)))
/* (x | y) & ~x -> y & ~x */
/* (x & y) | ~x -> y | ~x */
(for bitop (bit_and bit_ior)
rbitop (bit_ior bit_and)
(simplify
(bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
(bitop @1 @2)))
/* (x & y) ^ (x | y) -> x ^ y */
(simplify
(bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
(bit_xor @0 @1))
/* (x ^ y) ^ (x | y) -> x & y */
(simplify
(bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
(bit_and @0 @1))
/* (x & y) + (x ^ y) -> x | y */
/* (x & y) | (x ^ y) -> x | y */
/* (x & y) ^ (x ^ y) -> x | y */
(for op (plus bit_ior bit_xor)
(simplify
(op:c (bit_and @0 @1) (bit_xor @0 @1))
(bit_ior @0 @1)))
/* (x & y) + (x | y) -> x + y */
(simplify
(plus:c (bit_and @0 @1) (bit_ior @0 @1))
(plus @0 @1))
/* (x + y) - (x | y) -> x & y */
(simplify
(minus (plus @0 @1) (bit_ior @0 @1))
(if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
&& !TYPE_SATURATING (type))
(bit_and @0 @1)))
/* (x + y) - (x & y) -> x | y */
(simplify
(minus (plus @0 @1) (bit_and @0 @1))
(if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
&& !TYPE_SATURATING (type))
(bit_ior @0 @1)))
/* (x | y) - (x ^ y) -> x & y */
(simplify
(minus (bit_ior @0 @1) (bit_xor @0 @1))
(bit_and @0 @1))
/* (x | y) - (x & y) -> x ^ y */
(simplify
(minus (bit_ior @0 @1) (bit_and @0 @1))
(bit_xor @0 @1))
/* (x | y) & ~(x & y) -> x ^ y */
(simplify
(bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
(bit_xor @0 @1))
/* (x | y) & (~x ^ y) -> x & y */
(simplify
(bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
(bit_and @0 @1))
/* (~x | y) & (x | ~y) -> ~(x ^ y) */
(simplify
(bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
(bit_not (bit_xor @0 @1)))
/* (~x | y) ^ (x | ~y) -> x ^ y */
(simplify
(bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
(bit_xor @0 @1))
/* ~x & ~y -> ~(x | y)
~x | ~y -> ~(x & y) */
(for op (bit_and bit_ior)
rop (bit_ior bit_and)
(simplify
(op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
(if (element_precision (type) <= element_precision (TREE_TYPE (@0))
&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
(bit_not (rop (convert @0) (convert @1))))))
/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
with a constant, and the two constants have no bits in common,
we should treat this as a BIT_IOR_EXPR since this may produce more
simplifications. */
(for op (bit_xor plus)
(simplify
(op (convert1? (bit_and@4 @0 INTEGER_CST@1))
(convert2? (bit_and@5 @2 INTEGER_CST@3)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@2))
&& (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
(bit_ior (convert @4) (convert @5)))))
/* (X | Y) ^ X -> Y & ~ X*/
(simplify
(bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (bit_and @1 (bit_not @0)))))
/* Convert ~X ^ ~Y to X ^ Y. */
(simplify
(bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
(if (element_precision (type) <= element_precision (TREE_TYPE (@0))
&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
(bit_xor (convert @0) (convert @1))))
/* Convert ~X ^ C to X ^ ~C. */
(simplify
(bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(bit_xor (convert @0) (bit_not @1))))
/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
(for opo (bit_and bit_xor)
opi (bit_xor bit_and)
(simplify
(opo:c (opi:cs @0 @1) @1)
(bit_and (bit_not @0) @1)))
/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
operands are another bit-wise operation with a common input. If so,
distribute the bit operations to save an operation and possibly two if
constants are involved. For example, convert
(A | B) & (A | C) into A | (B & C)
Further simplification will occur if B and C are constants. */
(for op (bit_and bit_ior bit_xor)
rop (bit_ior bit_and bit_and)
(simplify
(op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@1))
&& tree_nop_conversion_p (type, TREE_TYPE (@2)))
(rop (convert @0) (op (convert @1) (convert @2))))))
/* Some simple reassociation for bit operations, also handled in reassoc. */
/* (X & Y) & Y -> X & Y
(X | Y) | Y -> X | Y */
(for op (bit_and bit_ior)
(simplify
(op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
@2))
/* (X ^ Y) ^ Y -> X */
(simplify
(bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
(convert @0))
/* (X & Y) & (X & Z) -> (X & Y) & Z
(X | Y) | (X | Z) -> (X | Y) | Z */
(for op (bit_and bit_ior)
(simplify
(op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@1))
&& tree_nop_conversion_p (type, TREE_TYPE (@2)))
(if (single_use (@5) && single_use (@6))
(op @3 (convert @2))
(if (single_use (@3) && single_use (@4))
(op (convert @1) @5))))))
/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
(simplify
(bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@1))
&& tree_nop_conversion_p (type, TREE_TYPE (@2)))
(bit_xor (convert @1) (convert @2))))
/* Convert abs (abs (X)) into abs (X).
also absu (absu (X)) into absu (X). */
(simplify
(abs (abs@1 @0))
@1)
(simplify
(absu (convert@2 (absu@1 @0)))
(if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
@1))
/* Convert abs[u] (-X) -> abs[u] (X). */
(simplify
(abs (negate @0))
(abs @0))
(simplify
(absu (negate @0))
(absu @0))
/* Convert abs[u] (X) where X is nonnegative -> (X). */
(simplify
(abs tree_expr_nonnegative_p@0)
@0)
(simplify
(absu tree_expr_nonnegative_p@0)
(convert @0))
/* A few cases of fold-const.c negate_expr_p predicate. */
(match negate_expr_p
INTEGER_CST
(if ((INTEGRAL_TYPE_P (type)
&& TYPE_UNSIGNED (type))
|| (!TYPE_OVERFLOW_SANITIZED (type)
&& may_negate_without_overflow_p (t)))))
(match negate_expr_p
FIXED_CST)
(match negate_expr_p
(negate @0)
(if (!TYPE_OVERFLOW_SANITIZED (type))))
(match negate_expr_p
REAL_CST
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
ways. */
(match negate_expr_p
VECTOR_CST
(if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
(match negate_expr_p
(minus @0 @1)
(if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
|| (FLOAT_TYPE_P (type)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (type)
&& !HONOR_SIGNED_ZEROS (type)))))
/* (-A) * (-B) -> A * B */
(simplify
(mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(mult (convert @0) (convert (negate @1)))))
/* -(A + B) -> (-B) - A. */
(simplify
(negate (plus:c @0 negate_expr_p@1))
(if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
&& !HONOR_SIGNED_ZEROS (element_mode (type)))
(minus (negate @1) @0)))
/* -(A - B) -> B - A. */
(simplify
(negate (minus @0 @1))
(if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
|| (FLOAT_TYPE_P (type)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (type)
&& !HONOR_SIGNED_ZEROS (type)))
(minus @1 @0)))
(simplify
(negate (pointer_diff @0 @1))
(if (TYPE_OVERFLOW_UNDEFINED (type))
(pointer_diff @1 @0)))
/* A - B -> A + (-B) if B is easily negatable. */
(simplify
(minus @0 negate_expr_p@1)
(if (!FIXED_POINT_TYPE_P (type))
(plus @0 (negate @1))))
/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
when profitable.
For bitwise binary operations apply operand conversions to the
binary operation result instead of to the operands. This allows
to combine successive conversions and bitwise binary operations.
We combine the above two cases by using a conditional convert. */
(for bitop (bit_and bit_ior bit_xor)
(simplify
(bitop (convert @0) (convert? @1))
(if (((TREE_CODE (@1) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& int_fits_type_p (@1, TREE_TYPE (@0)))
|| types_match (@0, @1))
/* ??? This transform conflicts with fold-const.c doing
Convert (T)(x & c) into (T)x & (T)c, if c is an integer
constants (if x has signed type, the sign bit cannot be set
in c). This folds extension into the BIT_AND_EXPR.
Restrict it to GIMPLE to avoid endless recursions. */
&& (bitop != BIT_AND_EXPR || GIMPLE)
&& (/* That's a good idea if the conversion widens the operand, thus
after hoisting the conversion the operation will be narrower. */
TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
/* It's also a good idea if the conversion is to a non-integer
mode. */
|| GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
/* Or if the precision of TO is not the same as the precision
of its mode. */
|| !type_has_mode_precision_p (type)))
(convert (bitop @0 (convert @1))))))
(for bitop (bit_and bit_ior)
rbitop (bit_ior bit_and)
/* (x | y) & x -> x */
/* (x & y) | x -> x */
(simplify
(bitop:c (rbitop:c @0 @1) @0)
@0)
/* (~x | y) & x -> x & y */
/* (~x & y) | x -> x | y */
(simplify
(bitop:c (rbitop:c (bit_not @0) @1) @0)
(bitop @0 @1)))
/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
(simplify
(bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
(bit_ior (bit_and @0 @2) (bit_and @1 @2)))
/* Combine successive equal operations with constants. */
(for bitop (bit_and bit_ior bit_xor)
(simplify
(bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
(if (!CONSTANT_CLASS_P (@0))
/* This is the canonical form regardless of whether (bitop @1 @2) can be
folded to a constant. */
(bitop @0 (bitop @1 @2))
/* In this case we have three constants and (bitop @0 @1) doesn't fold
to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
the values involved are such that the operation can't be decided at
compile time. Try folding one of @0 or @1 with @2 to see whether
that combination can be decided at compile time.
Keep the existing form if both folds fail, to avoid endless
oscillation. */
(with { tree cst1 = const_binop (bitop, type, @0, @2); }
(if (cst1)
(bitop @1 { cst1; })
(with { tree cst2 = const_binop (bitop, type, @1, @2); }
(if (cst2)
(bitop @0 { cst2; }))))))))
/* Try simple folding for X op !X, and X op X with the help
of the truth_valued_p and logical_inverted_value predicates. */
(match truth_valued_p
@0
(if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
(match truth_valued_p
(op @0 @1)))
(match truth_valued_p
(truth_not @0))
(match (logical_inverted_value @0)
(truth_not @0))
(match (logical_inverted_value @0)
(bit_not truth_valued_p@0))
(match (logical_inverted_value @0)
(eq @0 integer_zerop))
(match (logical_inverted_value @0)
(ne truth_valued_p@0 integer_truep))
(match (logical_inverted_value @0)
(bit_xor truth_valued_p@0 integer_truep))
/* X & !X -> 0. */
(simplify
(bit_and:c @0 (logical_inverted_value @0))
{ build_zero_cst (type); })
/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
(for op (bit_ior bit_xor)
(simplify
(op:c truth_valued_p@0 (logical_inverted_value @0))
{ constant_boolean_node (true, type); }))
/* X ==/!= !X is false/true. */
(for op (eq ne)
(simplify
(op:c truth_valued_p@0 (logical_inverted_value @0))
{ constant_boolean_node (op == NE_EXPR ? true : false, type); }))
/* ~~x -> x */
(simplify
(bit_not (bit_not @0))
@0)
/* Convert ~ (-A) to A - 1. */
(simplify
(bit_not (convert? (negate @0)))
(if (element_precision (type) <= element_precision (TREE_TYPE (@0))
|| !TYPE_UNSIGNED (TREE_TYPE (@0)))
(convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
/* Convert - (~A) to A + 1. */
(simplify
(negate (nop_convert? (bit_not @0)))
(plus (view_convert @0) { build_each_one_cst (type); }))
/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
(simplify
(bit_not (convert? (minus @0 integer_each_onep)))
(if (element_precision (type) <= element_precision (TREE_TYPE (@0))
|| !TYPE_UNSIGNED (TREE_TYPE (@0)))
(convert (negate @0))))
(simplify
(bit_not (convert? (plus @0 integer_all_onesp)))
(if (element_precision (type) <= element_precision (TREE_TYPE (@0))
|| !TYPE_UNSIGNED (TREE_TYPE (@0)))
(convert (negate @0))))
/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
(simplify
(bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (bit_xor @0 (bit_not @1)))))
(simplify
(bit_not (convert? (bit_xor:c (bit_not @0) @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (bit_xor @0 @1))))
/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
(simplify
(bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(bit_not (bit_xor (view_convert @0) @1))))
/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
(simplify
(bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
(bit_xor (bit_and (bit_xor @0 @1) @2) @0))
/* Fold A - (A & B) into ~B & A. */
(simplify
(minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(convert (bit_and (bit_not @1) @0))))
/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
(for cmp (gt lt ge le)
(simplify
(mult (convert (cmp @0 @1)) @2)
(if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
(cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
/* For integral types with undefined overflow and C != 0 fold
x * C EQ/NE y * C into x EQ/NE y. */
(for cmp (eq ne)
(simplify
(cmp (mult:c @0 @1) (mult:c @2 @1))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
&& tree_expr_nonzero_p (@1))
(cmp @0 @2))))
/* For integral types with wrapping overflow and C odd fold
x * C EQ/NE y * C into x EQ/NE y. */
(for cmp (eq ne)
(simplify
(cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
&& (TREE_INT_CST_LOW (@1) & 1) != 0)
(cmp @0 @2))))
/* For integral types with undefined overflow and C != 0 fold
x * C RELOP y * C into:
x RELOP y for nonnegative C
y RELOP x for negative C */
(for cmp (lt gt le ge)
(simplify
(cmp (mult:c @0 @1) (mult:c @2 @1))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
(if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
(cmp @0 @2)
(if (TREE_CODE (@1) == INTEGER_CST
&& wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
(cmp @2 @0))))))
/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
(for cmp (le gt)
icmp (gt le)
(simplify
(cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_UNSIGNED (TREE_TYPE (@0))
&& TYPE_PRECISION (TREE_TYPE (@0)) > 1
&& (wi::to_wide (@2)
== wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
(with { tree stype = signed_type_for (TREE_TYPE (@0)); }
(icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
(for cmp (simple_comparison)
(simplify
(cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
(if (element_precision (@3) >= element_precision (@0)
&& types_match (@0, @1))
(if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
(if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
(cmp @1 @0)
(if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
(with
{
tree utype = unsigned_type_for (TREE_TYPE (@0));
}
(cmp (convert:utype @1) (convert:utype @0)))))
(if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
(if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
(cmp @0 @1)
(with
{
tree utype = unsigned_type_for (TREE_TYPE (@0));
}
(cmp (convert:utype @0) (convert:utype @1)))))))))
/* X / C1 op C2 into a simple range test. */
(for cmp (simple_comparison)
(simplify
(cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& integer_nonzerop (@1)
&& !TREE_OVERFLOW (@1)
&& !TREE_OVERFLOW (@2))
(with { tree lo, hi; bool neg_overflow;
enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
&neg_overflow); }
(switch
(if (code == LT_EXPR || code == GE_EXPR)
(if (TREE_OVERFLOW (lo))
{ build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
(if (code == LT_EXPR)
(lt @0 { lo; })
(ge @0 { lo; }))))
(if (code == LE_EXPR || code == GT_EXPR)
(if (TREE_OVERFLOW (hi))
{ build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
(if (code == LE_EXPR)
(le @0 { hi; })
(gt @0 { hi; }))))
(if (!lo && !hi)
{ build_int_cst (type, code == NE_EXPR); })
(if (code == EQ_EXPR && !hi)
(ge @0 { lo; }))
(if (code == EQ_EXPR && !lo)
(le @0 { hi; }))
(if (code == NE_EXPR && !hi)
(lt @0 { lo; }))
(if (code == NE_EXPR && !lo)
(gt @0 { hi; }))
(if (GENERIC)
{ build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
lo, hi); })
(with
{
tree etype = range_check_type (TREE_TYPE (@0));
if (etype)
{
hi = fold_convert (etype, hi);
lo = fold_convert (etype, lo);
hi = const_binop (MINUS_EXPR, etype, hi, lo);
}
}
(if (etype && hi && !TREE_OVERFLOW (hi))
(if (code == EQ_EXPR)
(le (minus (convert:etype @0) { lo; }) { hi; })
(gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
(for op (lt le ge gt)
(simplify
(op (plus:c @0 @2) (plus:c @1 @2))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
(op @0 @1))))
/* For equality and subtraction, this is also true with wrapping overflow. */
(for op (eq ne minus)
(simplify
(op (plus:c @0 @2) (plus:c @1 @2))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
|| TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
(op @0 @1))))
/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
(for op (lt le ge gt)
(simplify
(op (minus @0 @2) (minus @1 @2))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
(op @0 @1))))
/* For equality and subtraction, this is also true with wrapping overflow. */
(for op (eq ne minus)
(simplify
(op (minus @0 @2) (minus @1 @2))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
|| TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
(op @0 @1))))
/* And for pointers... */
(for op (simple_comparison)
(simplify
(op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
(if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
(op @0 @1))))
(simplify
(minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
(if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
(pointer_diff @0 @1)))
/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
(for op (lt le ge gt)
(simplify
(op (minus @2 @0) (minus @2 @1))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
(op @1 @0))))
/* For equality and subtraction, this is also true with wrapping overflow. */
(for op (eq ne minus)
(simplify
(op (minus @2 @0) (minus @2 @1))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
|| TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
(op @1 @0))))
/* And for pointers... */
(for op (simple_comparison)
(simplify
(op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
(if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
(op @1 @0))))
(simplify
(minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
(if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
(pointer_diff @1 @0)))
/* X + Y < Y is the same as X < 0 when there is no overflow. */
(for op (lt le gt ge)
(simplify
(op:c (plus:c@2 @0 @1) @1)
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
&& (CONSTANT_CLASS_P (@0) || single_use (@2)))
(op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
/* For equality, this is also true with wrapping overflow. */
(for op (eq ne)
(simplify
(op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
|| TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
&& (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
&& tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
&& tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
(op @0 { build_zero_cst (TREE_TYPE (@0)); })))
(simplify
(op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
(if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
&& tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
&& (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
(op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
/* X - Y < X is the same as Y > 0 when there is no overflow.
For equality, this is also true with wrapping overflow. */
(for op (simple_comparison)
(simplify
(op:c @0 (minus@2 @0 @1))
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
|| ((op == EQ_EXPR || op == NE_EXPR)
&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
&& (CONSTANT_CLASS_P (@1) || single_use (@2)))
(op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
/* Transform:
(X / Y) == 0 -> X < Y if X, Y are unsigned.
(X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
(for cmp (eq ne)
ocmp (lt ge)
(simplify
(cmp (trunc_div @0 @1) integer_zerop)
(if (TYPE_UNSIGNED (TREE_TYPE (@0))
/* Complex ==/!= is allowed, but not </>=. */
&& TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
&& (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
(ocmp @0 @1))))
/* X == C - X can never be true if C is odd. */
(for cmp (eq ne)
(simplify
(cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
(if (TREE_INT_CST_LOW (@1) & 1)
{ constant_boolean_node (cmp == NE_EXPR, type); })))
/* Arguments on which one can call get_nonzero_bits to get the bits
possibly set. */
(match with_possible_nonzero_bits
INTEGER_CST@0)
(match with_possible_nonzero_bits
SSA_NAME@0
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
/* Slightly extended version, do not make it recursive to keep it cheap. */
(match (with_possible_nonzero_bits2 @0)
with_possible_nonzero_bits@0)
(match (with_possible_nonzero_bits2 @0)
(bit_and:c with_possible_nonzero_bits@0 @2))
/* Same for bits that are known to be set, but we do not have
an equivalent to get_nonzero_bits yet. */
(match (with_certain_nonzero_bits2 @0)
INTEGER_CST@0)
(match (with_certain_nonzero_bits2 @0)
(bit_ior @1 INTEGER_CST@0))
/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
(for cmp (eq ne)
(simplify
(cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
(if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
{ constant_boolean_node (cmp == NE_EXPR, type); })))
/* ((X inner_op C0) outer_op C1)
With X being a tree where value_range has reasoned certain bits to always be
zero throughout its computed value range,
inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
where zero_mask has 1's for all bits that are sure to be 0 in
and 0's otherwise.
if (inner_op == '^') C0 &= ~C1;
if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
*/
(for inner_op (bit_ior bit_xor)
outer_op (bit_xor bit_ior)
(simplify
(outer_op
(inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
(with
{
bool fail = false;
wide_int zero_mask_not;
wide_int C0;
wide_int cst_emit;
if (TREE_CODE (@2) == SSA_NAME)
zero_mask_not = get_nonzero_bits (@2);
else
fail = true;
if (inner_op == BIT_XOR_EXPR)
{
C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
cst_emit = C0 | wi::to_wide (@1);
}
else
{
C0 = wi::to_wide (@0);
cst_emit = C0 ^ wi::to_wide (@1);
}
}
(if (!fail && (C0 & zero_mask_not) == 0)
(outer_op @2 { wide_int_to_tree (type, cst_emit); })
(if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
(inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
(simplify
(pointer_plus (pointer_plus:s @0 @1) @3)
(pointer_plus @0 (plus @1 @3)))
/* Pattern match
tem1 = (long) ptr1;
tem2 = (long) ptr2;
tem3 = tem2 - tem1;
tem4 = (unsigned long) tem3;
tem5 = ptr1 + tem4;
and produce
tem5 = ptr2; */
(simplify
(pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
/* Conditionally look through a sign-changing conversion. */
(if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
&& ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
|| (GENERIC && type == TREE_TYPE (@1))))
@1))
(simplify
(pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
(if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
(convert @1)))
/* Pattern match
tem = (sizetype) ptr;
tem = tem & algn;
tem = -tem;
... = ptr p+ tem;
and produce the simpler and easier to analyze with respect to alignment
... = ptr & ~algn; */
(simplify
(pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
(with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
(bit_and @0 { algn; })))
/* Try folding difference of addresses. */
(simplify
(minus (convert ADDR_EXPR@0) (convert @1))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with { poly_int64 diff; }
(if (ptr_difference_const (@0, @1, &diff))
{ build_int_cst_type (type, diff); }))))
(simplify
(minus (convert @0) (convert ADDR_EXPR@1))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with { poly_int64 diff; }
(if (ptr_difference_const (@0, @1, &diff))
{ build_int_cst_type (type, diff); }))))
(simplify
(pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
(if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
&& tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
(with { poly_int64 diff; }
(if (ptr_difference_const (@0, @1, &diff))
{ build_int_cst_type (type, diff); }))))
(simplify
(pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
(if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
&& tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
(with { poly_int64 diff; }
(if (ptr_difference_const (@0, @1, &diff))
{ build_int_cst_type (type, diff); }))))
/* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
(simplify
(convert (pointer_diff @0 INTEGER_CST@1))
(if (POINTER_TYPE_P (type))
{ build_fold_addr_expr_with_type
(build2 (MEM_REF, char_type_node, @0,
wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
type); }))
/* If arg0 is derived from the address of an object or function, we may
be able to fold this expression using the object or function's
alignment. */
(simplify
(bit_and (convert? @0) INTEGER_CST@1)
(if (POINTER_TYPE_P (TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with
{
unsigned int align;
unsigned HOST_WIDE_INT bitpos;
get_pointer_alignment_1 (@0, &align, &bitpos);
}
(if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
{ wide_int_to_tree (type, (wi::to_wide (@1)
& (bitpos / BITS_PER_UNIT))); }))))
(match min_value
INTEGER_CST
(if (INTEGRAL_TYPE_P (type)
&& wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
(match max_value
INTEGER_CST
(if (INTEGRAL_TYPE_P (type)
&& wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
/* x > y && x != XXX_MIN --> x > y
x > y && x == XXX_MIN --> false . */
(for eqne (eq ne)
(simplify
(bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
(switch
(if (eqne == EQ_EXPR)
{ constant_boolean_node (false, type); })
(if (eqne == NE_EXPR)
@2)
)))
/* x < y && x != XXX_MAX --> x < y
x < y && x == XXX_MAX --> false. */
(for eqne (eq ne)
(simplify
(bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
(switch
(if (eqne == EQ_EXPR)
{ constant_boolean_node (false, type); })
(if (eqne == NE_EXPR)
@2)
)))
/* x <= y && x == XXX_MIN --> x == XXX_MIN. */
(simplify
(bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
@2)
/* x >= y && x == XXX_MAX --> x == XXX_MAX. */
(simplify
(bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
@2)
/* x > y || x != XXX_MIN --> x != XXX_MIN. */
(simplify
(bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
@2)
/* x <= y || x != XXX_MIN --> true. */
(simplify
(bit_ior:c (le:c @0 @1) (ne @0 min_value))
{ constant_boolean_node (true, type); })
/* x <= y || x == XXX_MIN --> x <= y. */
(simplify
(bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
@2)
/* x < y || x != XXX_MAX --> x != XXX_MAX. */
(simplify
(bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
@2)
/* x >= y || x != XXX_MAX --> true
x >= y || x == XXX_MAX --> x >= y. */
(for eqne (eq ne)
(simplify
(bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
(switch
(if (eqne == EQ_EXPR)
@2)
(if (eqne == NE_EXPR)
{ constant_boolean_node (true, type); }))))
/* Convert (X == CST1) && (X OP2 CST2) to a known value
based on CST1 OP2 CST2. Similarly for (X != CST1). */
(for code1 (eq ne)
(for code2 (eq ne lt gt le ge)
(simplify
(bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
(with
{
int cmp = tree_int_cst_compare (@1, @2);
bool val;
switch (code2)
{
case EQ_EXPR: val = (cmp == 0); break;
case NE_EXPR: val = (cmp != 0); break;
case LT_EXPR: val = (cmp < 0); break;
case GT_EXPR: val = (cmp > 0); break;
case LE_EXPR: val = (cmp <= 0); break;
case GE_EXPR: val = (cmp >= 0); break;
default: gcc_unreachable ();
}
}
(switch
(if (code1 == EQ_EXPR && val) @3)
(if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
(if (code1 == NE_EXPR && !val) @4))))))
/* Convert (X OP1 CST1) && (X OP2 CST2). */
(for code1 (lt le gt ge)
(for code2 (lt le gt ge)
(simplify
(bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
(with
{
int cmp = tree_int_cst_compare (@1, @2);
}
(switch
/* Choose the more restrictive of two < or <= comparisons. */
(if ((code1 == LT_EXPR || code1 == LE_EXPR)
&& (code2 == LT_EXPR || code2 == LE_EXPR))
(if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
@3
@4))
/* Likewise chose the more restrictive of two > or >= comparisons. */
(if ((code1 == GT_EXPR || code1 == GE_EXPR)
&& (code2 == GT_EXPR || code2 == GE_EXPR))
(if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
@3
@4))
/* Check for singleton ranges. */
(if (cmp == 0
&& ((code1 == LE_EXPR && code2 == GE_EXPR)
|| (code1 == GE_EXPR && code2 == LE_EXPR)))
(eq @0 @1))
/* Check for disjoint ranges. */
(if (cmp <= 0
&& (code1 == LT_EXPR || code1 == LE_EXPR)
&& (code2 == GT_EXPR || code2 == GE_EXPR))
{ constant_boolean_node (false, type); })
(if (cmp >= 0
&& (code1 == GT_EXPR || code1 == GE_EXPR)
&& (code2 == LT_EXPR || code2 == LE_EXPR))
{ constant_boolean_node (false, type); })
)))))
/* Convert (X == CST1) || (X OP2 CST2) to a known value
based on CST1 OP2 CST2. Similarly for (X != CST1). */
(for code1 (eq ne)
(for code2 (eq ne lt gt le ge)
(simplify
(bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
(with
{
int cmp = tree_int_cst_compare (@1, @2);
bool val;
switch (code2)
{
case EQ_EXPR: val = (cmp == 0); break;
case NE_EXPR: val = (cmp != 0); break;
case LT_EXPR: val = (cmp < 0); break;
case GT_EXPR: val = (cmp > 0); break;
case LE_EXPR: val = (cmp <= 0); break;
case GE_EXPR: val = (cmp >= 0); break;
default: gcc_unreachable ();
}
}
(switch
(if (code1 == EQ_EXPR && val) @4)
(if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
(if (code1 == NE_EXPR && !val) @3))))))
/* Convert (X OP1 CST1) || (X OP2 CST2). */
(for code1 (lt le gt ge)
(for code2 (lt le gt ge)
(simplify
(bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
(with
{
int cmp = tree_int_cst_compare (@1, @2);
}
(switch
/* Choose the more restrictive of two < or <= comparisons. */
(if ((code1 == LT_EXPR || code1 == LE_EXPR)
&& (code2 == LT_EXPR || code2 == LE_EXPR))
(if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
@4
@3))
/* Likewise chose the more restrictive of two > or >= comparisons. */
(if ((code1 == GT_EXPR || code1 == GE_EXPR)
&& (code2 == GT_EXPR || code2 == GE_EXPR))
(if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
@4
@3))
/* Check for singleton ranges. */
(if (cmp == 0
&& ((code1 == LT_EXPR && code2 == GT_EXPR)
|| (code1 == GT_EXPR && code2 == LT_EXPR)))
(ne @0 @2))
/* Check for disjoint ranges. */
(if (cmp >= 0
&& (code1 == LT_EXPR || code1 == LE_EXPR)
&& (code2 == GT_EXPR || code2 == GE_EXPR))
{ constant_boolean_node (true, type); })
(if (cmp <= 0
&& (code1 == GT_EXPR || code1 == GE_EXPR)
&& (code2 == LT_EXPR || code2 == LE_EXPR))
{ constant_boolean_node (true, type); })
)))))
/* We can't reassociate at all for saturating types. */
(if (!TYPE_SATURATING (type))
/* Contract negates. */
/* A + (-B) -> A - B */
(simplify
(plus:c @0 (convert? (negate @1)))
/* Apply STRIP_NOPS on the negate. */
(if (tree_nop_conversion_p (type, TREE_TYPE (@1))
&& !TYPE_OVERFLOW_SANITIZED (type))
(with
{
tree t1 = type;
if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
}
(convert (minus (convert:t1 @0) (convert:t1 @1))))))
/* A - (-B) -> A + B */
(simplify
(minus @0 (convert? (negate @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@1))
&& !TYPE_OVERFLOW_SANITIZED (type))
(with
{
tree t1 = type;
if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
}
(convert (plus (convert:t1 @0) (convert:t1 @1))))))
/* -(T)(-A) -> (T)A
Sign-extension is ok except for INT_MIN, which thankfully cannot
happen without overflow. */
(simplify
(negate (convert (negate @1)))
(if (INTEGRAL_TYPE_P (type)
&& (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
|| (!TYPE_UNSIGNED (TREE_TYPE (@1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
&& !TYPE_OVERFLOW_SANITIZED (type)
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
(convert @1)))
(simplify
(negate (convert negate_expr_p@1))
(if (SCALAR_FLOAT_TYPE_P (type)
&& ((DECIMAL_FLOAT_TYPE_P (type)
== DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
&& TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
|| !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
(convert (negate @1))))
(simplify
(negate (nop_convert? (negate @1)))
(if (!TYPE_OVERFLOW_SANITIZED (type)
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
(view_convert @1)))
/* We can't reassociate floating-point unless -fassociative-math
or fixed-point plus or minus because of saturation to +-Inf. */
(if ((!FLOAT_TYPE_P (type) || flag_associative_math)
&& !FIXED_POINT_TYPE_P (type))
/* Match patterns that allow contracting a plus-minus pair
irrespective of overflow issues. */
/* (A +- B) - A -> +- B */
/* (A +- B) -+ B -> A */
/* A - (A +- B) -> -+ B */
/* A +- (B -+ A) -> +- B */
(simplify
(minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
(view_convert @1))
(simplify
(minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
(if (!ANY_INTEGRAL_TYPE_P (type)
|| TYPE_OVERFLOW_WRAPS (type))
(negate (view_convert @1))
(view_convert (negate @1))))
(simplify
(plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
(view_convert @0))
(simplify
(minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
(if (!ANY_INTEGRAL_TYPE_P (type)
|| TYPE_OVERFLOW_WRAPS (type))
(negate (view_convert @1))
(view_convert (negate @1))))
(simplify
(minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
(view_convert @1))
/* (A +- B) + (C - A) -> C +- B */
/* (A + B) - (A - C) -> B + C */
/* More cases are handled with comparisons. */
(simplify
(plus:c (plus:c @0 @1) (minus @2 @0))
(plus @2 @1))
(simplify
(plus:c (minus @0 @1) (minus @2 @0))
(minus @2 @1))
(simplify
(plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
(if (TYPE_OVERFLOW_UNDEFINED (type)
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
(pointer_diff @2 @1)))
(simplify
(minus (plus:c @0 @1) (minus @0 @2))
(plus @1 @2))
/* (A +- CST1) +- CST2 -> A + CST3
Use view_convert because it is safe for vectors and equivalent for
scalars. */
(for outer_op (plus minus)
(for inner_op (plus minus)
neg_inner_op (minus plus)
(simplify
(outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
CONSTANT_CLASS_P@2)
/* If one of the types wraps, use that one. */
(if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
/* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
forever if something doesn't simplify into a constant. */
(if (!CONSTANT_CLASS_P (@0))
(if (outer_op == PLUS_EXPR)
(plus (view_convert @0) (inner_op @2 (view_convert @1)))
(minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
(if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
|| TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
(if (outer_op == PLUS_EXPR)
(view_convert (plus @0 (inner_op (view_convert @2) @1)))
(view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
/* If the constant operation overflows we cannot do the transform
directly as we would introduce undefined overflow, for example
with (a - 1) + INT_MIN. */
(if (types_match (type, @0))
(with { tree cst = const_binop (outer_op == inner_op
? PLUS_EXPR : MINUS_EXPR,
type, @1, @2); }
(if (cst && !TREE_OVERFLOW (cst))
(inner_op @0 { cst; } )
/* X+INT_MAX+1 is X-INT_MIN. */
(if (INTEGRAL_TYPE_P (type) && cst
&& wi::to_wide (cst) == wi::min_value (type))
(neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
/* Last resort, use some unsigned type. */
(with { tree utype = unsigned_type_for (type); }
(if (utype)
(view_convert (inner_op
(view_convert:utype @0)
(view_convert:utype
{ drop_tree_overflow (cst); }))))))))))))))
/* (CST1 - A) +- CST2 -> CST3 - A */
(for outer_op (plus minus)
(simplify
(outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
/* If one of the types wraps, use that one. */
(if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
/* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
forever if something doesn't simplify into a constant. */
(if (!CONSTANT_CLASS_P (@0))
(minus (outer_op (view_convert @1) @2) (view_convert @0)))
(if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
|| TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
(view_convert (minus (outer_op @1 (view_convert @2)) @0))
(if (types_match (type, @0))
(with { tree cst = const_binop (outer_op, type, @1, @2); }
(if (cst && !TREE_OVERFLOW (cst))
(minus { cst; } @0))))))))
/* CST1 - (CST2 - A) -> CST3 + A
Use view_convert because it is safe for vectors and equivalent for
scalars. */
(simplify
(minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
/* If one of the types wraps, use that one. */
(if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
/* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
forever if something doesn't simplify into a constant. */
(if (!CONSTANT_CLASS_P (@0))
(plus (view_convert @0) (minus @1 (view_convert @2))))
(if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
|| TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
(view_convert (plus @0 (minus (view_convert @1) @2)))
(if (types_match (type, @0))
(with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
(if (cst && !TREE_OVERFLOW (cst))
(plus { cst; } @0)))))))
/* ((T)(A)) + CST -> (T)(A + CST) */
#if GIMPLE
(simplify
(plus (convert SSA_NAME@0) INTEGER_CST@1)
(if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
&& TREE_CODE (type) == INTEGER_TYPE
&& TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
&& int_fits_type_p (@1, TREE_TYPE (@0)))
/* Perform binary operation inside the cast if the constant fits
and (A + CST)'s range does not overflow. */
(with
{
wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
max_ovf = wi::OVF_OVERFLOW;
tree inner_type = TREE_TYPE (@0);
wide_int w1
= wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
TYPE_SIGN (inner_type));
wide_int wmin0, wmax0;
if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
{
wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
}
}
(if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
(convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
)))
#endif
/* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
#if GIMPLE
(for op (plus minus)
(simplify
(plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
&& TREE_CODE (type) == INTEGER_TYPE
&& TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
&& TYPE_OVERFLOW_WRAPS (type))
(plus (convert @0) (op @2 (convert @1))))))
#endif
/* ~A + A -> -1 */
(simplify
(plus:c (bit_not @0) @0)
(if (!TYPE_OVERFLOW_TRAPS (type))
{ build_all_ones_cst (type); }))
/* ~A + 1 -> -A */
(simplify
(plus (convert? (bit_not @0)) integer_each_onep)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(negate (convert @0))))
/* -A - 1 -> ~A */
(simplify
(minus (convert? (negate @0)) integer_each_onep)
(if (!TYPE_OVERFLOW_TRAPS (type)
&& TREE_CODE (type) != COMPLEX_TYPE
&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
(bit_not (convert @0))))
/* -1 - A -> ~A */
(simplify
(minus integer_all_onesp @0)
(if (TREE_CODE (type) != COMPLEX_TYPE)
(bit_not @0)))
/* (T)(P + A) - (T)P -> (T) A */
(simplify
(minus (convert (plus:c @@0 @1))
(convert? @0))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For integer types, if A has a smaller type
than T the result depends on the possible
overflow in P + A.
E.g. T=size_t, A=(unsigned)429497295, P>0.
However, if an overflow in P + A would cause
undefined behavior, we can assume that there
is no overflow. */
|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
(convert @1)))
(simplify
(minus (convert (pointer_plus @@0 @1))
(convert @0))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For pointer types, if the conversion of A to the
final type requires a sign- or zero-extension,
then we have to punt - it is not defined which
one is correct. */
|| (POINTER_TYPE_P (TREE_TYPE (@0))
&& TREE_CODE (@1) == INTEGER_CST
&& tree_int_cst_sign_bit (@1) == 0))
(convert @1)))
(simplify
(pointer_diff (pointer_plus @@0 @1) @0)
/* The second argument of pointer_plus must be interpreted as signed, and
thus sign-extended if necessary. */
(with { tree stype = signed_type_for (TREE_TYPE (@1)); }
/* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
second arg is unsigned even when we need to consider it as signed,
we don't want to diagnose overflow here. */
(convert (view_convert:stype @1))))
/* (T)P - (T)(P + A) -> -(T) A */
(simplify
(minus (convert? @0)
(convert (plus:c @@0 @1)))
(if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type)
&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
(with { tree utype = unsigned_type_for (type); }
(convert (negate (convert:utype @1))))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For integer types, if A has a smaller type
than T the result depends on the possible
overflow in P + A.
E.g. T=size_t, A=(unsigned)429497295, P>0.
However, if an overflow in P + A would cause
undefined behavior, we can assume that there
is no overflow. */
|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
(negate (convert @1)))))
(simplify
(minus (convert @0)
(convert (pointer_plus @@0 @1)))
(if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type)
&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
(with { tree utype = unsigned_type_for (type); }
(convert (negate (convert:utype @1))))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For pointer types, if the conversion of A to the
final type requires a sign- or zero-extension,
then we have to punt - it is not defined which
one is correct. */
|| (POINTER_TYPE_P (TREE_TYPE (@0))
&& TREE_CODE (@1) == INTEGER_CST
&& tree_int_cst_sign_bit (@1) == 0))
(negate (convert @1)))))
(simplify
(pointer_diff @0 (pointer_plus @@0 @1))
/* The second argument of pointer_plus must be interpreted as signed, and
thus sign-extended if necessary. */
(with { tree stype = signed_type_for (TREE_TYPE (@1)); }
/* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
second arg is unsigned even when we need to consider it as signed,
we don't want to diagnose overflow here. */
(negate (convert (view_convert:stype @1)))))
/* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
(simplify
(minus (convert (plus:c @@0 @1))
(convert (plus:c @0 @2)))
(if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type)
&& element_precision (type) <= element_precision (TREE_TYPE (@1))
&& element_precision (type) <= element_precision (TREE_TYPE (@2)))
(with { tree utype = unsigned_type_for (type); }
(convert (minus (convert:utype @1) (convert:utype @2))))
(if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
== (element_precision (type) <= element_precision (TREE_TYPE (@2))))
&& (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For integer types, if A has a smaller type
than T the result depends on the possible
overflow in P + A.
E.g. T=size_t, A=(unsigned)429497295, P>0.
However, if an overflow in P + A would cause
undefined behavior, we can assume that there
is no overflow. */
|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& INTEGRAL_TYPE_P (TREE_TYPE (@2))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
(minus (convert @1) (convert @2)))))
(simplify
(minus (convert (pointer_plus @@0 @1))
(convert (pointer_plus @0 @2)))
(if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type)
&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
(with { tree utype = unsigned_type_for (type); }
(convert (minus (convert:utype @1) (convert:utype @2))))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For pointer types, if the conversion of A to the
final type requires a sign- or zero-extension,
then we have to punt - it is not defined which
one is correct. */
|| (POINTER_TYPE_P (TREE_TYPE (@0))
&& TREE_CODE (@1) == INTEGER_CST
&& tree_int_cst_sign_bit (@1) == 0
&& TREE_CODE (@2) == INTEGER_CST
&& tree_int_cst_sign_bit (@2) == 0))
(minus (convert @1) (convert @2)))))
(simplify
(pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
/* The second argument of pointer_plus must be interpreted as signed, and
thus sign-extended if necessary. */
(with { tree stype = signed_type_for (TREE_TYPE (@1)); }
/* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
second arg is unsigned even when we need to consider it as signed,
we don't want to diagnose overflow here. */
(minus (convert (view_convert:stype @1))
(convert (view_convert:stype @2)))))))
/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
Modeled after fold_plusminus_mult_expr. */
(if (!TYPE_SATURATING (type)
&& (!FLOAT_TYPE_P (type) || flag_associative_math))
(for plusminus (plus minus)
(simplify
(plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
(if ((!ANY_INTEGRAL_TYPE_P (type)
|| TYPE_OVERFLOW_WRAPS (type)
|| (INTEGRAL_TYPE_P (type)
&& tree_expr_nonzero_p (@0)
&& expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
/* If @1 +- @2 is constant require a hard single-use on either
original operand (but not on both). */
&& (single_use (@3) || single_use (@4)))
(mult (plusminus @1 @2) @0)))
/* We cannot generate constant 1 for fract. */
(if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
(simplify
(plusminus @0 (mult:c@3 @0 @2))
(if ((!ANY_INTEGRAL_TYPE_P (type)
|| TYPE_OVERFLOW_WRAPS (type)
/* For @0 + @0*@2 this transformation would introduce UB
(where there was none before) for @0 in [-1,0] and @2 max.
For @0 - @0*@2 this transformation would introduce UB
for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
|| (INTEGRAL_TYPE_P (type)
&& ((tree_expr_nonzero_p (@0)
&& expr_not_equal_to (@0,
wi::minus_one (TYPE_PRECISION (type))))
|| (plusminus == PLUS_EXPR
? expr_not_equal_to (@2,
wi::max_value (TYPE_PRECISION (type), SIGNED))
/* Let's ignore the @0 -1 and @2 min case. */
: (expr_not_equal_to (@2,
wi::min_value (TYPE_PRECISION (type), SIGNED))
&& expr_not_equal_to (@2,
wi::min_value (TYPE_PRECISION (type), SIGNED)
+ 1))))))
&& single_use (@3))
(mult (plusminus { build_one_cst (type); } @2) @0)))
(simplify
(plusminus (mult:c@3 @0 @2) @0)
(if ((!ANY_INTEGRAL_TYPE_P (type)
|| TYPE_OVERFLOW_WRAPS (type)
/* For @0*@2 + @0 this transformation would introduce UB
(where there was none before) for @0 in [-1,0] and @2 max.
For @0*@2 - @0 this transformation would introduce UB
for @0 0 and @2 min. */
|| (INTEGRAL_TYPE_P (type)
&& ((tree_expr_nonzero_p (@0)
&& (plusminus == MINUS_EXPR
|| expr_not_equal_to (@0,
wi::minus_one (TYPE_PRECISION (type)))))
|| expr_not_equal_to (@2,
(plusminus == PLUS_EXPR
? wi::max_value (TYPE_PRECISION (type), SIGNED)
: wi::min_value (TYPE_PRECISION (type), SIGNED))))))
&& single_use (@3))
(mult (plusminus @2 { build_one_cst (type); }) @0))))))
/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
(for minmax (min max FMIN_ALL FMAX_ALL)
(simplify
(minmax @0 @0)
@0))
/* min(max(x,y),y) -> y. */
(simplify
(min:c (max:c @0 @1) @1)
@1)
/* max(min(x,y),y) -> y. */
(simplify
(max:c (min:c @0 @1) @1)
@1)
/* max(a,-a) -> abs(a). */
(simplify
(max:c @0 (negate @0))
(if (TREE_CODE (type) != COMPLEX_TYPE
&& (! ANY_INTEGRAL_TYPE_P (type)
|| TYPE_OVERFLOW_UNDEFINED (type)))
(abs @0)))
/* min(a,-a) -> -abs(a). */
(simplify
(min:c @0 (negate @0))
(if (TREE_CODE (type) != COMPLEX_TYPE
&& (! ANY_INTEGRAL_TYPE_P (type)
|| TYPE_OVERFLOW_UNDEFINED (type)))
(negate (abs @0))))
(simplify
(min @0 @1)
(switch
(if (INTEGRAL_TYPE_P (type)
&& TYPE_MIN_VALUE (type)
&& operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
@1)
(if (INTEGRAL_TYPE_P (type)
&& TYPE_MAX_VALUE (type)
&& operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
@0)))
(simplify
(max @0 @1)
(switch
(if (INTEGRAL_TYPE_P (type)
&& TYPE_MAX_VALUE (type)
&& operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
@1)
(if (INTEGRAL_TYPE_P (type)
&& TYPE_MIN_VALUE (type)
&& operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
@0)))
/* max (a, a + CST) -> a + CST where CST is positive. */
/* max (a, a + CST) -> a where CST is negative. */
(simplify
(max:c @0 (plus@2 @0 INTEGER_CST@1))
(if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
(if (tree_int_cst_sgn (@1) > 0)
@2
@0)))
/* min (a, a + CST) -> a where CST is positive. */
/* min (a, a + CST) -> a + CST where CST is negative. */
(simplify
(min:c @0 (plus@2 @0 INTEGER_CST@1))
(if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
(if (tree_int_cst_sgn (@1) > 0)
@0
@2)))
/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
and the outer convert demotes the expression back to x's type. */
(for minmax (min max)
(simplify
(convert (minmax@0 (convert @1) INTEGER_CST@2))
(if (INTEGRAL_TYPE_P (type)
&& types_match (@1, type) && int_fits_type_p (@2, type)
&& TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
&& TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
(minmax @1 (convert @2)))))
(for minmax (FMIN_ALL FMAX_ALL)
/* If either argument is NaN, return the other one. Avoid the
transformation if we get (and honor) a signalling NaN. */
(simplify
(minmax:c @0 REAL_CST@1)
(if (real_isnan (TREE_REAL_CST_PTR (@1))
&& (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
@0)))
/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
functions to return the numeric arg if the other one is NaN.
MIN and MAX don't honor that, so only transform if -ffinite-math-only
is set. C99 doesn't require -0.0 to be handled, so we don't have to
worry about it either. */
(if (flag_finite_math_only)
(simplify
(FMIN_ALL @0 @1)
(min @0 @1))
(simplify
(FMAX_ALL @0 @1)
(max @0 @1)))
/* min (-A, -B) -> -max (A, B) */
(for minmax (min max FMIN_ALL FMAX_ALL)
maxmin (max min FMAX_ALL FMIN_ALL)
(simplify
(minmax (negate:s@2 @0) (negate:s@3 @1))
(if (FLOAT_TYPE_P (TREE_TYPE (@0))
|| (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
(negate (maxmin @0 @1)))))
/* MIN (~X, ~Y) -> ~MAX (X, Y)
MAX (~X, ~Y) -> ~MIN (X, Y) */
(for minmax (min max)
maxmin (max min)
(simplify
(minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
(bit_not (maxmin @0 @1))))
/* MIN (X, Y) == X -> X <= Y */
(for minmax (min min max max)
cmp (eq ne eq ne )
out (le gt ge lt )
(simplify
(cmp:c (minmax:c @0 @1) @0)
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
(out @0 @1))))
/* MIN (X, 5) == 0 -> X == 0
MIN (X, 5) == 7 -> false */
(for cmp (eq ne)
(simplify
(cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
(if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (TREE_TYPE (@0))))
{ constant_boolean_node (cmp == NE_EXPR, type); }
(if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (TREE_TYPE (@0))))
(cmp @0 @2)))))
(for cmp (eq ne)
(simplify
(cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
(if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (TREE_TYPE (@0))))
{ constant_boolean_node (cmp == NE_EXPR, type); }
(if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (TREE_TYPE (@0))))
(cmp @0 @2)))))
/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
(for minmax (min min max max min min max max )
cmp (lt le gt ge gt ge lt le )
comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
(simplify
(cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
(comb (cmp @0 @2) (cmp @1 @2))))
/* Undo fancy way of writing max/min or other ?: expressions,
like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
People normally use ?: and that is what we actually try to optimize. */
(for cmp (simple_comparison)
(simplify
(minus @0 (bit_and:c (minus @0 @1)
(convert? (negate@4 (convert? (cmp@5 @2 @3))))))
(if (INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (@4))
&& TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (@5))
&& (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
|| !TYPE_UNSIGNED (TREE_TYPE (@4)))
&& (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
(cond (cmp @2 @3) @1 @0)))
(simplify
(plus:c @0 (bit_and:c (minus @1 @0)
(convert? (negate@4 (convert? (cmp@5 @2 @3))))))
(if (INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (@4))
&& TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (@5))
&& (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
|| !TYPE_UNSIGNED (TREE_TYPE (@4)))
&& (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
(cond (cmp @2 @3) @1 @0))))
/* Simplifications of shift and rotates. */
(for rotate (lrotate rrotate)
(simplify
(rotate integer_all_onesp@0 @1)
@0))
/* Optimize -1 >> x for arithmetic right shifts. */
(simplify
(rshift integer_all_onesp@0 @1)
(if (!TYPE_UNSIGNED (type)
&& tree_expr_nonnegative_p (@1))
@0))
/* Optimize (x >> c) << c into x & (-1<<c). */
(simplify
(lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
(if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
/* It doesn't matter if the right shift is arithmetic or logical. */
(bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
(simplify
(lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
(if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
/* Allow intermediate conversion to integral type with whatever sign, as
long as the low TYPE_PRECISION (type)
- TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
&& INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (@2))
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
&& (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
|| wi::geu_p (wi::to_wide (@1),
TYPE_PRECISION (type)
- TYPE_PRECISION (TREE_TYPE (@2)))))
(bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
types. */
(simplify
(rshift (lshift @0 INTEGER_CST@1) @1)
(if (TYPE_UNSIGNED (type)
&& (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
(bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
(for shiftrotate (lrotate rrotate lshift rshift)
(simplify
(shiftrotate @0 integer_zerop)
(non_lvalue @0))
(simplify
(shiftrotate integer_zerop@0 @1)
@0)
/* Prefer vector1 << scalar to vector1 << vector2
if vector2 is uniform. */
(for vec (VECTOR_CST CONSTRUCTOR)
(simplify
(shiftrotate @0 vec@1)
(with { tree tem = uniform_vector_p (@1); }
(if (tem)
(shiftrotate @0 { tem; }))))))
/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
Y is 0. Similarly for X >> Y. */
#if GIMPLE
(for shift (lshift rshift)
(simplify
(shift @0 SSA_NAME@1)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
(with {
int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
int prec = TYPE_PRECISION (TREE_TYPE (@1));
}
(if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
@0)))))
#endif
/* Rewrite an LROTATE_EXPR by a constant into an
RROTATE_EXPR by a new constant. */
(simplify
(lrotate @0 INTEGER_CST@1)
(rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
build_int_cst (TREE_TYPE (@1),
element_precision (type)), @1); }))
/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
(for op (lrotate rrotate rshift lshift)
(simplify
(op (op @0 INTEGER_CST@1) INTEGER_CST@2)
(with { unsigned int prec = element_precision (type); }
(if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
&& wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
&& wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
&& wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
(with { unsigned int low = (tree_to_uhwi (@1)
+ tree_to_uhwi (@2)); }
/* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
being well defined. */
(if (low >= prec)
(if (op == LROTATE_EXPR || op == RROTATE_EXPR)
(op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
(if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
{ build_zero_cst (type); }
(op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
(op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
/* ((1 << A) & 1) != 0 -> A == 0
((1 << A) & 1) == 0 -> A != 0 */
(for cmp (ne eq)
icmp (eq ne)
(simplify
(cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
(icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
(CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
if CST2 != 0. */
(for cmp (ne eq)
(simplify
(cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
(with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
(if (cand < 0
|| (!integer_zerop (@2)
&& wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
{ constant_boolean_node (cmp == NE_EXPR, type); }
(if (!integer_zerop (@2)
&& wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
(cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
(X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
if the new mask might be further optimized. */
(for shift (lshift rshift)
(simplify
(bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
INTEGER_CST@2)
(if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
&& tree_fits_uhwi_p (@1)
&& tree_to_uhwi (@1) > 0
&& tree_to_uhwi (@1) < TYPE_PRECISION (type))
(with
{
unsigned int shiftc = tree_to_uhwi (@1);
unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
unsigned HOST_WIDE_INT newmask, zerobits = 0;
tree shift_type = TREE_TYPE (@3);
unsigned int prec;
if (shift == LSHIFT_EXPR)
zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
else if (shift == RSHIFT_EXPR
&& type_has_mode_precision_p (shift_type))
{
prec = TYPE_PRECISION (TREE_TYPE (@3));
tree arg00 = @0;
/* See if more bits can be proven as zero because of
zero extension. */
if (@3 != @0
&& TYPE_UNSIGNED (TREE_TYPE (@0)))
{
tree inner_type = TREE_TYPE (@0);
if (type_has_mode_precision_p (inner_type)
&& TYPE_PRECISION (inner_type) < prec)
{
prec = TYPE_PRECISION (inner_type);
/* See if we can shorten the right shift. */
if (shiftc < prec)
shift_type = inner_type;
/* Otherwise X >> C1 is all zeros, so we'll optimize
it into (X, 0) later on by making sure zerobits
is all ones. */
}
}
zerobits = HOST_WIDE_INT_M1U;
if (shiftc < prec)
{
zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
zerobits <<= prec - shiftc;
}
/* For arithmetic shift if sign bit could be set, zerobits
can contain actually sign bits, so no transformation is
possible, unless MASK masks them all away. In that
case the shift needs to be converted into logical shift. */
if (!TYPE_UNSIGNED (TREE_TYPE (@3))
&& prec == TYPE_PRECISION (TREE_TYPE (@3)))
{
if ((mask & zerobits) == 0)
shift_type = unsigned_type_for (TREE_TYPE (@3));
else
zerobits = 0;
}
}
}
/* ((X << 16) & 0xff00) is (X, 0). */
(if ((mask & zerobits) == mask)
{ build_int_cst (type, 0); }
(with { newmask = mask | zerobits; }
(if (newmask != mask && (newmask & (newmask + 1)) == 0)
(with
{
/* Only do the transformation if NEWMASK is some integer
mode's mask. */
for (prec = BITS_PER_UNIT;
prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
break;
}
(if (prec < HOST_BITS_PER_WIDE_INT
|| newmask == HOST_WIDE_INT_M1U)
(with
{ tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
(if (!tree_int_cst_equal (newmaskt, @2))
(if (shift_type != TREE_TYPE (@3))
(bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
(bit_and @4 { newmaskt; })))))))))))))
/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
(X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
(for shift (lshift rshift)
(for bit_op (bit_and bit_xor bit_ior)
(simplify
(shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
(bit_op (shift (convert @0) @1) { mask; }))))))
/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
(simplify
(bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
(if (!TYPE_UNSIGNED (TREE_TYPE (@0))
&& (element_precision (TREE_TYPE (@0))
<= element_precision (TREE_TYPE (@1))
|| !TYPE_UNSIGNED (TREE_TYPE (@1))))
(with
{ tree shift_type = TREE_TYPE (@0); }
(convert (rshift (convert:shift_type @1) @2)))))
/* ~(~X >>r Y) -> X >>r Y
~(~X <<r Y) -> X <<r Y */
(for rotate (lrotate rrotate)
(simplify
(bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
(if ((element_precision (TREE_TYPE (@0))
<= element_precision (TREE_TYPE (@1))
|| !TYPE_UNSIGNED (TREE_TYPE (@1)))
&& (element_precision (type) <= element_precision (TREE_TYPE (@0))
|| !TYPE_UNSIGNED (TREE_TYPE (@0))))
(with
{ tree rotate_type = TREE_TYPE (@0); }
(convert (rotate (convert:rotate_type @1) @2))))))
/* Simplifications of conversions. */
/* Basic strip-useless-type-conversions / strip_nops. */
(for cvt (convert view_convert float fix_trunc)
(simplify
(cvt @0)
(if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
|| (GENERIC && type == TREE_TYPE (@0)))
@0)))
/* Contract view-conversions. */
(simplify
(view_convert (view_convert @0))
(view_convert @0))
/* For integral conversions with the same precision or pointer
conversions use a NOP_EXPR instead. */
(simplify
(view_convert @0)
(if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
&& (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
(convert @0)))
/* Strip inner integral conversions that do not change precision or size, or
zero-extend while keeping the same size (for bool-to-char). */
(simplify
(view_convert (convert@0 @1))
(if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
&& (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
&& TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
&& (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
|| (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
&& TYPE_UNSIGNED (TREE_TYPE (@1)))))
(view_convert @1)))
/* Simplify a view-converted empty constructor. */
(simplify
(view_convert CONSTRUCTOR@0)
(if (TREE_CODE (@0) != SSA_NAME
&& CONSTRUCTOR_NELTS (@0) == 0)
{ build_zero_cst (type); }))
/* Re-association barriers around constants and other re-association
barriers can be removed. */
(simplify
(paren CONSTANT_CLASS_P@0)
@0)
(simplify
(paren (paren@1 @0))
@1)
/* Handle cases of two conversions in a row. */
(for ocvt (convert float fix_trunc)
(for icvt (convert float)
(simplify
(ocvt (icvt@1 @0))
(with
{
tree inside_type = TREE_TYPE (@0);
tree inter_type = TREE_TYPE (@1);
int inside_int = INTEGRAL_TYPE_P (inside_type);
int inside_ptr = POINTER_TYPE_P (inside_type);
int inside_float = FLOAT_TYPE_P (inside_type);
int inside_vec = VECTOR_TYPE_P (inside_type);
unsigned int inside_prec = TYPE_PRECISION (inside_type);
int inside_unsignedp = TYPE_UNSIGNED (inside_type);
int inter_int = INTEGRAL_TYPE_P (inter_type);
int inter_ptr = POINTER_TYPE_P (inter_type);
int inter_float = FLOAT_TYPE_P (inter_type);
int inter_vec = VECTOR_TYPE_P (inter_type);
unsigned int inter_prec = TYPE_PRECISION (inter_type);
int inter_unsignedp = TYPE_UNSIGNED (inter_type);
int final_int = INTEGRAL_TYPE_P (type);
int final_ptr = POINTER_TYPE_P (type);
int final_float = FLOAT_TYPE_P (type);
int final_vec = VECTOR_TYPE_P (type);
unsigned int final_prec = TYPE_PRECISION (type);
int final_unsignedp = TYPE_UNSIGNED (type);
}
(switch
/* In addition to the cases of two conversions in a row
handled below, if we are converting something to its own
type via an object of identical or wider precision, neither
conversion is needed. */
(if (((GIMPLE && useless_type_conversion_p (type, inside_type))
|| (GENERIC
&& TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
&& (((inter_int || inter_ptr) && final_int)
|| (inter_float && final_float))
&& inter_prec >= final_prec)
(ocvt @0))
/* Likewise, if the intermediate and initial types are either both
float or both integer, we don't need the middle conversion if the
former is wider than the latter and doesn't change the signedness
(for integers). Avoid this if the final type is a pointer since
then we sometimes need the middle conversion. */
(if (((inter_int && inside_int) || (inter_float && inside_float))
&& (final_int || final_float)
&& inter_prec >= inside_prec
&& (inter_float || inter_unsignedp == inside_unsignedp))
(ocvt @0))
/* If we have a sign-extension of a zero-extended value, we can
replace that by a single zero-extension. Likewise if the
final conversion does not change precision we can drop the
intermediate conversion. */
(if (inside_int && inter_int && final_int
&& ((inside_prec < inter_prec && inter_prec < final_prec
&& inside_unsignedp && !inter_unsignedp)
|| final_prec == inter_prec))
(ocvt @0))
/* Two conversions in a row are not needed unless:
- some conversion is floating-point (overstrict for now), or
- some conversion is a vector (overstrict for now), or
- the intermediate type is narrower than both initial and
final, or
- the intermediate type and innermost type differ in signedness,
and the outermost type is wider than the intermediate, or
- the initial type is a pointer type and the precisions of the
intermediate and final types differ, or
- the final type is a pointer type and the precisions of the
initial and intermediate types differ. */
(if (! inside_float && ! inter_float && ! final_float
&& ! inside_vec && ! inter_vec && ! final_vec
&& (inter_prec >= inside_prec || inter_prec >= final_prec)
&& ! (inside_int && inter_int
&& inter_unsignedp != inside_unsignedp
&& inter_prec < final_prec)
&& ((inter_unsignedp && inter_prec > inside_prec)
== (final_unsignedp && final_prec > inter_prec))
&& ! (inside_ptr && inter_prec != final_prec)
&& ! (final_ptr && inside_prec != inter_prec))
(ocvt @0))
/* A truncation to an unsigned type (a zero-extension) should be
canonicalized as bitwise and of a mask. */
(if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
&& final_int && inter_int && inside_int
&& final_prec == inside_prec
&& final_prec > inter_prec
&& inter_unsignedp)
(convert (bit_and @0 { wide_int_to_tree
(inside_type,
wi::mask (inter_prec, false,
TYPE_PRECISION (inside_type))); })))
/* If we are converting an integer to a floating-point that can
represent it exactly and back to an integer, we can skip the
floating-point conversion. */
(if (GIMPLE /* PR66211 */
&& inside_int && inter_float && final_int &&
(unsigned) significand_size (TYPE_MODE (inter_type))
>= inside_prec - !inside_unsignedp)
(convert @0)))))))
/* If we have a narrowing conversion to an integral type that is fed by a
BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
masks off bits outside the final type (and nothing else). */
(simplify
(convert (bit_and @0 INTEGER_CST@1))
(if (INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
&& operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
TYPE_PRECISION (type)), 0))
(convert @0)))
/* (X /[ex] A) * A -> X. */
(simplify
(mult (convert1? (exact_div @0 @@1)) (convert2? @1))
(convert @0))
/* Simplify (A / B) * B + (A % B) -> A. */
(for div (trunc_div ceil_div floor_div round_div)
mod (trunc_mod ceil_mod floor_mod round_mod)
(simplify
(plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
@0))
/* ((X /[ex] A) +- B) * A --> X +- A * B. */
(for op (plus minus)
(simplify
(mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
(if (tree_nop_conversion_p (type, TREE_TYPE (@2))
&& tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
(with
{
wi::overflow_type overflow;
wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
TYPE_SIGN (type), &overflow);
}
(if (types_match (type, TREE_TYPE (@2))
&& types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
(op @0 { wide_int_to_tree (type, mul); })
(with { tree utype = unsigned_type_for (type); }
(convert (op (convert:utype @0)
(mult (convert:utype @1) (convert:utype @2))))))))))
/* Canonicalization of binary operations. */
/* Convert X + -C into X - C. */
(simplify
(plus @0 REAL_CST@1)
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
(with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
(if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
(minus @0 { tem; })))))
/* Convert x+x into x*2. */
(simplify
(plus @0 @0)
(if (SCALAR_FLOAT_TYPE_P (type))
(mult @0 { build_real (type, dconst2); })
(if (INTEGRAL_TYPE_P (type))
(mult @0 { build_int_cst (type, 2); }))))
/* 0 - X -> -X. */
(simplify
(minus integer_zerop @1)
(negate @1))
(simplify
(pointer_diff integer_zerop @1)
(negate (convert @1)))
/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
ARG0 is zero and X + ARG0 reduces to X, since that would mean
(-ARG1 + ARG0) reduces to -ARG1. */
(simplify
(minus real_zerop@0 @1)
(if (fold_real_zero_addition_p (type, @0, 0))
(negate @1)))
/* Transform x * -1 into -x. */
(simplify
(mult @0 integer_minus_onep)
(negate @0))
/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
signed overflow for CST != 0 && CST != -1. */
(simplify
(mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
(if (TREE_CODE (@2) != INTEGER_CST
&& single_use (@3)
&& !integer_zerop (@1) && !integer_minus_onep (@1))
(mult (mult @0 @2) @1)))
/* True if we can easily extract the real and imaginary parts of a complex
number. */
(match compositional_complex
(convert? (complex @0 @1)))
/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
(simplify
(complex (realpart @0) (imagpart @0))
@0)
(simplify
(realpart (complex @0 @1))
@0)
(simplify
(imagpart (complex @0 @1))
@1)
/* Sometimes we only care about half of a complex expression. */
(simplify
(realpart (convert?:s (conj:s @0)))
(convert (realpart @0)))
(simplify
(imagpart (convert?:s (conj:s @0)))
(convert (negate (imagpart @0))))
(for part (realpart imagpart)
(for op (plus minus)
(simplify
(part (convert?:s@2 (op:s @0 @1)))
(convert (op (part @0) (part @1))))))
(simplify
(realpart (convert?:s (CEXPI:s @0)))
(convert (COS @0)))
(simplify
(imagpart (convert?:s (CEXPI:s @0)))
(convert (SIN @0)))
/* conj(conj(x)) -> x */
(simplify
(conj (convert? (conj @0)))
(if (tree_nop_conversion_p (TREE_TYPE (@0), type))
(convert @0)))
/* conj({x,y}) -> {x,-y} */
(simplify
(conj (convert?:s (complex:s @0 @1)))
(with { tree itype = TREE_TYPE (type); }
(complex (convert:itype @0) (negate (convert:itype @1)))))
/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
(simplify
(bswap (bswap @0))
@0)
(simplify
(bswap (bit_not (bswap @0)))
(bit_not @0))
(for bitop (bit_xor bit_ior bit_and)
(simplify
(bswap (bitop:c (bswap @0) @1))
(bitop @0 (bswap @1)))))
/* Combine COND_EXPRs and VEC_COND_EXPRs. */
/* Simplify constant conditions.
Only optimize constant conditions when the selected branch
has the same type as the COND_EXPR. This avoids optimizing
away "c ? x : throw", where the throw has a void type.
Note that we cannot throw away the fold-const.c variant nor
this one as we depend on doing this transform before possibly
A ? B : B -> B triggers and the fold-const.c one can optimize
0 ? A : B to B even if A has side-effects. Something
genmatch cannot handle. */
(simplify
(cond INTEGER_CST@0 @1 @2)
(if (integer_zerop (@0))
(if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
@2)
(if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
@1)))
(simplify
(vec_cond VECTOR_CST@0 @1 @2)
(if (integer_all_onesp (@0))
@1
(if (integer_zerop (@0))
@2)))
/* Sink unary operations to constant branches, but only if we do fold it to
constants. */
(for op (negate bit_not abs absu)
(simplify
(op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
(with
{
tree cst1, cst2;
cst1 = const_unop (op, type, @1);
if (cst1)
cst2 = const_unop (op, type, @2);
}
(if (cst1 && cst2)
(vec_cond @0 { cst1; } { cst2; })))))
/* Simplification moved from fold_cond_expr_with_comparison. It may also
be extended. */
/* This pattern implements two kinds simplification:
Case 1)
(cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
1) Conversions are type widening from smaller type.
2) Const c1 equals to c2 after canonicalizing comparison.
3) Comparison has tree code LT, LE, GT or GE.
This specific pattern is needed when (cmp (convert x) c) may not
be simplified by comparison patterns because of multiple uses of
x. It also makes sense here because simplifying across multiple
referred var is always benefitial for complicated cases.
Case 2)
(cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
(for cmp (lt le gt ge eq)
(simplify
(cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
(with
{
tree from_type = TREE_TYPE (@1);
tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
enum tree_code code = ERROR_MARK;
if (INTEGRAL_TYPE_P (from_type)
&& int_fits_type_p (@2, from_type)
&& (types_match (c1_type, from_type)
|| (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
&& (TYPE_UNSIGNED (from_type)
|| TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
&& (types_match (c2_type, from_type)
|| (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
&& (TYPE_UNSIGNED (from_type)
|| TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
{
if (cmp != EQ_EXPR)
{
if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
{
/* X <= Y - 1 equals to X < Y. */
if (cmp == LE_EXPR)
code = LT_EXPR;
/* X > Y - 1 equals to X >= Y. */
if (cmp == GT_EXPR)
code = GE_EXPR;
}
if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
{
/* X < Y + 1 equals to X <= Y. */
if (cmp == LT_EXPR)
code = LE_EXPR;
/* X >= Y + 1 equals to X > Y. */
if (cmp == GE_EXPR)
code = GT_EXPR;
}
if (code != ERROR_MARK
|| wi::to_widest (@2) == wi::to_widest (@3))
{
if (cmp == LT_EXPR || cmp == LE_EXPR)
code = MIN_EXPR;
if (cmp == GT_EXPR || cmp == GE_EXPR)
code = MAX_EXPR;
}
}
/* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
else if (int_fits_type_p (@3, from_type))
code = EQ_EXPR;
}
}
(if (code == MAX_EXPR)
(convert (max @1 (convert @2)))
(if (code == MIN_EXPR)
(convert (min @1 (convert @2)))
(if (code == EQ_EXPR)
(convert (cond (eq @1 (convert @3))
(convert:from_type @3) (convert:from_type @2)))))))))
/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
1) OP is PLUS or MINUS.
2) CMP is LT, LE, GT or GE.
3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
This pattern also handles special cases like:
A) Operand x is a unsigned to signed type conversion and c1 is
integer zero. In this case,
(signed type)x < 0 <=> x > MAX_VAL(signed type)
(signed type)x >= 0 <=> x <= MAX_VAL(signed type)
B) Const c1 may not equal to (C3 op' C2). In this case we also
check equality for (c1+1) and (c1-1) by adjusting comparison
code.
TODO: Though signed type is handled by this pattern, it cannot be
simplified at the moment because C standard requires additional
type promotion. In order to match&simplify it here, the IR needs
to be cleaned up by other optimizers, i.e, VRP. */
(for op (plus minus)
(for cmp (lt le gt ge)
(simplify
(cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
(with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
(if (types_match (from_type, to_type)
/* Check if it is special case A). */
|| (TYPE_UNSIGNED (from_type)
&& !TYPE_UNSIGNED (to_type)
&& TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
&& integer_zerop (@1)
&& (cmp == LT_EXPR || cmp == GE_EXPR)))
(with
{
wi::overflow_type overflow = wi::OVF_NONE;
enum tree_code code, cmp_code = cmp;
wide_int real_c1;
wide_int c1 = wi::to_wide (@1);
wide_int c2 = wi::to_wide (@2);
wide_int c3 = wi::to_wide (@3);
signop sgn = TYPE_SIGN (from_type);
/* Handle special case A), given x of unsigned type:
((signed type)x < 0) <=> (x > MAX_VAL(signed type))
((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
if (!types_match (from_type, to_type))
{
if (cmp_code == LT_EXPR)
cmp_code = GT_EXPR;
if (cmp_code == GE_EXPR)
cmp_code = LE_EXPR;
c1 = wi::max_value (to_type);
}
/* To simplify this pattern, we require c3 = (c1 op c2). Here we
compute (c3 op' c2) and check if it equals to c1 with op' being
the inverted operator of op. Make sure overflow doesn't happen
if it is undefined. */
if (op == PLUS_EXPR)
real_c1 = wi::sub (c3, c2, sgn, &overflow);
else
real_c1 = wi::add (c3, c2, sgn, &overflow);
code = cmp_code;
if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
{
/* Check if c1 equals to real_c1. Boundary condition is handled
by adjusting comparison operation if necessary. */
if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
&& !overflow)
{
/* X <= Y - 1 equals to X < Y. */
if (cmp_code == LE_EXPR)
code = LT_EXPR;
/* X > Y - 1 equals to X >= Y. */
if (cmp_code == GT_EXPR)
code = GE_EXPR;
}
if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
&& !overflow)
{
/* X < Y + 1 equals to X <= Y. */
if (cmp_code == LT_EXPR)
code = LE_EXPR;
/* X >= Y + 1 equals to X > Y. */
if (cmp_code == GE_EXPR)
code = GT_EXPR;
}
if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
{
if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
code = MIN_EXPR;
if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
code = MAX_EXPR;
}
}
}
(if (code == MAX_EXPR)
(op (max @X { wide_int_to_tree (from_type, real_c1); })
{ wide_int_to_tree (from_type, c2); })
(if (code == MIN_EXPR)
(op (min @X { wide_int_to_tree (from_type, real_c1); })
{ wide_int_to_tree (from_type, c2); })))))))))
(for cnd (cond vec_cond)
/* A ? B : (A ? X : C) -> A ? B : C. */
(simplify
(cnd @0 (cnd @0 @1 @2) @3)
(cnd @0 @1 @3))
(simplify
(cnd @0 @1 (cnd @0 @2 @3))
(cnd @0 @1 @3))
/* A ? B : (!A ? C : X) -> A ? B : C. */
/* ??? This matches embedded conditions open-coded because genmatch
would generate matching code for conditions in separate stmts only.
The following is still important to merge then and else arm cases
from if-conversion. */
(simplify
(cnd @0 @1 (cnd @2 @3 @4))
(if (inverse_conditions_p (@0, @2))
(cnd @0 @1 @3)))
(simplify
(cnd @0 (cnd @1 @2 @3) @4)
(if (inverse_conditions_p (@0, @1))
(cnd @0 @3 @4)))
/* A ? B : B -> B. */
(simplify
(cnd @0 @1 @1)
@1)
/* !A ? B : C -> A ? C : B. */
(simplify
(cnd (logical_inverted_value truth_valued_p@0) @1 @2)
(cnd @0 @2 @1)))
/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
return all -1 or all 0 results. */
/* ??? We could instead convert all instances of the vec_cond to negate,
but that isn't necessarily a win on its own. */
(simplify
(plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
(if (VECTOR_TYPE_P (type)
&& known_eq (TYPE_VECTOR_SUBPARTS (type),
TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
&& (TYPE_MODE (TREE_TYPE (type))
== TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
(minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
(simplify
(minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
(if (VECTOR_TYPE_P (type)
&& known_eq (TYPE_VECTOR_SUBPARTS (type),
TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
&& (TYPE_MODE (TREE_TYPE (type))
== TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
(plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
/* Simplifications of comparisons. */
/* See if we can reduce the magnitude of a constant involved in a
comparison by changing the comparison code. This is a canonicalization
formerly done by maybe_canonicalize_comparison_1. */
(for cmp (le gt)
acmp (lt ge)
(simplify
(cmp @0 uniform_integer_cst_p@1)
(with { tree cst = uniform_integer_cst_p (@1); }
(if (tree_int_cst_sgn (cst) == -1)
(acmp @0 { build_uniform_cst (TREE_TYPE (@1),
wide_int_to_tree (TREE_TYPE (cst),
wi::to_wide (cst)
+ 1)); })))))
(for cmp (ge lt)
acmp (gt le)
(simplify
(cmp @0 uniform_integer_cst_p@1)
(with { tree cst = uniform_integer_cst_p (@1); }
(if (tree_int_cst_sgn (cst) == 1)
(acmp @0 { build_uniform_cst (TREE_TYPE (@1),
wide_int_to_tree (TREE_TYPE (cst),
wi::to_wide (cst) - 1)); })))))
/* We can simplify a logical negation of a comparison to the
inverted comparison. As we cannot compute an expression
operator using invert_tree_comparison we have to simulate
that with expression code iteration. */
(for cmp (tcc_comparison)
icmp (inverted_tcc_comparison)
ncmp (inverted_tcc_comparison_with_nans)
/* Ideally we'd like to combine the following two patterns
and handle some more cases by using
(logical_inverted_value (cmp @0 @1))
here but for that genmatch would need to "inline" that.
For now implement what forward_propagate_comparison did. */
(simplify
(bit_not (cmp @0 @1))
(if (VECTOR_TYPE_P (type)
|| (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
/* Comparison inversion may be impossible for trapping math,
invert_tree_comparison will tell us. But we can't use
a computed operator in the replacement tree thus we have
to play the trick below. */
(with { enum tree_code ic = invert_tree_comparison
(cmp, HONOR_NANS (@0)); }
(if (ic == icmp)
(icmp @0 @1)
(if (ic == ncmp)
(ncmp @0 @1))))))
(simplify
(bit_xor (cmp @0 @1) integer_truep)
(with { enum tree_code ic = invert_tree_comparison
(cmp, HONOR_NANS (@0)); }
(if (ic == icmp)
(icmp @0 @1)
(if (ic == ncmp)
(ncmp @0 @1))))))
/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
??? The transformation is valid for the other operators if overflow
is undefined for the type, but performing it here badly interacts
with the transformation in fold_cond_expr_with_comparison which
attempts to synthetize ABS_EXPR. */
(for cmp (eq ne)
(for sub (minus pointer_diff)
(simplify
(cmp (sub@2 @0 @1) integer_zerop)
(if (single_use (@2))
(cmp @0 @1)))))
/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
signed arithmetic case. That form is created by the compiler
often enough for folding it to be of value. One example is in
computing loop trip counts after Operator Strength Reduction. */
(for cmp (simple_comparison)
scmp (swapped_simple_comparison)
(simplify
(cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
/* Handle unfolded multiplication by zero. */
(if (integer_zerop (@1))
(cmp @1 @2)
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
&& single_use (@3))
/* If @1 is negative we swap the sense of the comparison. */
(if (tree_int_cst_sgn (@1) < 0)
(scmp @0 @2)
(cmp @0 @2))))))
/* Simplify comparison of something with itself. For IEEE
floating-point, we can only do some of these simplifications. */
(for cmp (eq ge le)
(simplify
(cmp @0 @0)
(if (! FLOAT_TYPE_P (TREE_TYPE (@0))
|| ! HONOR_NANS (@0))
{ constant_boolean_node (true, type); }
(if (cmp != EQ_EXPR)
(eq @0 @0)))))
(for cmp (ne gt lt)
(simplify
(cmp @0 @0)
(if (cmp != NE_EXPR
|| ! FLOAT_TYPE_P (TREE_TYPE (@0))
|| ! HONOR_NANS (@0))
{ constant_boolean_node (false, type); })))
(for cmp (unle unge uneq)
(simplify
(cmp @0 @0)
{ constant_boolean_node (true, type); }))
(for cmp (unlt ungt)
(simplify
(cmp @0 @0)
(unordered @0 @0)))
(simplify
(ltgt @0 @0)
(if (!flag_trapping_math)
{ constant_boolean_node (false, type); }))
/* Fold ~X op ~Y as Y op X. */
(for cmp (simple_comparison)
(simplify
(cmp (bit_not@2 @0) (bit_not@3 @1))
(if (single_use (@2) && single_use (@3))
(cmp @1 @0))))
/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
(for cmp (simple_comparison)
scmp (swapped_simple_comparison)
(simplify
(cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
(if (single_use (@2)
&& (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
(scmp @0 (bit_not @1)))))
(for cmp (simple_comparison)
/* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
(simplify
(cmp (convert@2 @0) (convert? @1))
(if (FLOAT_TYPE_P (TREE_TYPE (@0))
&& (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
== DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
&& (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
== DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
(with
{
tree type1 = TREE_TYPE (@1);
if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
{
REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
&& exact_real_truncate (TYPE_MODE (float_type_node), &orig))
type1 = float_type_node;
if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
&& exact_real_truncate (TYPE_MODE (double_type_node), &orig))
type1 = double_type_node;
}
tree newtype
= (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
? TREE_TYPE (@0) : type1);
}
(if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
(cmp (convert:newtype @0) (convert:newtype @1))))))
(simplify
(cmp @0 REAL_CST@1)
/* IEEE doesn't distinguish +0 and -0 in comparisons. */
(switch
/* a CMP (-0) -> a CMP 0 */
(if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
(cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
/* x != NaN is always true, other ops are always false. */
(if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
&& ! HONOR_SNANS (@1))
{ constant_boolean_node (cmp == NE_EXPR, type); })
/* Fold comparisons against infinity. */
(if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
&& MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
(with
{
REAL_VALUE_TYPE max;
enum tree_code code = cmp;
bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
if (neg)
code = swap_tree_comparison (code);
}
(switch
/* x > +Inf is always false, if we ignore NaNs or exceptions. */
(if (code == GT_EXPR
&& !(HONOR_NANS (@0) && flag_trapping_math))
{ constant_boolean_node (false, type); })
(if (code == LE_EXPR)
/* x <= +Inf is always true, if we don't care about NaNs. */
(if (! HONOR_NANS (@0))
{ constant_boolean_node (true, type); }
/* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
an "invalid" exception. */
(if (!flag_trapping_math)
(eq @0 @0))))
/* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
for == this introduces an exception for x a NaN. */
(if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
|| code == GE_EXPR)
(with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
(if (neg)
(lt @0 { build_real (TREE_TYPE (@0), max); })
(gt @0 { build_real (TREE_TYPE (@0), max); }))))
/* x < +Inf is always equal to x <= DBL_MAX. */
(if (code == LT_EXPR)
(with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
(if (neg)
(ge @0 { build_real (TREE_TYPE (@0), max); })
(le @0 { build_real (TREE_TYPE (@0), max); }))))
/* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
an exception for x a NaN so use an unordered comparison. */
(if (code == NE_EXPR)
(with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
(if (! HONOR_NANS (@0))
(if (neg)
(ge @0 { build_real (TREE_TYPE (@0), max); })
(le @0 { build_real (TREE_TYPE (@0), max); }))
(if (neg)
(unge @0 { build_real (TREE_TYPE (@0), max); })
(unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
/* If this is a comparison of a real constant with a PLUS_EXPR
or a MINUS_EXPR of a real constant, we can convert it into a
comparison with a revised real constant as long as no overflow
occurs when unsafe_math_optimizations are enabled. */
(if (flag_unsafe_math_optimizations)
(for op (plus minus)
(simplify
(cmp (op @0 REAL_CST@1) REAL_CST@2)
(with
{
tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
TREE_TYPE (@1), @2, @1);
}
(if (tem && !TREE_OVERFLOW (tem))
(cmp @0 { tem; }))))))
/* Likewise, we can simplify a comparison of a real constant with
a MINUS_EXPR whose first operand is also a real constant, i.e.
(c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
floating-point types only if -fassociative-math is set. */
(if (flag_associative_math)
(simplify
(cmp (minus REAL_CST@0 @1) REAL_CST@2)
(with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
(if (tem && !TREE_OVERFLOW (tem))
(cmp { tem; } @1)))))
/* Fold comparisons against built-in math functions. */
(if (flag_unsafe_math_optimizations && ! flag_errno_math)
(for sq (SQRT)
(simplify
(cmp (sq @0) REAL_CST@1)
(switch
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
(switch
/* sqrt(x) < y is always false, if y is negative. */
(if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
{ constant_boolean_node (false, type); })
/* sqrt(x) > y is always true, if y is negative and we
don't care about NaNs, i.e. negative values of x. */
(if (cmp == NE_EXPR || !HONOR_NANS (@0))
{ constant_boolean_node (true, type); })
/* sqrt(x) > y is the same as x >= 0, if y is negative. */
(ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
(if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
(switch
/* sqrt(x) < 0 is always false. */
(if (cmp == LT_EXPR)
{ constant_boolean_node (false, type); })
/* sqrt(x) >= 0 is always true if we don't care about NaNs. */
(if (cmp == GE_EXPR && !HONOR_NANS (@0))
{ constant_boolean_node (true, type); })
/* sqrt(x) <= 0 -> x == 0. */
(if (cmp == LE_EXPR)
(eq @0 @1))
/* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
== or !=. In the last case:
(sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
if x is negative or NaN. Due to -funsafe-math-optimizations,
the results for other x follow from natural arithmetic. */
(cmp @0 @1)))
(if ((cmp == LT_EXPR
|| cmp == LE_EXPR
|| cmp == GT_EXPR
|| cmp == GE_EXPR)
&& !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
/* Give up for -frounding-math. */
&& !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
(with
{
REAL_VALUE_TYPE c2;
enum tree_code ncmp = cmp;
const real_format *fmt
= REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
real_arithmetic (&c2, MULT_EXPR,
&TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
real_convert (&c2, fmt, &c2);
/* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
if (!REAL_VALUE_ISINF (c2))
{
tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
build_real (TREE_TYPE (@0), c2));
if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
ncmp = ERROR_MARK;
else if ((cmp == LT_EXPR || cmp == GE_EXPR)
&& real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
else if ((cmp == LE_EXPR || cmp == GT_EXPR)
&& real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
else
{
/* With rounding to even, sqrt of up to 3 different values
gives the same normal result, so in some cases c2 needs
to be adjusted. */
REAL_VALUE_TYPE c2alt, tow;
if (cmp == LT_EXPR || cmp == GE_EXPR)
tow = dconst0;
else
real_inf (&tow);
real_nextafter (&c2alt, fmt, &c2, &tow);
real_convert (&c2alt, fmt, &c2alt);
if (REAL_VALUE_ISINF (c2alt))
ncmp = ERROR_MARK;
else
{
c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
build_real (TREE_TYPE (@0), c2alt));
if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
ncmp = ERROR_MARK;
else if (real_equal (&TREE_REAL_CST (c3),
&TREE_REAL_CST (@1)))
c2 = c2alt;
}
}
}
}
(if (cmp == GT_EXPR || cmp == GE_EXPR)
(if (REAL_VALUE_ISINF (c2))
/* sqrt(x) > y is x == +Inf, when y is very large. */
(if (HONOR_INFINITIES (@0))
(eq @0 { build_real (TREE_TYPE (@0), c2); })
{ constant_boolean_node (false, type); })
/* sqrt(x) > c is the same as x > c*c. */
(if (ncmp != ERROR_MARK)
(if (ncmp == GE_EXPR)
(ge @0 { build_real (TREE_TYPE (@0), c2); })
(gt @0 { build_real (TREE_TYPE (@0), c2); }))))
/* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
(if (REAL_VALUE_ISINF (c2))
(switch
/* sqrt(x) < y is always true, when y is a very large
value and we don't care about NaNs or Infinities. */
(if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
{ constant_boolean_node (true, type); })
/* sqrt(x) < y is x != +Inf when y is very large and we
don't care about NaNs. */
(if (! HONOR_NANS (@0))
(ne @0 { build_real (TREE_TYPE (@0), c2); }))
/* sqrt(x) < y is x >= 0 when y is very large and we
don't care about Infinities. */
(if (! HONOR_INFINITIES (@0))
(ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
/* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
(if (GENERIC)
(truth_andif
(ge @0 { build_real (TREE_TYPE (@0), dconst0); })
(ne @0 { build_real (TREE_TYPE (@0), c2); }))))
/* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
(if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
(if (ncmp == LT_EXPR)
(lt @0 { build_real (TREE_TYPE (@0), c2); })
(le @0 { build_real (TREE_TYPE (@0), c2); }))
/* sqrt(x) < c is the same as x >= 0 && x < c*c. */
(if (ncmp != ERROR_MARK && GENERIC)
(if (ncmp == LT_EXPR)
(truth_andif
(ge @0 { build_real (TREE_TYPE (@0), dconst0); })
(lt @0 { build_real (TREE_TYPE (@0), c2); }))
(truth_andif
(ge @0 { build_real (TREE_TYPE (@0), dconst0); })
(le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
/* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
(simplify
(cmp (sq @0) (sq @1))
(if (! HONOR_NANS (@0))
(cmp @0 @1))))))
/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
(for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
(simplify
(cmp (float@0 @1) (float @2))
(if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
(with
{
format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
tree type1 = TREE_TYPE (@1);
bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
tree type2 = TREE_TYPE (@2);
bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
}
(if (fmt.can_represent_integral_type_p (type1)
&& fmt.can_represent_integral_type_p (type2))
(if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
{ constant_boolean_node (cmp == ORDERED_EXPR, type); }
(if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
&& type1_signed_p >= type2_signed_p)
(icmp @1 (convert @2))
(if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
&& type1_signed_p <= type2_signed_p)
(icmp (convert:type2 @1) @2)
(if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
&& type1_signed_p == type2_signed_p)
(icmp @1 @2))))))))))
/* Optimize various special cases of (FTYPE) N CMP CST. */
(for cmp (lt le eq ne ge gt)
icmp (le le eq ne ge ge)
(simplify
(cmp (float @0) REAL_CST@1)
(if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
(with
{
tree itype = TREE_TYPE (@0);
format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
/* Be careful to preserve any potential exceptions due to
NaNs. qNaNs are ok in == or != context.
TODO: relax under -fno-trapping-math or
-fno-signaling-nans. */
bool exception_p
= real_isnan (cst) && (cst->signalling
|| (cmp != EQ_EXPR && cmp != NE_EXPR));
}
/* TODO: allow non-fitting itype and SNaNs when
-fno-trapping-math. */
(if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
(with
{
signop isign = TYPE_SIGN (itype);
REAL_VALUE_TYPE imin, imax;
real_from_integer (&imin, fmt, wi::min_value (itype), isign);
real_from_integer (&imax, fmt, wi::max_value (itype), isign);
REAL_VALUE_TYPE icst;
if (cmp == GT_EXPR || cmp == GE_EXPR)
real_ceil (&icst, fmt, cst);
else if (cmp == LT_EXPR || cmp == LE_EXPR)
real_floor (&icst, fmt, cst);
else
real_trunc (&icst, fmt, cst);
bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
bool overflow_p = false;
wide_int icst_val
= real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
}
(switch
/* Optimize cases when CST is outside of ITYPE's range. */
(if (real_compare (LT_EXPR, cst, &imin))
{ constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
type); })
(if (real_compare (GT_EXPR, cst, &imax))
{ constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
type); })
/* Remove cast if CST is an integer representable by ITYPE. */
(if (cst_int_p)
(cmp @0 { gcc_assert (!overflow_p);
wide_int_to_tree (itype, icst_val); })
)
/* When CST is fractional, optimize
(FTYPE) N == CST -> 0
(FTYPE) N != CST -> 1. */
(if (cmp == EQ_EXPR || cmp == NE_EXPR)
{ constant_boolean_node (cmp == NE_EXPR, type); })
/* Otherwise replace with sensible integer constant. */
(with
{
gcc_checking_assert (!overflow_p);
}
(icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
/* Fold A /[ex] B CMP C to A CMP B * C. */
(for cmp (eq ne)
(simplify
(cmp (exact_div @0 @1) INTEGER_CST@2)
(if (!integer_zerop (@1))
(if (wi::to_wide (@2) == 0)
(cmp @0 @2)
(if (TREE_CODE (@1) == INTEGER_CST)
(with
{
wi::overflow_type ovf;
wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
TYPE_SIGN (TREE_TYPE (@1)), &ovf);
}
(if (ovf)
{ constant_boolean_node (cmp == NE_EXPR, type); }
(cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
(for cmp (lt le gt ge)
(simplify
(cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
(if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
(with
{
wi::overflow_type ovf;
wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
TYPE_SIGN (TREE_TYPE (@1)), &ovf);
}
(if (ovf)
{ constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
TYPE_SIGN (TREE_TYPE (@2)))
!= (cmp == LT_EXPR || cmp == LE_EXPR), type); }
(cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
/* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
For large C (more than min/B+2^size), this is also true, with the
multiplication computed modulo 2^size.
For intermediate C, this just tests the sign of A. */
(for cmp (lt le gt ge)
cmp2 (ge ge lt lt)
(simplify
(cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
&& TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
&& wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
(with
{
tree utype = TREE_TYPE (@2);
wide_int denom = wi::to_wide (@1);
wide_int right = wi::to_wide (@2);
wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
bool small = wi::leu_p (right, smax);
bool large = wi::geu_p (right, smin);
}
(if (small || large)
(cmp (convert:utype @0) (mult @2 (convert @1)))
(cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
/* Unordered tests if either argument is a NaN. */
(simplify
(bit_ior (unordered @0 @0) (unordered @1 @1))
(if (types_match (@0, @1))
(unordered @0 @1)))
(simplify
(bit_and (ordered @0 @0) (ordered @1 @1))
(if (types_match (@0, @1))
(ordered @0 @1)))
(simplify
(bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
@2)
(simplify
(bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
@2)
/* Simple range test simplifications. */
/* A < B || A >= B -> true. */
(for test1 (lt le le le ne ge)
test2 (ge gt ge ne eq ne)
(simplify
(bit_ior:c (test1 @0 @1) (test2 @0 @1))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
|| VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
{ constant_boolean_node (true, type); })))
/* A < B && A >= B -> false. */
(for test1 (lt lt lt le ne eq)
test2 (ge gt eq gt eq gt)
(simplify
(bit_and:c (test1 @0 @1) (test2 @0 @1))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
|| VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
{ constant_boolean_node (false, type); })))
/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
Note that comparisons
A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
will be canonicalized to above so there's no need to
consider them here.
*/
(for cmp (le gt)
eqcmp (eq ne)
(simplify
(cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
(with
{
tree ty = TREE_TYPE (@0);
unsigned prec = TYPE_PRECISION (ty);
wide_int mask = wi::to_wide (@2, prec);
wide_int rhs = wi::to_wide (@3, prec);
signop sgn = TYPE_SIGN (ty);
}
(if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
&& (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
(eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
{ build_zero_cst (ty); }))))))
/* -A CMP -B -> B CMP A. */
(for cmp (tcc_comparison)
scmp (swapped_tcc_comparison)
(simplify
(cmp (negate @0) (negate @1))
(if (FLOAT_TYPE_P (TREE_TYPE (@0))
|| (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
(scmp @0 @1)))
(simplify
(cmp (negate @0) CONSTANT_CLASS_P@1)
(if (FLOAT_TYPE_P (TREE_TYPE (@0))
|| (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
(with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
(if (tem && !TREE_OVERFLOW (tem))
(scmp @0 { tem; }))))))
/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
(for op (eq ne)
(simplify
(op (abs @0) zerop@1)
(op @0 @1)))
/* From fold_sign_changed_comparison and fold_widened_comparison.
FIXME: the lack of symmetry is disturbing. */
(for cmp (simple_comparison)
(simplify
(cmp (convert@0 @00) (convert?@1 @10))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
/* Disable this optimization if we're casting a function pointer
type on targets that require function pointer canonicalization. */
&& !(targetm.have_canonicalize_funcptr_for_compare ()
&& ((POINTER_TYPE_P (TREE_TYPE (@00))
&& FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
|| (POINTER_TYPE_P (TREE_TYPE (@10))
&& FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
&& single_use (@0))
(if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
&& (TREE_CODE (@10) == INTEGER_CST
|| @1 != @10)
&& (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
|| cmp == NE_EXPR
|| cmp == EQ_EXPR)
&& !POINTER_TYPE_P (TREE_TYPE (@00)))
/* ??? The special-casing of INTEGER_CST conversion was in the original
code and here to avoid a spurious overflow flag on the resulting
constant which fold_convert produces. */
(if (TREE_CODE (@1) == INTEGER_CST)
(cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
TREE_OVERFLOW (@1)); })
(cmp @00 (convert @1)))
(if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
/* If possible, express the comparison in the shorter mode. */
(if ((cmp == EQ_EXPR || cmp == NE_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
|| (!TYPE_UNSIGNED (TREE_TYPE (@0))
&& TYPE_UNSIGNED (TREE_TYPE (@00))))
&& (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
|| ((TYPE_PRECISION (TREE_TYPE (@00))
>= TYPE_PRECISION (TREE_TYPE (@10)))
&& (TYPE_UNSIGNED (TREE_TYPE (@00))
== TYPE_UNSIGNED (TREE_TYPE (@10))))
|| (TREE_CODE (@10) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (@00))
&& int_fits_type_p (@10, TREE_TYPE (@00)))))
(cmp @00 (convert @10))
(if (TREE_CODE (@10) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (@00))
&& !int_fits_type_p (@10, TREE_TYPE (@00)))
(with
{
tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
}
(if (above || below)
(if (cmp == EQ_EXPR || cmp == NE_EXPR)
{ constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
(if (cmp == LT_EXPR || cmp == LE_EXPR)
{ constant_boolean_node (above ? true : false, type); }
(if (cmp == GT_EXPR || cmp == GE_EXPR)
{ constant_boolean_node (above ? false : true, type); }))))))))))))
(for cmp (eq ne)
(simplify
/* SSA names are canonicalized to 2nd place. */
(cmp addr@0 SSA_NAME@1)
(with
{ poly_int64 off; tree base; }
/* A local variable can never be pointed to by
the default SSA name of an incoming parameter. */
(if (SSA_NAME_IS_DEFAULT_DEF (@1)
&& TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
&& (base = get_base_address (TREE_OPERAND (@0, 0)))
&& TREE_CODE (base) == VAR_DECL
&& auto_var_in_fn_p (base, current_function_decl))
(if (cmp == NE_EXPR)
{ constant_boolean_node (true, type); }
{ constant_boolean_node (false, type); })
/* If the address is based on @1 decide using the offset. */
(if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
&& TREE_CODE (base) == MEM_REF
&& TREE_OPERAND (base, 0) == @1)
(with { off += mem_ref_offset (base).force_shwi (); }
(if (known_ne (off, 0))
{ constant_boolean_node (cmp == NE_EXPR, type); }
(if (known_eq (off, 0))
{ constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
/* Equality compare simplifications from fold_binary */
(for cmp (eq ne)
/* If we have (A | C) == D where C & ~D != 0, convert this into 0.
Similarly for NE_EXPR. */
(simplify
(cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
&& wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
{ constant_boolean_node (cmp == NE_EXPR, type); }))
/* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
(simplify
(cmp (bit_xor @0 @1) integer_zerop)
(cmp @0 @1))
/* (X ^ Y) == Y becomes X == 0.
Likewise (X ^ Y) == X becomes Y == 0. */
(simplify
(cmp:c (bit_xor:c @0 @1) @0)
(cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
/* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
(simplify
(cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
(cmp @0 (bit_xor @1 (convert @2)))))
(simplify
(cmp (convert? addr@0) integer_zerop)
(if (tree_single_nonzero_warnv_p (@0, NULL))
{ constant_boolean_node (cmp == NE_EXPR, type); })))
/* If we have (A & C) == C where C is a power of 2, convert this into
(A & C) != 0. Similarly for NE_EXPR. */
(for cmp (eq ne)
icmp (ne eq)
(simplify
(cmp (bit_and@2 @0 integer_pow2p@1) @1)
(icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
convert this into a shift followed by ANDing with D. */
(simplify
(cond
(ne (bit_and @0 integer_pow2p@1) integer_zerop)
INTEGER_CST@2 integer_zerop)
(if (integer_pow2p (@2))
(with {
int shift = (wi::exact_log2 (wi::to_wide (@2))
- wi::exact_log2 (wi::to_wide (@1)));
}
(if (shift > 0)
(bit_and
(lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
(bit_and
(convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
@2)))))
/* If we have (A & C) != 0 where C is the sign bit of A, convert
this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
(for cmp (eq ne)
ncmp (ge lt)
(simplify
(cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& type_has_mode_precision_p (TREE_TYPE (@0))
&& element_precision (@2) >= element_precision (@0)
&& wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
(with { tree stype = signed_type_for (TREE_TYPE (@0)); }
(ncmp (convert:stype @0) { build_zero_cst (stype); })))))
/* If we have A < 0 ? C : 0 where C is a power of 2, convert
this into a right shift or sign extension followed by ANDing with C. */
(simplify
(cond
(lt @0 integer_zerop)
INTEGER_CST@1 integer_zerop)
(if (integer_pow2p (@1)
&& !TYPE_UNSIGNED (TREE_TYPE (@0)))
(with {
int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
}
(if (shift >= 0)
(bit_and
(convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
@1)
/* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
sign extension followed by AND with C will achieve the effect. */
(bit_and (convert @0) @1)))))
/* When the addresses are not directly of decls compare base and offset.
This implements some remaining parts of fold_comparison address
comparisons but still no complete part of it. Still it is good
enough to make fold_stmt not regress when not dispatching to fold_binary. */
(for cmp (simple_comparison)
(simplify
(cmp (convert1?@2 addr@0) (convert2? addr@1))
(with
{
poly_int64 off0, off1;
tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
if (base0 && TREE_CODE (base0) == MEM_REF)
{
off0 += mem_ref_offset (base0).force_shwi ();
base0 = TREE_OPERAND (base0, 0);
}
if (base1 && TREE_CODE (base1) == MEM_REF)
{
off1 += mem_ref_offset (base1).force_shwi ();
base1 = TREE_OPERAND (base1, 0);
}
}
(if (base0 && base1)
(with
{
int equal = 2;
/* Punt in GENERIC on variables with value expressions;
the value expressions might point to fields/elements
of other vars etc. */
if (GENERIC
&& ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
|| (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
;
else if (decl_in_symtab_p (base0)
&& decl_in_symtab_p (base1))
equal = symtab_node::get_create (base0)
->equal_address_to (symtab_node::get_create (base1));
else if ((DECL_P (base0)
|| TREE_CODE (base0) == SSA_NAME
|| TREE_CODE (base0) == STRING_CST)
&& (DECL_P (base1)
|| TREE_CODE (base1) == SSA_NAME
|| TREE_CODE (base1) == STRING_CST))
equal = (base0 == base1);
if (equal == 0)
{
HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
off0.is_constant (&ioff0);
off1.is_constant (&ioff1);
if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
|| (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
|| (TREE_CODE (base0) == STRING_CST
&& TREE_CODE (base1) == STRING_CST
&& ioff0 >= 0 && ioff1 >= 0
&& ioff0 < TREE_STRING_LENGTH (base0)
&& ioff1 < TREE_STRING_LENGTH (base1)
/* This is a too conservative test that the STRING_CSTs
will not end up being string-merged. */
&& strncmp (TREE_STRING_POINTER (base0) + ioff0,
TREE_STRING_POINTER (base1) + ioff1,
MIN (TREE_STRING_LENGTH (base0) - ioff0,
TREE_STRING_LENGTH (base1) - ioff1)) != 0))
;
else if (!DECL_P (base0) || !DECL_P (base1))
equal = 2;
else if (cmp != EQ_EXPR && cmp != NE_EXPR)
equal = 2;
/* If this is a pointer comparison, ignore for now even
valid equalities where one pointer is the offset zero
of one object and the other to one past end of another one. */
else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
;
/* Assume that automatic variables can't be adjacent to global
variables. */
else if (is_global_var (base0) != is_global_var (base1))
;
else
{
tree sz0 = DECL_SIZE_UNIT (base0);
tree sz1 = DECL_SIZE_UNIT (base1);
/* If sizes are unknown, e.g. VLA or not representable,
punt. */
if (!tree_fits_poly_int64_p (sz0)
|| !tree_fits_poly_int64_p (sz1))
equal = 2;
else
{
poly_int64 size0 = tree_to_poly_int64 (sz0);
poly_int64 size1 = tree_to_poly_int64 (sz1);
/* If one offset is pointing (or could be) to the beginning
of one object and the other is pointing to one past the
last byte of the other object, punt. */
if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
equal = 2;
else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
equal = 2;
/* If both offsets are the same, there are some cases
we know that are ok. Either if we know they aren't
zero, or if we know both sizes are no zero. */
if (equal == 2
&& known_eq (off0, off1)
&& (known_ne (off0, 0)
|| (known_ne (size0, 0) && known_ne (size1, 0))))
equal = 0;
}
}
}
}
(if (equal == 1
&& (cmp == EQ_EXPR || cmp == NE_EXPR
/* If the offsets are equal we can ignore overflow. */
|| known_eq (off0, off1)
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
/* Or if we compare using pointers to decls or strings. */
|| (POINTER_TYPE_P (TREE_TYPE (@2))
&& (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
(switch
(if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
{ constant_boolean_node (known_eq (off0, off1), type); })
(if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
{ constant_boolean_node (known_ne (off0, off1), type); })
(if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
{ constant_boolean_node (known_lt (off0, off1), type); })
(if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
{ constant_boolean_node (known_le (off0, off1), type); })
(if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
{ constant_boolean_node (known_ge (off0, off1), type); })
(if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
{ constant_boolean_node (known_gt (off0, off1), type); }))
(if (equal == 0)
(switch
(if (cmp == EQ_EXPR)
{ constant_boolean_node (false, type); })
(if (cmp == NE_EXPR)
{ constant_boolean_node (true, type); })))))))))
/* Simplify pointer equality compares using PTA. */
(for neeq (ne eq)
(simplify
(neeq @0 @1)
(if (POINTER_TYPE_P (TREE_TYPE (@0))
&& ptrs_compare_unequal (@0, @1))
{ constant_boolean_node (neeq != EQ_EXPR, type); })))
/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
Disable the transform if either operand is pointer to function.
This broke pr22051-2.c for arm where function pointer
canonicalizaion is not wanted. */
(for cmp (ne eq)
(simplify
(cmp (convert @0) INTEGER_CST@1)
(if (((POINTER_TYPE_P (TREE_TYPE (@0))
&& !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
/* Don't perform this optimization in GENERIC if @0 has reference
type when sanitizing. See PR101210. */
&& !(GENERIC
&& TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
&& (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& POINTER_TYPE_P (TREE_TYPE (@1))
&& !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
(cmp @0 (convert @1)))))
/* Non-equality compare simplifications from fold_binary */
(for cmp (lt gt le ge)
/* Comparisons with the highest or lowest possible integer of
the specified precision will have known values. */
(simplify
(cmp (convert?@2 @0) uniform_integer_cst_p@1)
(if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
|| POINTER_TYPE_P (TREE_TYPE (@1))
|| VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
&& tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
(with
{
tree cst = uniform_integer_cst_p (@1);
tree arg1_type = TREE_TYPE (cst);
unsigned int prec = TYPE_PRECISION (arg1_type);
wide_int max = wi::max_value (arg1_type);
wide_int signed_max = wi::max_value (prec, SIGNED);
wide_int min = wi::min_value (arg1_type);
}
(switch
(if (wi::to_wide (cst) == max)
(switch
(if (cmp == GT_EXPR)
{ constant_boolean_node (false, type); })
(if (cmp == GE_EXPR)
(eq @2 @1))
(if (cmp == LE_EXPR)
{ constant_boolean_node (true, type); })
(if (cmp == LT_EXPR)
(ne @2 @1))))
(if (wi::to_wide (cst) == min)
(switch
(if (cmp == LT_EXPR)
{ constant_boolean_node (false, type); })
(if (cmp == LE_EXPR)
(eq @2 @1))
(if (cmp == GE_EXPR)
{ constant_boolean_node (true, type); })
(if (cmp == GT_EXPR)
(ne @2 @1))))
(if (wi::to_wide (cst) == max - 1)
(switch
(if (cmp == GT_EXPR)
(eq @2 { build_uniform_cst (TREE_TYPE (@1),
wide_int_to_tree (TREE_TYPE (cst),
wi::to_wide (cst)
+ 1)); }))
(if (cmp == LE_EXPR)
(ne @2 { build_uniform_cst (TREE_TYPE (@1),
wide_int_to_tree (TREE_TYPE (cst),
wi::to_wide (cst)
+ 1)); }))))
(if (wi::to_wide (cst) == min + 1)
(switch
(if (cmp == GE_EXPR)
(ne @2 { build_uniform_cst (TREE_TYPE (@1),
wide_int_to_tree (TREE_TYPE (cst),
wi::to_wide (cst)
- 1)); }))
(if (cmp == LT_EXPR)
(eq @2 { build_uniform_cst (TREE_TYPE (@1),
wide_int_to_tree (TREE_TYPE (cst),
wi::to_wide (cst)
- 1)); }))))
(if (wi::to_wide (cst) == signed_max
&& TYPE_UNSIGNED (arg1_type)
/* We will flip the signedness of the comparison operator
associated with the mode of @1, so the sign bit is
specified by this mode. Check that @1 is the signed
max associated with this sign bit. */
&& prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
/* signed_type does not work on pointer types. */
&& INTEGRAL_TYPE_P (arg1_type))
/* The following case also applies to X < signed_max+1
and X >= signed_max+1 because previous transformations. */
(if (cmp == LE_EXPR || cmp == GT_EXPR)
(with { tree st = signed_type_for (TREE_TYPE (@1)); }
(switch
(if (cst == @1 && cmp == LE_EXPR)
(ge (convert:st @0) { build_zero_cst (st); }))
(if (cst == @1 && cmp == GT_EXPR)
(lt (convert:st @0) { build_zero_cst (st); }))
(if (cmp == LE_EXPR)
(ge (view_convert:st @0) { build_zero_cst (st); }))
(if (cmp == GT_EXPR)
(lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
/* If the second operand is NaN, the result is constant. */
(simplify
(cmp @0 REAL_CST@1)
(if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
&& (cmp != LTGT_EXPR || ! flag_trapping_math))
{ constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
? false : true, type); })))
/* bool_var != 0 becomes bool_var. */
(simplify
(ne @0 integer_zerop)
(if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
&& types_match (type, TREE_TYPE (@0)))
(non_lvalue @0)))
/* bool_var == 1 becomes bool_var. */
(simplify
(eq @0 integer_onep)
(if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
&& types_match (type, TREE_TYPE (@0)))
(non_lvalue @0)))
/* Do not handle
bool_var == 0 becomes !bool_var or
bool_var != 1 becomes !bool_var
here because that only is good in assignment context as long
as we require a tcc_comparison in GIMPLE_CONDs where we'd
replace if (x == 0) with tem = ~x; if (tem != 0) which is
clearly less optimal and which we'll transform again in forwprop. */
/* When one argument is a constant, overflow detection can be simplified.
Currently restricted to single use so as not to interfere too much with
ADD_OVERFLOW detection in tree-ssa-math-opts.c.
A + CST CMP A -> A CMP' CST' */
(for cmp (lt le ge gt)
out (gt gt le le)
(simplify
(cmp:c (plus@2 @0 INTEGER_CST@1) @0)
(if (TYPE_UNSIGNED (TREE_TYPE (@0))
&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
&& wi::to_wide (@1) != 0
&& single_use (@2))
(with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
(out @0 { wide_int_to_tree (TREE_TYPE (@0),
wi::max_value (prec, UNSIGNED)
- wi::to_wide (@1)); })))))
/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
expects the long form, so we restrict the transformation for now. */
(for cmp (gt le)
(simplify
(cmp:c (minus@2 @0 @1) @0)
(if (single_use (@2)
&& ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_UNSIGNED (TREE_TYPE (@0))
&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
(cmp @1 @0))))
/* Testing for overflow is unnecessary if we already know the result. */
/* A - B > A */
(for cmp (gt le)
out (ne eq)
(simplify
(cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
(if (TYPE_UNSIGNED (TREE_TYPE (@0))
&& types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
(out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
/* A + B < A */
(for cmp (lt ge)
out (ne eq)
(simplify
(cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
(if (TYPE_UNSIGNED (TREE_TYPE (@0))
&& types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
(out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
Simplify it to __builtin_mul_overflow (A, B, <unused>). */
(for cmp (lt ge)
out (ne eq)
(simplify
(cmp:c (trunc_div:s integer_all_onesp @1) @0)
(if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
(with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
(out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
/* Simplification of math builtins. These rules must all be optimizations
as well as IL simplifications. If there is a possibility that the new
form could be a pessimization, the rule should go in the canonicalization
section that follows this one.
Rules can generally go in this section if they satisfy one of
the following:
- the rule describes an identity
- the rule replaces calls with something as simple as addition or
multiplication
- the rule contains unary calls only and simplifies the surrounding
arithmetic. (The idea here is to exclude non-unary calls in which
one operand is constant and in which the call is known to be cheap
when the operand has that value.) */
(if (flag_unsafe_math_optimizations)
/* Simplify sqrt(x) * sqrt(x) -> x. */
(simplify
(mult (SQRT_ALL@1 @0) @1)
(if (!HONOR_SNANS (type))
@0))
(for op (plus minus)
/* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
(simplify
(op (rdiv @0 @1)
(rdiv @2 @1))
(rdiv (op @0 @2) @1)))
(for cmp (lt le gt ge)
neg_cmp (gt ge lt le)
/* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
(simplify
(cmp (mult @0 REAL_CST@1) REAL_CST@2)
(with
{ tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
(if (tem
&& !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
|| (real_zerop (tem) && !real_zerop (@1))))
(switch
(if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
(cmp @0 { tem; }))
(if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
(neg_cmp @0 { tem; })))))))
/* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
(for root (SQRT CBRT)
(simplify
(mult (root:s @0) (root:s @1))
(root (mult @0 @1))))
/* Simplify expN(x) * expN(y) -> expN(x+y). */
(for exps (EXP EXP2 EXP10 POW10)
(simplify
(mult (exps:s @0) (exps:s @1))
(exps (plus @0 @1))))
/* Simplify a/root(b/c) into a*root(c/b). */
(for root (SQRT CBRT)
(simplify
(rdiv @0 (root:s (rdiv:s @1 @2)))
(mult @0 (root (rdiv @2 @1)))))
/* Simplify x/expN(y) into x*expN(-y). */
(for exps (EXP EXP2 EXP10 POW10)
(simplify
(rdiv @0 (exps:s @1))
(mult @0 (exps (negate @1)))))
(for logs (LOG LOG2 LOG10 LOG10)
exps (EXP EXP2 EXP10 POW10)
/* logN(expN(x)) -> x. */
(simplify
(logs (exps @0))
@0)
/* expN(logN(x)) -> x. */
(simplify
(exps (logs @0))
@0))
/* Optimize logN(func()) for various exponential functions. We
want to determine the value "x" and the power "exponent" in
order to transform logN(x**exponent) into exponent*logN(x). */
(for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
(simplify
(logs (exps @0))
(if (SCALAR_FLOAT_TYPE_P (type))
(with {
tree x;
switch (exps)
{
CASE_CFN_EXP:
/* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
x = build_real_truncate (type, dconst_e ());
break;
CASE_CFN_EXP2:
/* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
x = build_real (type, dconst2);
break;
CASE_CFN_EXP10:
CASE_CFN_POW10:
/* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
{
REAL_VALUE_TYPE dconst10;
real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
x = build_real (type, dconst10);
}
break;
default:
gcc_unreachable ();
}
}
(mult (logs { x; }) @0)))))
(for logs (LOG LOG
LOG2 LOG2
LOG10 LOG10)
exps (SQRT CBRT)
(simplify
(logs (exps @0))
(if (SCALAR_FLOAT_TYPE_P (type))
(with {
tree x;
switch (exps)
{
CASE_CFN_SQRT:
/* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
x = build_real (type, dconsthalf);
break;
CASE_CFN_CBRT:
/* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
x = build_real_truncate (type, dconst_third ());
break;
default:
gcc_unreachable ();
}
}
(mult { x; } (logs @0))))))
/* logN(pow(x,exponent)) -> exponent*logN(x). */
(for logs (LOG LOG2 LOG10)
pows (POW)
(simplify
(logs (pows @0 @1))
(mult @1 (logs @0))))
/* pow(C,x) -> exp(log(C)*x) if C > 0,
or if C is a positive power of 2,
pow(C,x) -> exp2(log2(C)*x). */
#if GIMPLE
(for pows (POW)
exps (EXP)
logs (LOG)
exp2s (EXP2)
log2s (LOG2)
(simplify
(pows REAL_CST@0 @1)
(if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
&& real_isfinite (TREE_REAL_CST_PTR (@0))
/* As libmvec doesn't have a vectorized exp2, defer optimizing
the use_exp2 case until after vectorization. It seems actually
beneficial for all constants to postpone this until later,
because exp(log(C)*x), while faster, will have worse precision
and if x folds into a constant too, that is unnecessary
pessimization. */
&& canonicalize_math_after_vectorization_p ())
(with {
const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
bool use_exp2 = false;
if (targetm.libc_has_function (function_c99_misc)
&& value->cl == rvc_normal)
{
REAL_VALUE_TYPE frac_rvt = *value;
SET_REAL_EXP (&frac_rvt, 1);
if (real_equal (&frac_rvt, &dconst1))
use_exp2 = true;
}
}
(if (!use_exp2)
(if (optimize_pow_to_exp (@0, @1))
(exps (mult (logs @0) @1)))
(exp2s (mult (log2s @0) @1)))))))
#endif
/* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
(for pows (POW)
exps (EXP EXP2 EXP10 POW10)
logs (LOG LOG2 LOG10 LOG10)
(simplify
(mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
(if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
&& real_isfinite (TREE_REAL_CST_PTR (@0)))
(exps (plus (mult (logs @0) @1) @2)))))
(for sqrts (SQRT)
cbrts (CBRT)
pows (POW)
exps (EXP EXP2 EXP10 POW10)
/* sqrt(expN(x)) -> expN(x*0.5). */
(simplify
(sqrts (exps @0))
(exps (mult @0 { build_real (type, dconsthalf); })))
/* cbrt(expN(x)) -> expN(x/3). */
(simplify
(cbrts (exps @0))
(exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
/* pow(expN(x), y) -> expN(x*y). */
(simplify
(pows (exps @0) @1)
(exps (mult @0 @1))))
/* tan(atan(x)) -> x. */
(for tans (TAN)
atans (ATAN)
(simplify
(tans (atans @0))
@0)))
/* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
(for sins (SIN)
atans (ATAN)
sqrts (SQRT)
copysigns (COPYSIGN)
(simplify
(sins (atans:s @0))
(with
{
REAL_VALUE_TYPE r_cst;
build_sinatan_real (&r_cst, type);
tree t_cst = build_real (type, r_cst);
tree t_one = build_one_cst (type);
}
(if (SCALAR_FLOAT_TYPE_P (type))
(cond (lt (abs @0) { t_cst; })
(rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
(copysigns { t_one; } @0))))))
/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
(for coss (COS)
atans (ATAN)
sqrts (SQRT)
copysigns (COPYSIGN)
(simplify
(coss (atans:s @0))
(with
{
REAL_VALUE_TYPE r_cst;
build_sinatan_real (&r_cst, type);
tree t_cst = build_real (type, r_cst);
tree t_one = build_one_cst (type);
tree t_zero = build_zero_cst (type);
}
(if (SCALAR_FLOAT_TYPE_P (type))
(cond (lt (abs @0) { t_cst; })
(rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
(copysigns { t_zero; } @0))))))
(if (!flag_errno_math)
/* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
(for sinhs (SINH)
atanhs (ATANH)
sqrts (SQRT)
(simplify
(sinhs (atanhs:s @0))
(with { tree t_one = build_one_cst (type); }
(rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
/* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
(for coshs (COSH)
atanhs (ATANH)
sqrts (SQRT)
(simplify
(coshs (atanhs:s @0))
(with { tree t_one = build_one_cst (type); }
(rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
(simplify
(CABS (complex:C @0 real_zerop@1))
(abs @0))
/* trunc(trunc(x)) -> trunc(x), etc. */
(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
(simplify
(fns (fns @0))
(fns @0)))
/* f(x) -> x if x is integer valued and f does nothing for such values. */
(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
(simplify
(fns integer_valued_real_p@0)
@0))
/* hypot(x,0) and hypot(0,x) -> abs(x). */
(simplify
(HYPOT:c @0 real_zerop@1)
(abs @0))
/* pow(1,x) -> 1. */
(simplify
(POW real_onep@0 @1)
@0)
(simplify
/* copysign(x,x) -> x. */
(COPYSIGN_ALL @0 @0)
@0)
(simplify
/* copysign(x,y) -> fabs(x) if y is nonnegative. */
(COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
(abs @0))
(for scale (LDEXP SCALBN SCALBLN)
/* ldexp(0, x) -> 0. */
(simplify
(scale real_zerop@0 @1)
@0)
/* ldexp(x, 0) -> x. */
(simplify
(scale @0 integer_zerop@1)
@0)
/* ldexp(x, y) -> x if x is +-Inf or NaN. */
(simplify
(scale REAL_CST@0 @1)
(if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
@0)))
/* Canonicalization of sequences of math builtins. These rules represent
IL simplifications but are not necessarily optimizations.
The sincos pass is responsible for picking "optimal" implementations
of math builtins, which may be more complicated and can sometimes go
the other way, e.g. converting pow into a sequence of sqrts.
We only want to do these canonicalizations before the pass has run. */
(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
/* Simplify tan(x) * cos(x) -> sin(x). */
(simplify
(mult:c (TAN:s @0) (COS:s @0))
(SIN @0))
/* Simplify x * pow(x,c) -> pow(x,c+1). */
(simplify
(mult:c @0 (POW:s @0 REAL_CST@1))
(if (!TREE_OVERFLOW (@1))
(POW @0 (plus @1 { build_one_cst (type); }))))
/* Simplify sin(x) / cos(x) -> tan(x). */
(simplify
(rdiv (SIN:s @0) (COS:s @0))
(TAN @0))
/* Simplify sinh(x) / cosh(x) -> tanh(x). */
(simplify
(rdiv (SINH:s @0) (COSH:s @0))
(TANH @0))
/* Simplify cos(x) / sin(x) -> 1 / tan(x). */
(simplify
(rdiv (COS:s @0) (SIN:s @0))
(rdiv { build_one_cst (type); } (TAN @0)))
/* Simplify sin(x) / tan(x) -> cos(x). */
(simplify
(rdiv (SIN:s @0) (TAN:s @0))
(if (! HONOR_NANS (@0)
&& ! HONOR_INFINITIES (@0))
(COS @0)))
/* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
(simplify
(rdiv (TAN:s @0) (SIN:s @0))
(if (! HONOR_NANS (@0)
&& ! HONOR_INFINITIES (@0))
(rdiv { build_one_cst (type); } (COS @0))))
/* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
(simplify
(mult (POW:s @0 @1) (POW:s @0 @2))
(POW @0 (plus @1 @2)))
/* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
(simplify
(mult (POW:s @0 @1) (POW:s @2 @1))
(POW (mult @0 @2) @1))
/* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
(simplify
(mult (POWI:s @0 @1) (POWI:s @2 @1))
(POWI (mult @0 @2) @1))
/* Simplify pow(x,c) / x -> pow(x,c-1). */
(simplify
(rdiv (POW:s @0 REAL_CST@1) @0)
(if (!TREE_OVERFLOW (@1))
(POW @0 (minus @1 { build_one_cst (type); }))))
/* Simplify x / pow (y,z) -> x * pow(y,-z). */
(simplify
(rdiv @0 (POW:s @1 @2))
(mult @0 (POW @1 (negate @2))))
(for sqrts (SQRT)
cbrts (CBRT)
pows (POW)
/* sqrt(sqrt(x)) -> pow(x,1/4). */
(simplify
(sqrts (sqrts @0))
(pows @0 { build_real (type, dconst_quarter ()); }))
/* sqrt(cbrt(x)) -> pow(x,1/6). */
(simplify
(sqrts (cbrts @0))
(pows @0 { build_real_truncate (type, dconst_sixth ()); }))
/* cbrt(sqrt(x)) -> pow(x,1/6). */
(simplify
(cbrts (sqrts @0))
(pows @0 { build_real_truncate (type, dconst_sixth ()); }))
/* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
(simplify
(cbrts (cbrts tree_expr_nonnegative_p@0))
(pows @0 { build_real_truncate (type, dconst_ninth ()); }))
/* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
(simplify
(sqrts (pows @0 @1))
(pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
/* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
(simplify
(cbrts (pows tree_expr_nonnegative_p@0 @1))
(pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
/* pow(sqrt(x),y) -> pow(x,y*0.5). */
(simplify
(pows (sqrts @0) @1)
(pows @0 (mult @1 { build_real (type, dconsthalf); })))
/* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
(simplify
(pows (cbrts tree_expr_nonnegative_p@0) @1)
(pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
/* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
(simplify
(pows (pows tree_expr_nonnegative_p@0 @1) @2)
(pows @0 (mult @1 @2))))
/* cabs(x+xi) -> fabs(x)*sqrt(2). */
(simplify
(CABS (complex @0 @0))
(mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
/* hypot(x,x) -> fabs(x)*sqrt(2). */
(simplify
(HYPOT @0 @0)
(mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
/* cexp(x+yi) -> exp(x)*cexpi(y). */
(for cexps (CEXP)
exps (EXP)
cexpis (CEXPI)
(simplify
(cexps compositional_complex@0)
(if (targetm.libc_has_function (function_c99_math_complex))
(complex
(mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
(mult @1 (imagpart @2)))))))
(if (canonicalize_math_p ())
/* floor(x) -> trunc(x) if x is nonnegative. */
(for floors (FLOOR_ALL)
truncs (TRUNC_ALL)
(simplify
(floors tree_expr_nonnegative_p@0)
(truncs @0))))
(match double_value_p
@0
(if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
(for froms (BUILT_IN_TRUNCL
BUILT_IN_FLOORL
BUILT_IN_CEILL
BUILT_IN_ROUNDL
BUILT_IN_NEARBYINTL
BUILT_IN_RINTL)
tos (BUILT_IN_TRUNC
BUILT_IN_FLOOR
BUILT_IN_CEIL
BUILT_IN_ROUND
BUILT_IN_NEARBYINT
BUILT_IN_RINT)
/* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
(if (optimize && canonicalize_math_p ())
(simplify
(froms (convert double_value_p@0))
(convert (tos @0)))))
(match float_value_p
@0
(if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
BUILT_IN_FLOORL BUILT_IN_FLOOR
BUILT_IN_CEILL BUILT_IN_CEIL
BUILT_IN_ROUNDL BUILT_IN_ROUND
BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
BUILT_IN_RINTL BUILT_IN_RINT)
tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
BUILT_IN_FLOORF BUILT_IN_FLOORF
BUILT_IN_CEILF BUILT_IN_CEILF
BUILT_IN_ROUNDF BUILT_IN_ROUNDF
BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
BUILT_IN_RINTF BUILT_IN_RINTF)
/* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
if x is a float. */
(if (optimize && canonicalize_math_p ()
&& targetm.libc_has_function (function_c99_misc))
(simplify
(froms (convert float_value_p@0))
(convert (tos @0)))))
(for froms (XFLOORL XCEILL XROUNDL XRINTL)
tos (XFLOOR XCEIL XROUND XRINT)
/* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
(if (optimize && canonicalize_math_p ())
(simplify
(froms (convert double_value_p@0))
(tos @0))))
(for froms (XFLOORL XCEILL XROUNDL XRINTL
XFLOOR XCEIL XROUND XRINT)
tos (XFLOORF XCEILF XROUNDF XRINTF)
/* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
if x is a float. */
(if (optimize && canonicalize_math_p ())
(simplify
(froms (convert float_value_p@0))
(tos @0))))
(if (canonicalize_math_p ())
/* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
(for floors (IFLOOR LFLOOR LLFLOOR)
(simplify
(floors tree_expr_nonnegative_p@0)
(fix_trunc @0))))
(if (canonicalize_math_p ())
/* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
(for fns (IFLOOR LFLOOR LLFLOOR
ICEIL LCEIL LLCEIL
IROUND LROUND LLROUND)
(simplify
(fns integer_valued_real_p@0)
(fix_trunc @0)))
(if (!flag_errno_math)
/* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
(for rints (IRINT LRINT LLRINT)
(simplify
(rints integer_valued_real_p@0)
(fix_trunc @0)))))
(if (canonicalize_math_p ())
(for ifn (IFLOOR ICEIL IROUND IRINT)
lfn (LFLOOR LCEIL LROUND LRINT)
llfn (LLFLOOR LLCEIL LLROUND LLRINT)
/* Canonicalize iround (x) to lround (x) on ILP32 targets where
sizeof (int) == sizeof (long). */
(if (TYPE_PRECISION (integer_type_node)
== TYPE_PRECISION (long_integer_type_node))
(simplify
(ifn @0)
(lfn:long_integer_type_node @0)))
/* Canonicalize llround (x) to lround (x) on LP64 targets where
sizeof (long long) == sizeof (long). */
(if (TYPE_PRECISION (long_long_integer_type_node)
== TYPE_PRECISION (long_integer_type_node))
(simplify
(llfn @0)
(lfn:long_integer_type_node @0)))))
/* cproj(x) -> x if we're ignoring infinities. */
(simplify
(CPROJ @0)
(if (!HONOR_INFINITIES (type))
@0))
/* If the real part is inf and the imag part is known to be
nonnegative, return (inf + 0i). */
(simplify
(CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
(if (real_isinf (TREE_REAL_CST_PTR (@0)))
{ build_complex_inf (type, false); }))
/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
(simplify
(CPROJ (complex @0 REAL_CST@1))
(if (real_isinf (TREE_REAL_CST_PTR (@1)))
{ build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
(for pows (POW)
sqrts (SQRT)
cbrts (CBRT)
(simplify
(pows @0 REAL_CST@1)
(with {
const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
REAL_VALUE_TYPE tmp;
}
(switch
/* pow(x,0) -> 1. */
(if (real_equal (value, &dconst0))
{ build_real (type, dconst1); })
/* pow(x,1) -> x. */
(if (real_equal (value, &dconst1))
@0)
/* pow(x,-1) -> 1/x. */
(if (real_equal (value, &dconstm1))
(rdiv { build_real (type, dconst1); } @0))
/* pow(x,0.5) -> sqrt(x). */
(if (flag_unsafe_math_optimizations
&& canonicalize_math_p ()
&& real_equal (value, &dconsthalf))
(sqrts @0))
/* pow(x,1/3) -> cbrt(x). */
(if (flag_unsafe_math_optimizations
&& canonicalize_math_p ()
&& (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
real_equal (value, &tmp)))
(cbrts @0))))))
/* powi(1,x) -> 1. */
(simplify
(POWI real_onep@0 @1)
@0)
(simplify
(POWI @0 INTEGER_CST@1)
(switch
/* powi(x,0) -> 1. */
(if (wi::to_wide (@1) == 0)
{ build_real (type, dconst1); })
/* powi(x,1) -> x. */
(if (wi::to_wide (@1) == 1)
@0)
/* powi(x,-1) -> 1/x. */
(if (wi::to_wide (@1) == -1)
(rdiv { build_real (type, dconst1); } @0))))
/* Narrowing of arithmetic and logical operations.
These are conceptually similar to the transformations performed for
the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
term we want to move all that code out of the front-ends into here. */
/* Convert (outertype)((innertype0)a+(innertype1)b)
into ((newtype)a+(newtype)b) where newtype
is the widest mode from all of these. */
(for op (plus minus mult rdiv)
(simplify
(convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
/* If we have a narrowing conversion of an arithmetic operation where
both operands are widening conversions from the same type as the outer
narrowing conversion. Then convert the innermost operands to a
suitable unsigned type (to avoid introducing undefined behavior),
perform the operation and convert the result to the desired type. */
(if (INTEGRAL_TYPE_P (type)
&& op != MULT_EXPR
&& op != RDIV_EXPR
/* We check for type compatibility between @0 and @1 below,
so there's no need to check that @2/@4 are integral types. */
&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& INTEGRAL_TYPE_P (TREE_TYPE (@3))
/* The precision of the type of each operand must match the
precision of the mode of each operand, similarly for the
result. */
&& type_has_mode_precision_p (TREE_TYPE (@1))
&& type_has_mode_precision_p (TREE_TYPE (@2))
&& type_has_mode_precision_p (type)
/* The inner conversion must be a widening conversion. */
&& TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
&& types_match (@1, type)
&& (types_match (@1, @2)
/* Or the second operand is const integer or converted const
integer from valueize. */
|| TREE_CODE (@2) == INTEGER_CST))
(if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
(op @1 (convert @2))
(with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
(convert (op (convert:utype @1)
(convert:utype @2)))))
(if (FLOAT_TYPE_P (type)
&& DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
== DECIMAL_FLOAT_TYPE_P (type))
(with { tree arg0 = strip_float_extensions (@1);
tree arg1 = strip_float_extensions (@2);
tree itype = TREE_TYPE (@0);
tree ty1 = TREE_TYPE (arg0);
tree ty2 = TREE_TYPE (arg1);
enum tree_code code = TREE_CODE (itype); }
(if (FLOAT_TYPE_P (ty1)
&& FLOAT_TYPE_P (ty2))
(with { tree newtype = type;
if (TYPE_MODE (ty1) == SDmode
|| TYPE_MODE (ty2) == SDmode
|| TYPE_MODE (type) == SDmode)
newtype = dfloat32_type_node;
if (TYPE_MODE (ty1) == DDmode
|| TYPE_MODE (ty2) == DDmode
|| TYPE_MODE (type) == DDmode)
newtype = dfloat64_type_node;
if (TYPE_MODE (ty1) == TDmode
|| TYPE_MODE (ty2) == TDmode
|| TYPE_MODE (type) == TDmode)
newtype = dfloat128_type_node; }
(if ((newtype == dfloat32_type_node
|| newtype == dfloat64_type_node
|| newtype == dfloat128_type_node)
&& newtype == type
&& types_match (newtype, type))
(op (convert:newtype @1) (convert:newtype @2))
(with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
newtype = ty1;
if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
newtype = ty2; }
/* Sometimes this transformation is safe (cannot
change results through affecting double rounding
cases) and sometimes it is not. If NEWTYPE is
wider than TYPE, e.g. (float)((long double)double
+ (long double)double) converted to
(float)(double + double), the transformation is
unsafe regardless of the details of the types
involved; double rounding can arise if the result
of NEWTYPE arithmetic is a NEWTYPE value half way
between two representable TYPE values but the
exact value is sufficiently different (in the
right direction) for this difference to be
visible in ITYPE arithmetic. If NEWTYPE is the
same as TYPE, however, the transformation may be
safe depending on the types involved: it is safe
if the ITYPE has strictly more than twice as many
mantissa bits as TYPE, can represent infinities
and NaNs if the TYPE can, and has sufficient
exponent range for the product or ratio of two
values representable in the TYPE to be within the
range of normal values of ITYPE. */
(if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
&& (flag_unsafe_math_optimizations
|| (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
&& real_can_shorten_arithmetic (TYPE_MODE (itype),
TYPE_MODE (type))
&& !excess_precision_type (newtype)))
&& !types_match (itype, newtype))
(convert:type (op (convert:newtype @1)
(convert:newtype @2)))
)))) )
))
)))
/* This is another case of narrowing, specifically when there's an outer
BIT_AND_EXPR which masks off bits outside the type of the innermost
operands. Like the previous case we have to convert the operands
to unsigned types to avoid introducing undefined behavior for the
arithmetic operation. */
(for op (minus plus)
(simplify
(bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
(if (INTEGRAL_TYPE_P (type)
/* We check for type compatibility between @0 and @1 below,
so there's no need to check that @1/@3 are integral types. */
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& INTEGRAL_TYPE_P (TREE_TYPE (@2))
/* The precision of the type of each operand must match the
precision of the mode of each operand, similarly for the
result. */
&& type_has_mode_precision_p (TREE_TYPE (@0))
&& type_has_mode_precision_p (TREE_TYPE (@1))
&& type_has_mode_precision_p (type)
/* The inner conversion must be a widening conversion. */
&& TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
&& types_match (@0, @1)
&& (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
<= TYPE_PRECISION (TREE_TYPE (@0)))
&& (wi::to_wide (@4)
& wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
true, TYPE_PRECISION (type))) == 0)
(if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
(with { tree ntype = TREE_TYPE (@0); }
(convert (bit_and (op @0 @1) (convert:ntype @4))))
(with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
(convert (bit_and (op (convert:utype @0) (convert:utype @1))
(convert:utype @4))))))))
/* Transform (@0 < @1 and @0 < @2) to use min,
(@0 > @1 and @0 > @2) to use max */
(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
op (lt le gt ge lt le gt ge )
ext (min min max max max max min min )
(simplify
(logic (op:cs @0 @1) (op:cs @0 @2))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TREE_CODE (@0) != INTEGER_CST)
(op @0 (ext @1 @2)))))
(simplify
/* signbit(x) -> 0 if x is nonnegative. */
(SIGNBIT tree_expr_nonnegative_p@0)
{ integer_zero_node; })
(simplify
/* signbit(x) -> x<0 if x doesn't have signed zeros. */
(SIGNBIT @0)
(if (!HONOR_SIGNED_ZEROS (@0))
(convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
(for cmp (eq ne)
(for op (plus minus)
rop (minus plus)
(simplify
(cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
(if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
&& !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
&& !TYPE_SATURATING (TREE_TYPE (@0)))
(with { tree res = int_const_binop (rop, @2, @1); }
(if (TREE_OVERFLOW (res)
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
{ constant_boolean_node (cmp == NE_EXPR, type); }
(if (single_use (@3))
(cmp @0 { TREE_OVERFLOW (res)
? drop_tree_overflow (res) : res; }))))))))
(for cmp (lt le gt ge)
(for op (plus minus)
rop (minus plus)
(simplify
(cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
(if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
(with { tree res = int_const_binop (rop, @2, @1); }
(if (TREE_OVERFLOW (res))
{
fold_overflow_warning (("assuming signed overflow does not occur "
"when simplifying conditional to constant"),
WARN_STRICT_OVERFLOW_CONDITIONAL);
bool less = cmp == LE_EXPR || cmp == LT_EXPR;
/* wi::ges_p (@2, 0) should be sufficient for a signed type. */
bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
TYPE_SIGN (TREE_TYPE (@1)))
!= (op == MINUS_EXPR);
constant_boolean_node (less == ovf_high, type);
}
(if (single_use (@3))
(with
{
fold_overflow_warning (("assuming signed overflow does not occur "
"when changing X +- C1 cmp C2 to "
"X cmp C2 -+ C1"),
WARN_STRICT_OVERFLOW_COMPARISON);
}
(cmp @0 { res; })))))))))
/* Canonicalizations of BIT_FIELD_REFs. */
(simplify
(BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
(BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
(simplify
(BIT_FIELD_REF (view_convert @0) @1 @2)
(BIT_FIELD_REF @0 @1 @2))
(simplify
(BIT_FIELD_REF @0 @1 integer_zerop)
(if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
(view_convert @0)))
(simplify
(BIT_FIELD_REF @0 @1 @2)
(switch
(if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
&& tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
(switch
(if (integer_zerop (@2))
(view_convert (realpart @0)))
(if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
(view_convert (imagpart @0)))))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& INTEGRAL_TYPE_P (type)
/* On GIMPLE this should only apply to register arguments. */
&& (! GIMPLE || is_gimple_reg (@0))
/* A bit-field-ref that referenced the full argument can be stripped. */
&& ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
&& integer_zerop (@2))
/* Low-parts can be reduced to integral conversions.
??? The following doesn't work for PDP endian. */
|| (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
/* Don't even think about BITS_BIG_ENDIAN. */
&& TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
&& TYPE_PRECISION (type) % BITS_PER_UNIT == 0
&& compare_tree_int (@2, (BYTES_BIG_ENDIAN
? (TYPE_PRECISION (TREE_TYPE (@0))
- TYPE_PRECISION (type))
: 0)) == 0)))
(convert @0))))
/* Simplify vector extracts. */
(simplify
(BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
(if (VECTOR_TYPE_P (TREE_TYPE (@0))
&& (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
|| (VECTOR_TYPE_P (type)
&& types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
(with
{
tree ctor = (TREE_CODE (@0) == SSA_NAME
? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
tree eltype = TREE_TYPE (TREE_TYPE (ctor));
unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
}
(if (n != 0
&& (idx % width) == 0
&& (n % width) == 0
&& known_le ((idx + n) / width,
TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
(with
{
idx = idx / width;
n = n / width;
/* Constructor elements can be subvectors. */
poly_uint64 k = 1;
if (CONSTRUCTOR_NELTS (ctor) != 0)
{
tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
if (TREE_CODE (cons_elem) == VECTOR_TYPE)
k = TYPE_VECTOR_SUBPARTS (cons_elem);
}
unsigned HOST_WIDE_INT elt, count, const_k;
}
(switch
/* We keep an exact subset of the constructor elements. */
(if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
(if (CONSTRUCTOR_NELTS (ctor) == 0)
{ build_constructor (type, NULL); }
(if (count == 1)
(if (elt < CONSTRUCTOR_NELTS (ctor))
(view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
{ build_zero_cst (type); })
/* We don't want to emit new CTORs unless the old one goes away.
??? Eventually allow this if the CTOR ends up constant or
uniform. */
(if (single_use (@0))
{
vec<constructor_elt, va_gc> *vals;
vec_alloc (vals, count);
for (unsigned i = 0;
i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
CONSTRUCTOR_ELT (ctor, elt + i)->value);
build_constructor (type, vals);
}))))
/* The bitfield references a single constructor element. */
(if (k.is_constant (&const_k)
&& idx + n <= (idx / const_k + 1) * const_k)
(switch
(if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
{ build_zero_cst (type); })
(if (n == const_k)
(view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
(BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
@1 { bitsize_int ((idx % const_k) * width); })))))))))
/* Simplify a bit extraction from a bit insertion for the cases with
the inserted element fully covering the extraction or the insertion
not touching the extraction. */
(simplify
(BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
(with
{
unsigned HOST_WIDE_INT isize;
if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
isize = TYPE_PRECISION (TREE_TYPE (@1));
else
isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
}
(switch
(if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
&& wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
wi::to_wide (@ipos) + isize))
(BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
wi::to_wide (@rpos)
- wi::to_wide (@ipos)); }))
(if (wi::geu_p (wi::to_wide (@ipos),
wi::to_wide (@rpos) + wi::to_wide (@rsize))
|| wi::geu_p (wi::to_wide (@rpos),
wi::to_wide (@ipos) + isize))
(BIT_FIELD_REF @0 @rsize @rpos)))))
(if (canonicalize_math_after_vectorization_p ())
(for fmas (FMA)
(simplify
(fmas:c (negate @0) @1 @2)
(IFN_FNMA @0 @1 @2))
(simplify
(fmas @0 @1 (negate @2))
(IFN_FMS @0 @1 @2))
(simplify
(fmas:c (negate @0) @1 (negate @2))
(IFN_FNMS @0 @1 @2))
(simplify
(negate (fmas@3 @0 @1 @2))
(if (single_use (@3))
(IFN_FNMS @0 @1 @2))))
(simplify
(IFN_FMS:c (negate @0) @1 @2)
(IFN_FNMS @0 @1 @2))
(simplify
(IFN_FMS @0 @1 (negate @2))
(IFN_FMA @0 @1 @2))
(simplify
(IFN_FMS:c (negate @0) @1 (negate @2))
(IFN_FNMA @0 @1 @2))
(simplify
(negate (IFN_FMS@3 @0 @1 @2))
(if (single_use (@3))
(IFN_FNMA @0 @1 @2)))
(simplify
(IFN_FNMA:c (negate @0) @1 @2)
(IFN_FMA @0 @1 @2))
(simplify
(IFN_FNMA @0 @1 (negate @2))
(IFN_FNMS @0 @1 @2))
(simplify
(IFN_FNMA:c (negate @0) @1 (negate @2))
(IFN_FMS @0 @1 @2))
(simplify
(negate (IFN_FNMA@3 @0 @1 @2))
(if (single_use (@3))
(IFN_FMS @0 @1 @2)))
(simplify
(IFN_FNMS:c (negate @0) @1 @2)
(IFN_FMS @0 @1 @2))
(simplify
(IFN_FNMS @0 @1 (negate @2))
(IFN_FNMA @0 @1 @2))
(simplify
(IFN_FNMS:c (negate @0) @1 (negate @2))
(IFN_FMA @0 @1 @2))
(simplify
(negate (IFN_FNMS@3 @0 @1 @2))
(if (single_use (@3))
(IFN_FMA @0 @1 @2))))
/* POPCOUNT simplifications. */
(for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
BUILT_IN_POPCOUNTIMAX)
/* popcount(X&1) is nop_expr(X&1). */
(simplify
(popcount @0)
(if (tree_nonzero_bits (@0) == 1)
(convert @0)))
/* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
(simplify
(plus (popcount:s @0) (popcount:s @1))
(if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
(popcount (bit_ior @0 @1))))
/* popcount(X) == 0 is X == 0, and related (in)equalities. */
(for cmp (le eq ne gt)
rep (eq eq ne ne)
(simplify
(cmp (popcount @0) integer_zerop)
(rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
#if GIMPLE
/* 64- and 32-bits branchless implementations of popcount are detected:
int popcount64c (uint64_t x)
{
x -= (x >> 1) & 0x5555555555555555ULL;
x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
return (x * 0x0101010101010101ULL) >> 56;
}
int popcount32c (uint32_t x)
{
x -= (x >> 1) & 0x55555555;
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0f0f0f0f;
return (x * 0x01010101) >> 24;
} */
(simplify
(rshift
(mult
(bit_and
(plus:c
(rshift @8 INTEGER_CST@5)
(plus:c@8
(bit_and @6 INTEGER_CST@7)
(bit_and
(rshift
(minus@6 @0
(bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
INTEGER_CST@10)
INTEGER_CST@9)))
INTEGER_CST@3)
INTEGER_CST@2)
INTEGER_CST@1)
/* Check constants and optab. */
(with { unsigned prec = TYPE_PRECISION (type);
int shift = (64 - prec) & 63;
unsigned HOST_WIDE_INT c1
= HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
unsigned HOST_WIDE_INT c2
= HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
unsigned HOST_WIDE_INT c3
= HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
unsigned HOST_WIDE_INT c4
= HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
}
(if (prec >= 16
&& prec <= 64
&& pow2p_hwi (prec)
&& TYPE_UNSIGNED (type)
&& integer_onep (@4)
&& wi::to_widest (@10) == 2
&& wi::to_widest (@5) == 4
&& wi::to_widest (@1) == prec - 8
&& tree_to_uhwi (@2) == c1
&& tree_to_uhwi (@3) == c2
&& tree_to_uhwi (@9) == c3
&& tree_to_uhwi (@7) == c3
&& tree_to_uhwi (@11) == c4
&& direct_internal_fn_supported_p (IFN_POPCOUNT, type,
OPTIMIZE_FOR_BOTH))
(convert (IFN_POPCOUNT:type @0)))))
#endif
/* Simplify:
a = a1 op a2
r = c ? a : b;
to:
r = c ? a1 op a2 : b;
if the target can do it in one go. This makes the operation conditional
on c, so could drop potentially-trapping arithmetic, but that's a valid
simplification if the result of the operation isn't needed.
Avoid speculatively generating a stand-alone vector comparison
on targets that might not support them. Any target implementing
conditional internal functions must support the same comparisons
inside and outside a VEC_COND_EXPR. */
#if GIMPLE
(for uncond_op (UNCOND_BINARY)
cond_op (COND_BINARY)
(simplify
(vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
(with { tree op_type = TREE_TYPE (@4); }
(if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
&& element_precision (type) == element_precision (op_type))
(view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
(simplify
(vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
(with { tree op_type = TREE_TYPE (@4); }
(if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
&& element_precision (type) == element_precision (op_type))
(view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
/* Same for ternary operations. */
(for uncond_op (UNCOND_TERNARY)
cond_op (COND_TERNARY)
(simplify
(vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
(with { tree op_type = TREE_TYPE (@5); }
(if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
&& element_precision (type) == element_precision (op_type))
(view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
(simplify
(vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
(with { tree op_type = TREE_TYPE (@5); }
(if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
&& element_precision (type) == element_precision (op_type))
(view_convert (cond_op (bit_not @0) @2 @3 @4
(view_convert:op_type @1)))))))
#endif
/* Detect cases in which a VEC_COND_EXPR effectively replaces the
"else" value of an IFN_COND_*. */
(for cond_op (COND_BINARY)
(simplify
(vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
(with { tree op_type = TREE_TYPE (@3); }
(if (element_precision (type) == element_precision (op_type))
(view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
(simplify
(vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
(with { tree op_type = TREE_TYPE (@5); }
(if (inverse_conditions_p (@0, @2)
&& element_precision (type) == element_precision (op_type))
(view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
/* Same for ternary operations. */
(for cond_op (COND_TERNARY)
(simplify
(vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
(with { tree op_type = TREE_TYPE (@4); }
(if (element_precision (type) == element_precision (op_type))
(view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
(simplify
(vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
(with { tree op_type = TREE_TYPE (@6); }
(if (inverse_conditions_p (@0, @2)
&& element_precision (type) == element_precision (op_type))
(view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
/* For pointers @0 and @2 and nonnegative constant offset @1, look for
expressions like:
A: (@0 + @1 < @2) | (@2 + @1 < @0)
B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
If pointers are known not to wrap, B checks whether @1 bytes starting
at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
bytes. A is more efficiently tested as:
A: (sizetype) (@0 + @1 - @2) > @1 * 2
The equivalent expression for B is given by replacing @1 with @1 - 1:
B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
@0 and @2 can be swapped in both expressions without changing the result.
The folds rely on sizetype's being unsigned (which is always true)
and on its being the same width as the pointer (which we have to check).
The fold replaces two pointer_plus expressions, two comparisons and
an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
the best case it's a saving of two operations. The A fold retains one
of the original pointer_pluses, so is a win even if both pointer_pluses
are used elsewhere. The B fold is a wash if both pointer_pluses are
used elsewhere, since all we end up doing is replacing a comparison with
a pointer_plus. We do still apply the fold under those circumstances
though, in case applying it to other conditions eventually makes one of the
pointer_pluses dead. */
(for ior (truth_orif truth_or bit_ior)
(for cmp (le lt)
(simplify
(ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
(cmp:cs (pointer_plus@4 @2 @1) @0))
(if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
&& TYPE_OVERFLOW_WRAPS (sizetype)
&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
/* Calculate the rhs constant. */
(with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
offset_int rhs = off * 2; }
/* Always fails for negative values. */
(if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
/* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
pick a canonical order. This increases the chances of using the
same pointer_plus in multiple checks. */
(with { bool swap_p = tree_swap_operands_p (@0, @2);
tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
(if (cmp == LT_EXPR)
(gt (convert:sizetype
(pointer_diff:ssizetype { swap_p ? @4 : @3; }
{ swap_p ? @0 : @2; }))
{ rhs_tree; })
(gt (convert:sizetype
(pointer_diff:ssizetype
(pointer_plus { swap_p ? @2 : @0; }
{ wide_int_to_tree (sizetype, off); })
{ swap_p ? @0 : @2; }))
{ rhs_tree; })))))))))
/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
element of @1. */
(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
(simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
(with { int i = single_nonzero_element (@1); }
(if (i >= 0)
(with { tree elt = vector_cst_elt (@1, i);
tree elt_type = TREE_TYPE (elt);
unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
tree size = bitsize_int (elt_bits);
tree pos = bitsize_int (elt_bits * i); }
(view_convert
(bit_and:elt_type
(BIT_FIELD_REF:elt_type @0 { size; } { pos; })
{ elt; })))))))
(simplify
(vec_perm @0 @1 VECTOR_CST@2)
(with
{
tree op0 = @0, op1 = @1, op2 = @2;
/* Build a vector of integers from the tree mask. */
vec_perm_builder builder;
if (!tree_to_vec_perm_builder (&builder, op2))
return NULL_TREE;
/* Create a vec_perm_indices for the integer vector. */
poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
bool single_arg = (op0 == op1);
vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
}
(if (sel.series_p (0, 1, 0, 1))
{ op0; }
(if (sel.series_p (0, 1, nelts, 1))
{ op1; }
(with
{
if (!single_arg)
{
if (sel.all_from_input_p (0))
op1 = op0;
else if (sel.all_from_input_p (1))
{
op0 = op1;
sel.rotate_inputs (1);
}
else if (known_ge (poly_uint64 (sel[0]), nelts))
{
std::swap (op0, op1);
sel.rotate_inputs (1);
}
}
gassign *def;
tree cop0 = op0, cop1 = op1;
if (TREE_CODE (op0) == SSA_NAME
&& (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
&& gimple_assign_rhs_code (def) == CONSTRUCTOR)
cop0 = gimple_assign_rhs1 (def);
if (TREE_CODE (op1) == SSA_NAME
&& (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
&& gimple_assign_rhs_code (def) == CONSTRUCTOR)
cop1 = gimple_assign_rhs1 (def);
tree t;
}
(if ((TREE_CODE (cop0) == VECTOR_CST
|| TREE_CODE (cop0) == CONSTRUCTOR)
&& (TREE_CODE (cop1) == VECTOR_CST
|| TREE_CODE (cop1) == CONSTRUCTOR)
&& (t = fold_vec_perm (type, cop0, cop1, sel)))
{ t; }
(with
{
bool changed = (op0 == op1 && !single_arg);
tree ins = NULL_TREE;
unsigned at = 0;
/* See if the permutation is performing a single element
insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
in that case. But only if the vector mode is supported,
otherwise this is invalid GIMPLE. */
if (TYPE_MODE (type) != BLKmode
&& (TREE_CODE (cop0) == VECTOR_CST
|| TREE_CODE (cop0) == CONSTRUCTOR
|| TREE_CODE (cop1) == VECTOR_CST
|| TREE_CODE (cop1) == CONSTRUCTOR))
{
bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
if (insert_first_p)
{
/* After canonicalizing the first elt to come from the
first vector we only can insert the first elt from
the first vector. */
at = 0;
if ((ins = fold_read_from_vector (cop0, sel[0])))
op0 = op1;
}
/* The above can fail for two-element vectors which always
appear to insert the first element, so try inserting
into the second lane as well. For more than two
elements that's wasted time. */
if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
{
unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
for (at = 0; at < encoded_nelts; ++at)
if (maybe_ne (sel[at], at))
break;
if (at < encoded_nelts
&& (known_eq (at + 1, nelts)
|| sel.series_p (at + 1, 1, at + 1, 1)))
{
if (known_lt (poly_uint64 (sel[at]), nelts))
ins = fold_read_from_vector (cop0, sel[at]);
else
ins = fold_read_from_vector (cop1, sel[at] - nelts);
}
}
}
/* Generate a canonical form of the selector. */
if (!ins && sel.encoding () != builder)
{
/* Some targets are deficient and fail to expand a single
argument permutation while still allowing an equivalent
2-argument version. */
tree oldop2 = op2;
if (sel.ninputs () == 2
|| can_vec_perm_const_p (TYPE_MODE (type), sel, false))
op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
else
{
vec_perm_indices sel2 (builder, 2, nelts);
if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
else
/* Not directly supported with either encoding,
so use the preferred form. */
op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
}
if (!operand_equal_p (op2, oldop2, 0))
changed = true;
}
}
(if (ins)
(bit_insert { op0; } { ins; }
{ bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
(if (changed)
(vec_perm { op0; } { op1; } { op2; }))))))))))
/* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
(match vec_same_elem_p
@0
(if (uniform_vector_p (@0))))
(match vec_same_elem_p
(vec_duplicate @0))
(simplify
(vec_perm vec_same_elem_p@0 @0 @1)
@0)
/* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
constant which when multiplied by a power of 2 contains a unique value
in the top 5 or 6 bits. This is then indexed into a table which maps it
to the number of trailing zeroes. */
(match (ctz_table_index @1 @2 @3)
(rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))