Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
/* Shrink-wrapping related optimizations.
   Copyright (C) 1987-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This file handles shrink-wrapping related optimizations.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "regs.h"
#include "insn-config.h"
#include "emit-rtl.h"
#include "output.h"
#include "tree-pass.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "bb-reorder.h"
#include "shrink-wrap.h"
#include "regcprop.h"
#include "rtl-iter.h"
#include "valtrack.h"
#include "function-abi.h"

/* Return true if INSN requires the stack frame to be set up.
   PROLOGUE_USED contains the hard registers used in the function
   prologue.  SET_UP_BY_PROLOGUE is the set of registers we expect the
   prologue to set up for the function.  */
bool
requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
			HARD_REG_SET set_up_by_prologue)
{
  df_ref def, use;
  HARD_REG_SET hardregs;
  unsigned regno;

  if (CALL_P (insn))
    return !SIBLING_CALL_P (insn);

  /* We need a frame to get the unique CFA expected by the unwinder.  */
  if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
    return true;

  CLEAR_HARD_REG_SET (hardregs);
  FOR_EACH_INSN_DEF (def, insn)
    {
      rtx dreg = DF_REF_REG (def);

      if (!REG_P (dreg))
	continue;

      add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
    }
  if (hard_reg_set_intersect_p (hardregs, prologue_used))
    return true;
  hardregs &= ~crtl->abi->full_reg_clobbers ();
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (hardregs, regno)
	&& df_regs_ever_live_p (regno))
      return true;

  FOR_EACH_INSN_USE (use, insn)
    {
      rtx reg = DF_REF_REG (use);

      if (!REG_P (reg))
	continue;

      add_to_hard_reg_set (&hardregs, GET_MODE (reg),
			   REGNO (reg));
    }
  if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
    return true;

  return false;
}

/* See whether there has a single live edge from BB, which dest uses
   [REGNO, END_REGNO).  Return the live edge if its dest bb has
   one or two predecessors.  Otherwise return NULL.  */

static edge
live_edge_for_reg (basic_block bb, int regno, int end_regno)
{
  edge e, live_edge;
  edge_iterator ei;
  bitmap live;
  int i;

  live_edge = NULL;
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      live = df_get_live_in (e->dest);
      for (i = regno; i < end_regno; i++)
	if (REGNO_REG_SET_P (live, i))
	  {
	    if (live_edge && live_edge != e)
	      return NULL;
	    live_edge = e;
	  }
    }

  /* We can sometimes encounter dead code.  Don't try to move it
     into the exit block.  */
  if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
    return NULL;

  /* Reject targets of abnormal edges.  This is needed for correctness
     on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
     exception edges even though it is generally treated as call-saved
     for the majority of the compilation.  Moving across abnormal edges
     isn't going to be interesting for shrink-wrap usage anyway.  */
  if (live_edge->flags & EDGE_ABNORMAL)
    return NULL;

  /* When live_edge->dest->preds == 2, we can create a new block on
     the edge to make it meet the requirement.  */
  if (EDGE_COUNT (live_edge->dest->preds) > 2)
    return NULL;

  return live_edge;
}

/* Try to move INSN from BB to a successor.  Return true on success.
   USES and DEFS are the set of registers that are used and defined
   after INSN in BB.  SPLIT_P indicates whether a live edge from BB
   is splitted or not.  */

static bool
move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
			   const_hard_reg_set uses,
			   const_hard_reg_set defs,
			   bool *split_p,
			   struct dead_debug_local *debug)
{
  rtx set, src, dest;
  bitmap live_out, live_in, bb_uses = NULL, bb_defs = NULL;
  unsigned int i, dregno, end_dregno;
  unsigned int sregno = FIRST_PSEUDO_REGISTER;
  unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
  basic_block next_block;
  edge live_edge;
  rtx_insn *dinsn;
  df_ref def;

  /* Look for a simple register assignment.  We don't use single_set here
     because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
     destinations.  */
  if (!INSN_P (insn))
    return false;
  set = PATTERN (insn);
  if (GET_CODE (set) != SET)
    return false;
  src = SET_SRC (set);
  dest = SET_DEST (set);

  /* For the destination, we want only a register.  Also disallow STACK
     or FRAME related adjustments.  They are likely part of the prologue,
     so keep them in the entry block.  */
  if (!REG_P (dest)
      || dest == stack_pointer_rtx
      || dest == frame_pointer_rtx
      || dest == hard_frame_pointer_rtx)
    return false;

  /* For the source, we want one of:
      (1) A (non-overlapping) register
      (2) A constant,
      (3) An expression involving no more than one register.

     That last point comes from the code following, which was originally
     written to handle only register move operations, and still only handles
     a single source register when checking for overlaps.  Happily, the
     same checks can be applied to expressions like (plus reg const).  */

  if (CONSTANT_P (src))
    ;
  else if (!REG_P (src))
    {
      rtx src_inner = NULL_RTX;

      if (can_throw_internal (insn))
	return false;

      subrtx_var_iterator::array_type array;
      FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
	{
	  rtx x = *iter;
	  switch (GET_RTX_CLASS (GET_CODE (x)))
	    {
	    case RTX_CONST_OBJ:
	    case RTX_COMPARE:
	    case RTX_COMM_COMPARE:
	    case RTX_BIN_ARITH:
	    case RTX_COMM_ARITH:
	    case RTX_UNARY:
	    case RTX_TERNARY:
	      /* Constant or expression.  Continue.  */
	      break;

	    case RTX_OBJ:
	    case RTX_EXTRA:
	      switch (GET_CODE (x))
		{
		case UNSPEC:
		case SUBREG:
		case STRICT_LOW_PART:
		case PC:
		case LO_SUM:
		  /* Ok.  Continue.  */
		  break;

		case REG:
		  /* Fail if we see a second inner register.  */
		  if (src_inner != NULL)
		    return false;
		  src_inner = x;
		  break;

		default:
		  return false;
		}
	      break;

	    default:
	      return false;
	    }
	}

      if (src_inner != NULL)
	src = src_inner;
    }

  /* Make sure that the source register isn't defined later in BB.  */
  if (REG_P (src))
    {
      sregno = REGNO (src);
      end_sregno = END_REGNO (src);
      if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
	return false;
    }

  /* Make sure that the destination register isn't referenced later in BB.  */
  dregno = REGNO (dest);
  end_dregno = END_REGNO (dest);
  if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
      || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
    return false;

  /* See whether there is a successor block to which we could move INSN.  */
  live_edge = live_edge_for_reg (bb, dregno, end_dregno);
  if (!live_edge)
    return false;

  next_block = live_edge->dest;
  /* Create a new basic block on the edge.  */
  if (EDGE_COUNT (next_block->preds) == 2)
    {
      /* split_edge for a block with only one successor is meaningless.  */
      if (EDGE_COUNT (bb->succs) == 1)
	return false;

      /* If DF_LIVE doesn't exist, i.e. at -O1, just give up.  */
      if (!df_live)
	return false;

      basic_block old_dest = live_edge->dest;
      next_block = split_edge (live_edge);

      /* We create a new basic block.  Call df_grow_bb_info to make sure
	 all data structures are allocated.  */
      df_grow_bb_info (df_live);

      bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
		  df_get_live_in (old_dest));
      df_set_bb_dirty (next_block);

      /* We should not split more than once for a function.  */
      if (*split_p)
	return false;

      *split_p = true;
    }

  /* At this point we are committed to moving INSN, but let's try to
     move it as far as we can.  */
  do
    {
      if (MAY_HAVE_DEBUG_BIND_INSNS)
	{
	  FOR_BB_INSNS_REVERSE (bb, dinsn)
	    if (DEBUG_BIND_INSN_P (dinsn))
	      {
		df_ref use;
		FOR_EACH_INSN_USE (use, dinsn)
		  if (refers_to_regno_p (dregno, end_dregno,
					 DF_REF_REG (use), (rtx *) NULL))
		    dead_debug_add (debug, use, DF_REF_REGNO (use));
	      }
	    else if (dinsn == insn)
	      break;
	}
      live_out = df_get_live_out (bb);
      live_in = df_get_live_in (next_block);
      bb = next_block;

      /* Check whether BB uses DEST or clobbers DEST.  We need to add
	 INSN to BB if so.  Either way, DEST is no longer live on entry,
	 except for any part that overlaps SRC (next loop).  */
      if (!*split_p)
	{
	  bb_uses = &DF_LR_BB_INFO (bb)->use;
	  bb_defs = &DF_LR_BB_INFO (bb)->def;
	}
      if (df_live)
	{
	  for (i = dregno; i < end_dregno; i++)
	    {
	      if (*split_p
		  || REGNO_REG_SET_P (bb_uses, i)
		  || REGNO_REG_SET_P (bb_defs, i)
		  || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
		next_block = NULL;
	      CLEAR_REGNO_REG_SET (live_out, i);
	      CLEAR_REGNO_REG_SET (live_in, i);
	    }

	  /* Check whether BB clobbers SRC.  We need to add INSN to BB if so.
	     Either way, SRC is now live on entry.  */
	  for (i = sregno; i < end_sregno; i++)
	    {
	      if (*split_p
		  || REGNO_REG_SET_P (bb_defs, i)
		  || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
		next_block = NULL;
	      SET_REGNO_REG_SET (live_out, i);
	      SET_REGNO_REG_SET (live_in, i);
	    }
	}
      else
	{
	  /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
	     DF_REF_CONDITIONAL defs.  So if DF_LIVE doesn't exist, i.e.
	     at -O1, just give up searching NEXT_BLOCK.  */
	  next_block = NULL;
	  for (i = dregno; i < end_dregno; i++)
	    {
	      CLEAR_REGNO_REG_SET (live_out, i);
	      CLEAR_REGNO_REG_SET (live_in, i);
	    }

	  for (i = sregno; i < end_sregno; i++)
	    {
	      SET_REGNO_REG_SET (live_out, i);
	      SET_REGNO_REG_SET (live_in, i);
	    }
	}

      /* If we don't need to add the move to BB, look for a single
	 successor block.  */
      if (next_block)
	{
	  live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
	  if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
	    break;
	  next_block = live_edge->dest;
	}
    }
  while (next_block);

  /* For the new created basic block, there is no dataflow info at all.
     So skip the following dataflow update and check.  */
  if (!(*split_p))
    {
      /* BB now defines DEST.  It only uses the parts of DEST that overlap SRC
	 (next loop).  */
      for (i = dregno; i < end_dregno; i++)
	{
	  CLEAR_REGNO_REG_SET (bb_uses, i);
	  SET_REGNO_REG_SET (bb_defs, i);
	}

      /* BB now uses SRC.  */
      for (i = sregno; i < end_sregno; i++)
	SET_REGNO_REG_SET (bb_uses, i);
    }

  /* Insert debug temps for dead REGs used in subsequent debug insns.  */
  if (debug->used && !bitmap_empty_p (debug->used))
    FOR_EACH_INSN_DEF (def, insn)
      dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
			      DEBUG_TEMP_BEFORE_WITH_VALUE);

  rtx_insn *insn_copy = emit_insn_after (PATTERN (insn), bb_note (bb));
  /* Update the LABEL_NUSES count on any referenced labels. The ideal
     solution here would be to actually move the instruction instead
     of copying/deleting it as this loses some notations on the
     insn.  */
  mark_jump_label (PATTERN (insn), insn_copy, 0);
  delete_insn (insn);
  return true;
}

/* Look for register copies in the first block of the function, and move
   them down into successor blocks if the register is used only on one
   path.  This exposes more opportunities for shrink-wrapping.  These
   kinds of sets often occur when incoming argument registers are moved
   to call-saved registers because their values are live across one or
   more calls during the function.  */

static void
prepare_shrink_wrap (basic_block entry_block)
{
  rtx_insn *insn, *curr;
  rtx x;
  HARD_REG_SET uses, defs;
  df_ref def, use;
  bool split_p = false;
  unsigned int i;
  struct dead_debug_local debug;

  if (JUMP_P (BB_END (entry_block)))
    {
      /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
	 to sink the copies from parameter to callee saved register out of
	 entry block.  copyprop_hardreg_forward_bb_without_debug_insn is called
	 to release some dependences.  */
      copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
    }

  dead_debug_local_init (&debug, NULL, NULL);
  CLEAR_HARD_REG_SET (uses);
  CLEAR_HARD_REG_SET (defs);

  FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
    if (NONDEBUG_INSN_P (insn)
	&& !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
				       &split_p, &debug))
      {
	/* Add all defined registers to DEFs.  */
	FOR_EACH_INSN_DEF (def, insn)
	  {
	    x = DF_REF_REG (def);
	    if (REG_P (x) && HARD_REGISTER_P (x))
	      for (i = REGNO (x); i < END_REGNO (x); i++)
		SET_HARD_REG_BIT (defs, i);
	  }

	/* Add all used registers to USESs.  */
	FOR_EACH_INSN_USE (use, insn)
	  {
	    x = DF_REF_REG (use);
	    if (REG_P (x) && HARD_REGISTER_P (x))
	      for (i = REGNO (x); i < END_REGNO (x); i++)
		SET_HARD_REG_BIT (uses, i);
	  }
      }

  dead_debug_local_finish (&debug, NULL);
}

/* Return whether basic block PRO can get the prologue.  It cannot if it
   has incoming complex edges that need a prologue inserted (we make a new
   block for the prologue, so those edges would need to be redirected, which
   does not work).  It also cannot if there exist registers live on entry
   to PRO that are clobbered by the prologue.  */

static bool
can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, pro->preds)
    if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
	&& !dominated_by_p (CDI_DOMINATORS, e->src, pro))
      return false;

  HARD_REG_SET live;
  REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
  if (hard_reg_set_intersect_p (live, prologue_clobbered))
    return false;

  return true;
}

/* Return whether we can duplicate basic block BB for shrink wrapping.  We
   cannot if the block cannot be duplicated at all, or if any of its incoming
   edges are complex and come from a block that does not require a prologue
   (we cannot redirect such edges), or if the block is too big to copy.
   PRO is the basic block before which we would put the prologue, MAX_SIZE is
   the maximum size block we allow to be copied.  */

static bool
can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
{
  if (!can_duplicate_block_p (bb))
    return false;

  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
	&& !dominated_by_p (CDI_DOMINATORS, e->src, pro))
      return false;

  unsigned size = 0;

  rtx_insn *insn;
  FOR_BB_INSNS (bb, insn)
    if (NONDEBUG_INSN_P (insn))
      {
	size += get_attr_min_length (insn);
	if (size > max_size)
	  return false;
      }

  return true;
}

/* Do whatever needs to be done for exits that run without prologue.
   Sibcalls need nothing done.  Normal exits get a simple_return inserted.  */

static void
handle_simple_exit (edge e)
{

  if (e->flags & EDGE_SIBCALL)
    {
      /* Tell function.c to take no further action on this edge.  */
      e->flags |= EDGE_IGNORE;

      e->flags &= ~EDGE_FALLTHRU;
      emit_barrier_after_bb (e->src);
      return;
    }

  /* If the basic block the edge comes from has multiple successors,
     split the edge.  */
  if (EDGE_COUNT (e->src->succs) > 1)
    {
      basic_block old_bb = e->src;
      rtx_insn *end = BB_END (old_bb);
      rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
      basic_block new_bb = create_basic_block (note, note, old_bb);
      BB_COPY_PARTITION (new_bb, old_bb);
      BB_END (old_bb) = end;

      redirect_edge_succ (e, new_bb);
      new_bb->count = e->count ();
      e->flags |= EDGE_FALLTHRU;

      e = make_single_succ_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
    }

  e->flags &= ~EDGE_FALLTHRU;
  rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
					     BB_END (e->src));
  JUMP_LABEL (ret) = simple_return_rtx;
  emit_barrier_after_bb (e->src);

  if (dump_file)
    fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
	     INSN_UID (ret), e->src->index);
}

/* Try to perform a kind of shrink-wrapping, making sure the
   prologue/epilogue is emitted only around those parts of the
   function that require it.

   There will be exactly one prologue, and it will be executed either
   zero or one time, on any path.  Depending on where the prologue is
   placed, some of the basic blocks can be reached via both paths with
   and without a prologue.  Such blocks will be duplicated here, and the
   edges changed to match.

   Paths that go to the exit without going through the prologue will use
   a simple_return instead of the epilogue.  We maximize the number of
   those, making sure to only duplicate blocks that can be duplicated.
   If the prologue can then still be placed in multiple locations, we
   place it as early as possible.

   An example, where we duplicate blocks with control flow (legend:
   _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
   be taken to point down or to the right, to simplify the diagram; here,
   block 3 needs a prologue, the rest does not):


       B                 B
       |                 |
       2                 2
       |\                |\
       | 3    becomes    | 3
       |/                |  \
       4                 7   4
       |\                |\  |\
       | 5               | 8 | 5
       |/                |/  |/
       6                 9   6
       |                 |   |
       R                 S   R


   (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
   edge 2->3).

   Another example, where part of a loop is duplicated (again, bb 3 is
   the only block that needs a prologue):


       B   3<--              B       ->3<--
       |   |   |             |      |  |   |
       |   v   |   becomes   |      |  v   |
       2---4---              2---5--   4---
           |                     |     |
           R                     S     R


   (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).

   ENTRY_EDGE is the edge where the prologue will be placed, possibly
   changed by this function.  PROLOGUE_SEQ is the prologue we will insert.  */

void
try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
{
  /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
     no sense to shrink-wrap: then do not shrink-wrap!  */

  if (!SHRINK_WRAPPING_ENABLED)
    return;

  if (crtl->profile && !targetm.profile_before_prologue ())
    return;

  if (crtl->calls_eh_return)
    return;

  bool empty_prologue = true;
  for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
    if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
      {
	empty_prologue = false;
	break;
      }
  if (empty_prologue)
    return;

  /* Move some code down to expose more shrink-wrapping opportunities.  */

  basic_block entry = (*entry_edge)->dest;
  prepare_shrink_wrap (entry);

  if (dump_file)
    fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");

  /* Compute the registers set and used in the prologue.  */

  HARD_REG_SET prologue_clobbered, prologue_used;
  CLEAR_HARD_REG_SET (prologue_clobbered);
  CLEAR_HARD_REG_SET (prologue_used);
  for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
    if (NONDEBUG_INSN_P (insn))
      {
	HARD_REG_SET this_used;
	CLEAR_HARD_REG_SET (this_used);
	note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
	this_used &= ~prologue_clobbered;
	prologue_used |= this_used;
	note_stores (insn, record_hard_reg_sets, &prologue_clobbered);
      }
  CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
  if (frame_pointer_needed)
    CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);

  /* Find out what registers are set up by the prologue; any use of these
     cannot happen before the prologue.  */

  struct hard_reg_set_container set_up_by_prologue;
  CLEAR_HARD_REG_SET (set_up_by_prologue.set);
  add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
  add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
  if (frame_pointer_needed)
    add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
			 HARD_FRAME_POINTER_REGNUM);
  if (pic_offset_table_rtx 
      && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
    add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
			 PIC_OFFSET_TABLE_REGNUM);
  if (crtl->drap_reg)
    add_to_hard_reg_set (&set_up_by_prologue.set,
			 GET_MODE (crtl->drap_reg),
			 REGNO (crtl->drap_reg));
  if (targetm.set_up_by_prologue)
    targetm.set_up_by_prologue (&set_up_by_prologue);

  /* We will insert the prologue before the basic block PRO.  PRO should
     dominate all basic blocks that need the prologue to be executed
     before them.  First, make PRO the "tightest wrap" possible.  */

  calculate_dominance_info (CDI_DOMINATORS);

  basic_block pro = 0;

  basic_block bb;
  edge e;
  edge_iterator ei;
  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx_insn *insn;
      FOR_BB_INSNS (bb, insn)
	if (NONDEBUG_INSN_P (insn)
	    && requires_stack_frame_p (insn, prologue_used,
				       set_up_by_prologue.set))
	  {
	    if (dump_file)
	      fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
	    pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
	    break;
	  }
    }

  /* If nothing needs a prologue, just put it at the start.  This really
     shouldn't happen, but we cannot fix it here.  */

  if (pro == 0)
    {
      if (dump_file)
	fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
			   "putting it at the start.\n");
      pro = entry;
    }

  if (dump_file)
    fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
	     pro->index);

  /* Now see if we can put the prologue at the start of PRO.  Putting it
     there might require duplicating a block that cannot be duplicated,
     or in some cases we cannot insert the prologue there at all.  If PRO
     wont't do, try again with the immediate dominator of PRO, and so on.

     The blocks that need duplicating are those reachable from PRO but
     not dominated by it.  We keep in BB_WITH a bitmap of the blocks
     reachable from PRO that we already found, and in VEC a stack of
     those we still need to consider (to find successors).  */

  auto_bitmap bb_with;
  bitmap_set_bit (bb_with, pro->index);

  vec<basic_block> vec;
  vec.create (n_basic_blocks_for_fn (cfun));
  vec.quick_push (pro);

  unsigned max_grow_size = get_uncond_jump_length ();
  max_grow_size *= param_max_grow_copy_bb_insns;

  while (pro != entry)
    {
      while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
	{
	  pro = get_immediate_dominator (CDI_DOMINATORS, pro);

	  if (bitmap_set_bit (bb_with, pro->index))
	    vec.quick_push (pro);
	}

      if (vec.is_empty ())
	break;

      basic_block bb = vec.pop ();
      if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
	while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
	  {
	    gcc_assert (pro != entry);

	    pro = get_immediate_dominator (CDI_DOMINATORS, pro);

	    if (bitmap_set_bit (bb_with, pro->index))
	      vec.quick_push (pro);
	  }

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
	    && bitmap_set_bit (bb_with, e->dest->index))
	  vec.quick_push (e->dest);
    }

  if (dump_file)
    fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
	     pro->index);

  /* If we can move PRO back without having to duplicate more blocks, do so.
     We do this because putting the prologue earlier is better for scheduling.

     We can move back to a block PRE if every path from PRE will eventually
     need a prologue, that is, PRO is a post-dominator of PRE.  PRE needs
     to dominate every block reachable from itself.  We keep in BB_TMP a
     bitmap of the blocks reachable from PRE that we already found, and in
     VEC a stack of those we still need to consider.

     Any block reachable from PRE is also reachable from all predecessors
     of PRE, so if we find we need to move PRE back further we can leave
     everything not considered so far on the stack.  Any block dominated
     by PRE is also dominated by all other dominators of PRE, so anything
     found good for some PRE does not need to be reconsidered later.

     We don't need to update BB_WITH because none of the new blocks found
     can jump to a block that does not need the prologue.  */

  if (pro != entry)
    {
      calculate_dominance_info (CDI_POST_DOMINATORS);

      auto_bitmap bb_tmp;
      bitmap_copy (bb_tmp, bb_with);
      basic_block last_ok = pro;
      vec.truncate (0);

      while (pro != entry)
	{
	  basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
	  if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
	    break;

	  if (bitmap_set_bit (bb_tmp, pre->index))
	    vec.quick_push (pre);

	  bool ok = true;
	  while (!vec.is_empty ())
	    {
	      if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
		{
		  ok = false;
		  break;
		}

	      basic_block bb = vec.pop ();
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if (bitmap_set_bit (bb_tmp, e->dest->index))
		  vec.quick_push (e->dest);
	    }

	  if (ok && can_get_prologue (pre, prologue_clobbered))
	    last_ok = pre;

	  pro = pre;
	}

      pro = last_ok;

      free_dominance_info (CDI_POST_DOMINATORS);
    }

  vec.release ();

  if (dump_file)
    fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
	     pro->index);

  if (pro == entry)
    {
      free_dominance_info (CDI_DOMINATORS);
      return;
    }

  /* Compute what fraction of the frequency and count of the blocks that run
     both with and without prologue are for running with prologue.  This gives
     the correct answer for reducible flow graphs; for irreducible flow graphs
     our profile is messed up beyond repair anyway.  */

  profile_count num = profile_count::zero ();
  profile_count den = profile_count::zero ();

  FOR_EACH_EDGE (e, ei, pro->preds)
    if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
      {
	if (e->count ().initialized_p ())
	  num += e->count ();
	if (e->src->count.initialized_p ())
	  den += e->src->count;
      }

  /* All is okay, so do it.  */

  crtl->shrink_wrapped = true;
  if (dump_file)
    fprintf (dump_file, "Performing shrink-wrapping.\n");

  /* Copy the blocks that can run both with and without prologue.  The
     originals run with prologue, the copies without.  Store a pointer to
     the copy in the ->aux field of the original.  */

  FOR_EACH_BB_FN (bb, cfun)
    if (bitmap_bit_p (bb_with, bb->index)
	&& !dominated_by_p (CDI_DOMINATORS, bb, pro))
      {
	basic_block dup = duplicate_block (bb, 0, 0);

	bb->aux = dup;

	if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
	  emit_barrier_after_bb (dup);

	if (EDGE_COUNT (dup->succs) == 0)
	  emit_barrier_after_bb (dup);

	if (dump_file)
	  fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
	
	if (num == profile_count::zero () || den.nonzero_p ())
	  bb->count = bb->count.apply_scale (num, den);
	dup->count -= bb->count;
      }

  /* Now change the edges to point to the copies, where appropriate.  */

  FOR_EACH_BB_FN (bb, cfun)
    if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
      {
	basic_block src = bb;
	if (bitmap_bit_p (bb_with, bb->index))
	  src = (basic_block) bb->aux;

	FOR_EACH_EDGE (e, ei, src->succs)
	  {
	    if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
	      continue;

	    if (bitmap_bit_p (bb_with, e->dest->index)
		&& !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
	      {
		if (dump_file)
		  fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
			   e->src->index, e->dest->index,
			   ((basic_block) e->dest->aux)->index);
		redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
	      }
	    else if (e->flags & EDGE_FALLTHRU
		     && bitmap_bit_p (bb_with, bb->index))
	      force_nonfallthru (e);
	  }
      }

  /* Also redirect the function entry edge if necessary.  */

  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
    if (bitmap_bit_p (bb_with, e->dest->index)
	&& !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
      {
	basic_block split_bb = split_edge (e);
	e = single_succ_edge (split_bb);
	redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
      }

  /* Make a simple_return for those exits that run without prologue.  */

  FOR_EACH_BB_REVERSE_FN (bb, cfun)
    if (!bitmap_bit_p (bb_with, bb->index))
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
	  handle_simple_exit (e);

  /* Finally, we want a single edge to put the prologue on.  Make a new
     block before the PRO block; the edge beteen them is the edge we want.
     Then redirect those edges into PRO that come from blocks without the
     prologue, to point to the new block instead.  The new prologue block
     is put at the end of the insn chain.  */

  basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
  BB_COPY_PARTITION (new_bb, pro);
  new_bb->count = profile_count::zero ();
  if (dump_file)
    fprintf (dump_file, "Made prologue block %d\n", new_bb->index);

  for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
    {
      if (bitmap_bit_p (bb_with, e->src->index)
	  || dominated_by_p (CDI_DOMINATORS, e->src, pro))
	{
	  ei_next (&ei);
	  continue;
	}

      new_bb->count += e->count ();

      redirect_edge_and_branch_force (e, new_bb);
      if (dump_file)
	fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
    }

  *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
  force_nonfallthru (*entry_edge);

  free_dominance_info (CDI_DOMINATORS);
}

/* Separate shrink-wrapping

   Instead of putting all of the prologue and epilogue in one spot, we
   can put parts of it in places where those components are executed less
   frequently.  The following code does this, for prologue and epilogue
   components that can be put in more than one location, and where those
   components can be executed more than once (the epilogue component will
   always be executed before the prologue component is executed a second
   time).

   What exactly is a component is target-dependent.  The more usual
   components are simple saves/restores to/from the frame of callee-saved
   registers.  This code treats components abstractly (as an sbitmap),
   letting the target handle all details.

   Prologue components are placed in such a way that for every component
   the prologue is executed as infrequently as possible.  We do this by
   walking the dominator tree, comparing the cost of placing a prologue
   component before a block to the sum of costs determined for all subtrees
   of that block.

   From this placement, we then determine for each component all blocks
   where at least one of this block's dominators (including itself) will
   get a prologue inserted.  That then is how the components are placed.
   We could place the epilogue components a bit smarter (we can save a
   bit of code size sometimes); this is a possible future improvement.

   Prologues and epilogues are preferably placed into a block, either at
   the beginning or end of it, if it is needed for all predecessor resp.
   successor edges; or placed on the edge otherwise.

   If the placement of any prologue/epilogue leads to a situation we cannot
   handle (for example, an abnormal edge would need to be split, or some
   targets want to use some specific registers that may not be available
   where we want to put them), separate shrink-wrapping for the components
   in that prologue/epilogue is aborted.  */


/* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
   label LABEL.  */
static void
dump_components (const char *label, sbitmap components)
{
  if (bitmap_empty_p (components))
    return;

  fprintf (dump_file, " [%s", label);

  for (unsigned int j = 0; j < components->n_bits; j++)
    if (bitmap_bit_p (components, j))
      fprintf (dump_file, " %u", j);

  fprintf (dump_file, "]");
}

/* The data we collect for each bb.  */
struct sw {
  /* What components does this BB need?  */
  sbitmap needs_components;

  /* What components does this BB have?  This is the main decision this
     pass makes.  */
  sbitmap has_components;

  /* The components for which we placed code at the start of the BB (instead
     of on all incoming edges).  */
  sbitmap head_components;

  /* The components for which we placed code at the end of the BB (instead
     of on all outgoing edges).  */
  sbitmap tail_components;

  /* The frequency of executing the prologue for this BB, if a prologue is
     placed on this BB.  This is a pessimistic estimate (no prologue is
     needed for edges from blocks that have the component under consideration
     active already).  */
  gcov_type own_cost;

  /* The frequency of executing the prologue for this BB and all BBs
     dominated by it.  */
  gcov_type total_cost;
};

/* A helper function for accessing the pass-specific info.  */
static inline struct sw *
SW (basic_block bb)
{
  gcc_assert (bb->aux);
  return (struct sw *) bb->aux;
}

/* Create the pass-specific data structures for separately shrink-wrapping
   with components COMPONENTS.  */
static void
init_separate_shrink_wrap (sbitmap components)
{
  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    {
      bb->aux = xcalloc (1, sizeof (struct sw));

      SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);

      /* Mark all basic blocks without successor as needing all components.
	 This avoids problems in at least cfgcleanup, sel-sched, and
	 regrename (largely to do with all paths to such a block still
	 needing the same dwarf CFI info).  */
      if (EDGE_COUNT (bb->succs) == 0)
	bitmap_copy (SW (bb)->needs_components, components);

      if (dump_file)
	{
	  fprintf (dump_file, "bb %d components:", bb->index);
	  dump_components ("has", SW (bb)->needs_components);
	  fprintf (dump_file, "\n");
	}

      SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
      SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
      SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
      bitmap_clear (SW (bb)->has_components);
    }
}

/* Destroy the pass-specific data.  */
static void
fini_separate_shrink_wrap (void)
{
  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    if (bb->aux)
      {
	sbitmap_free (SW (bb)->needs_components);
	sbitmap_free (SW (bb)->has_components);
	sbitmap_free (SW (bb)->head_components);
	sbitmap_free (SW (bb)->tail_components);
	free (bb->aux);
	bb->aux = 0;
      }
}

/* Place the prologue for component WHICH, in the basic blocks dominated
   by HEAD.  Do a DFS over the dominator tree, and set bit WHICH in the
   HAS_COMPONENTS of a block if either the block has that bit set in
   NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
   dominator subtrees separately.  */
static void
place_prologue_for_one_component (unsigned int which, basic_block head)
{
  /* The block we are currently dealing with.  */
  basic_block bb = head;
  /* Is this the first time we visit this block, i.e. have we just gone
     down the tree.  */
  bool first_visit = true;

  /* Walk the dominator tree, visit one block per iteration of this loop.
     Each basic block is visited twice: once before visiting any children
     of the block, and once after visiting all of them (leaf nodes are
     visited only once).  As an optimization, we do not visit subtrees
     that can no longer influence the prologue placement.  */
  for (;;)
    {
      /* First visit of a block: set the (children) cost accumulator to zero;
	 if the block does not have the component itself, walk down.  */
      if (first_visit)
	{
	  /* Initialize the cost.  The cost is the block execution frequency
	     that does not come from backedges.  Calculating this by simply
	     adding the cost of all edges that aren't backedges does not
	     work: this does not always add up to the block frequency at
	     all, and even if it does, rounding error makes for bad
	     decisions.  */
	  SW (bb)->own_cost = bb->count.to_frequency (cfun);

	  edge e;
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
	      {
		if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
		  SW (bb)->own_cost -= EDGE_FREQUENCY (e);
		else
		  SW (bb)->own_cost = 0;
	      }

	  SW (bb)->total_cost = 0;

	  if (!bitmap_bit_p (SW (bb)->needs_components, which)
	      && first_dom_son (CDI_DOMINATORS, bb))
	    {
	      bb = first_dom_son (CDI_DOMINATORS, bb);
	      continue;
	    }
	}

      /* If this block does need the component itself, or it is cheaper to
	 put the prologue here than in all the descendants that need it,
	 mark it so.  If this block's immediate post-dominator is dominated
	 by this block, and that needs the prologue, we can put it on this
	 block as well (earlier is better).  */
      if (bitmap_bit_p (SW (bb)->needs_components, which)
	  || SW (bb)->total_cost > SW (bb)->own_cost)
	{
	  SW (bb)->total_cost = SW (bb)->own_cost;
	  bitmap_set_bit (SW (bb)->has_components, which);
	}
      else
	{
	  basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
	  if (dominated_by_p (CDI_DOMINATORS, kid, bb)
	      && bitmap_bit_p (SW (kid)->has_components, which))
	    {
	      SW (bb)->total_cost = SW (bb)->own_cost;
	      bitmap_set_bit (SW (bb)->has_components, which);
	    }
	}

      /* We are back where we started, so we are done now.  */
      if (bb == head)
	return;

      /* We now know the cost of the subtree rooted at the current block.
	 Accumulate this cost in the parent.  */
      basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
      SW (parent)->total_cost += SW (bb)->total_cost;

      /* Don't walk the tree down unless necessary.  */
      if (next_dom_son (CDI_DOMINATORS, bb)
          && SW (parent)->total_cost <= SW (parent)->own_cost)
	{
	  bb = next_dom_son (CDI_DOMINATORS, bb);
	  first_visit = true;
	}
      else
	{
	  bb = parent;
	  first_visit = false;
	}
    }
}

/* Set HAS_COMPONENTS in every block to the maximum it can be set to without
   setting it on any path from entry to exit where it was not already set
   somewhere (or, for blocks that have no path to the exit, consider only
   paths from the entry to the block itself).  Return whether any changes
   were made to some HAS_COMPONENTS.  */
static bool
spread_components (sbitmap components)
{
  basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
  basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun);

  /* A stack of all blocks left to consider, and a bitmap of all blocks
     on that stack.  */
  vec<basic_block> todo;
  todo.create (n_basic_blocks_for_fn (cfun));
  auto_bitmap seen;

  auto_sbitmap old (SBITMAP_SIZE (components));

  /* Find for every block the components that are *not* needed on some path
     from the entry to that block.  Do this with a flood fill from the entry
     block.  Every block can be visited at most as often as the number of
     components (plus one), and usually much less often.  */

  if (dump_file)
    fprintf (dump_file, "Spreading down...\n");

  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    bitmap_clear (SW (bb)->head_components);

  bitmap_copy (SW (entry_block)->head_components, components);

  edge e;
  edge_iterator ei;

  todo.quick_push (single_succ (entry_block));
  bitmap_set_bit (seen, single_succ (entry_block)->index);
  while (!todo.is_empty ())
    {
      bb = todo.pop ();

      bitmap_copy (old, SW (bb)->head_components);

      FOR_EACH_EDGE (e, ei, bb->preds)
	bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
		    SW (e->src)->head_components);

      bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
			SW (bb)->has_components);

      if (!bitmap_equal_p (old, SW (bb)->head_components))
	FOR_EACH_EDGE (e, ei, bb->succs)
	  if (bitmap_set_bit (seen, e->dest->index))
	    todo.quick_push (e->dest);

      bitmap_clear_bit (seen, bb->index);
    }

  /* Find for every block the components that are *not* needed on some reverse
     path from the exit to that block.  */

  if (dump_file)
    fprintf (dump_file, "Spreading up...\n");

  /* First, mark all blocks not reachable from the exit block as not needing
     any component on any path to the exit.  Mark everything, and then clear
     again by a flood fill.  */

  FOR_ALL_BB_FN (bb, cfun)
    bitmap_copy (SW (bb)->tail_components, components);

  FOR_EACH_EDGE (e, ei, exit_block->preds)
    {
      todo.quick_push (e->src);
      bitmap_set_bit (seen, e->src->index);
    }

  while (!todo.is_empty ())
    {
      bb = todo.pop ();

      if (!bitmap_empty_p (SW (bb)->tail_components))
	FOR_EACH_EDGE (e, ei, bb->preds)
	  if (bitmap_set_bit (seen, e->src->index))
	    todo.quick_push (e->src);

      bitmap_clear (SW (bb)->tail_components);

      bitmap_clear_bit (seen, bb->index);
    }

  /* And then, flood fill backwards to find for every block the components
     not needed on some path to the exit.  */

  bitmap_copy (SW (exit_block)->tail_components, components);

  FOR_EACH_EDGE (e, ei, exit_block->preds)
    {
      todo.quick_push (e->src);
      bitmap_set_bit (seen, e->src->index);
    }

  while (!todo.is_empty ())
    {
      bb = todo.pop ();

      bitmap_copy (old, SW (bb)->tail_components);

      FOR_EACH_EDGE (e, ei, bb->succs)
	bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
		    SW (e->dest)->tail_components);

      bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
			SW (bb)->has_components);

      if (!bitmap_equal_p (old, SW (bb)->tail_components))
	FOR_EACH_EDGE (e, ei, bb->preds)
	  if (bitmap_set_bit (seen, e->src->index))
	    todo.quick_push (e->src);

      bitmap_clear_bit (seen, bb->index);
    }

  todo.release ();

  /* Finally, mark everything not needed both forwards and backwards.  */

  bool did_changes = false;

  FOR_EACH_BB_FN (bb, cfun)
    {
      bitmap_copy (old, SW (bb)->has_components);

      bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
		  SW (bb)->tail_components);
      bitmap_and_compl (SW (bb)->has_components, components,
			SW (bb)->head_components);

      if (!did_changes && !bitmap_equal_p (old, SW (bb)->has_components))
	did_changes = true;
    }

  FOR_ALL_BB_FN (bb, cfun)
    {
      if (dump_file)
	{
	  fprintf (dump_file, "bb %d components:", bb->index);
	  dump_components ("has", SW (bb)->has_components);
	  fprintf (dump_file, "\n");
	}
    }

  return did_changes;
}

/* If we cannot handle placing some component's prologues or epilogues where
   we decided we should place them, unmark that component in COMPONENTS so
   that it is not wrapped separately.  */
static void
disqualify_problematic_components (sbitmap components)
{
  auto_sbitmap pro (SBITMAP_SIZE (components));
  auto_sbitmap epi (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  /* Find which components we want pro/epilogues for here.  */
	  bitmap_and_compl (epi, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and_compl (pro, SW (e->dest)->has_components,
			    SW (e->src)->has_components);

	  /* Ask the target what it thinks about things.  */
	  if (!bitmap_empty_p (epi))
	    targetm.shrink_wrap.disqualify_components (components, e, epi,
						       false);
	  if (!bitmap_empty_p (pro))
	    targetm.shrink_wrap.disqualify_components (components, e, pro,
						       true);

	  /* If this edge doesn't need splitting, we're fine.  */
	  if (single_pred_p (e->dest)
	      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
	    continue;

	  /* If the edge can be split, that is fine too.  */
	  if ((e->flags & EDGE_ABNORMAL) == 0)
	    continue;

	  /* We also can handle sibcalls.  */
	  if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
	    {
	      gcc_assert (e->flags & EDGE_SIBCALL);
	      continue;
	    }

	  /* Remove from consideration those components we would need
	     pro/epilogues for on edges where we cannot insert them.  */
	  bitmap_and_compl (components, components, epi);
	  bitmap_and_compl (components, components, pro);

	  if (dump_file && !bitmap_subset_p (epi, components))
	    {
	      fprintf (dump_file, "  BAD epi %d->%d", e->src->index,
		       e->dest->index);
	      if (e->flags & EDGE_EH)
		fprintf (dump_file, " for EH");
	      dump_components ("epi", epi);
	      fprintf (dump_file, "\n");
	    }

	  if (dump_file && !bitmap_subset_p (pro, components))
	    {
	      fprintf (dump_file, "  BAD pro %d->%d", e->src->index,
		       e->dest->index);
	      if (e->flags & EDGE_EH)
		fprintf (dump_file, " for EH");
	      dump_components ("pro", pro);
	      fprintf (dump_file, "\n");
	    }
	}
    }
}

/* Place code for prologues and epilogues for COMPONENTS where we can put
   that code at the start of basic blocks.  */
static void
emit_common_heads_for_components (sbitmap components)
{
  auto_sbitmap pro (SBITMAP_SIZE (components));
  auto_sbitmap epi (SBITMAP_SIZE (components));
  auto_sbitmap tmp (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    bitmap_clear (SW (bb)->head_components);

  FOR_EACH_BB_FN (bb, cfun)
    {
      /* Find which prologue resp. epilogue components are needed for all
	 predecessor edges to this block.  */

      /* First, select all possible components.  */
      bitmap_copy (epi, components);
      bitmap_copy (pro, components);

      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  if (e->flags & EDGE_ABNORMAL)
	    {
	      bitmap_clear (epi);
	      bitmap_clear (pro);
	      break;
	    }

	  /* Deselect those epilogue components that should not be inserted
	     for this edge.  */
	  bitmap_and_compl (tmp, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and (epi, epi, tmp);

	  /* Similar, for the prologue.  */
	  bitmap_and_compl (tmp, SW (e->dest)->has_components,
			    SW (e->src)->has_components);
	  bitmap_and (pro, pro, tmp);
	}

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "  bb %d", bb->index);

      if (dump_file && !bitmap_empty_p (epi))
	dump_components ("epi", epi);
      if (dump_file && !bitmap_empty_p (pro))
	dump_components ("pro", pro);

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "\n");

      /* Place code after the BB note.  */
      if (!bitmap_empty_p (pro))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_prologue_components (pro);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_prologue_seq (seq);

	  emit_insn_after (seq, bb_note (bb));

	  bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
	}

      if (!bitmap_empty_p (epi))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_epilogue_components (epi);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_epilogue_seq (seq);

	  emit_insn_after (seq, bb_note (bb));

	  bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
	}
    }
}

/* Place code for prologues and epilogues for COMPONENTS where we can put
   that code at the end of basic blocks.  */
static void
emit_common_tails_for_components (sbitmap components)
{
  auto_sbitmap pro (SBITMAP_SIZE (components));
  auto_sbitmap epi (SBITMAP_SIZE (components));
  auto_sbitmap tmp (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    bitmap_clear (SW (bb)->tail_components);

  FOR_EACH_BB_FN (bb, cfun)
    {
      /* Find which prologue resp. epilogue components are needed for all
	 successor edges from this block.  */
      if (EDGE_COUNT (bb->succs) == 0)
	continue;

      /* First, select all possible components.  */
      bitmap_copy (epi, components);
      bitmap_copy (pro, components);

      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if (e->flags & EDGE_ABNORMAL)
	    {
	      bitmap_clear (epi);
	      bitmap_clear (pro);
	      break;
	    }

	  /* Deselect those epilogue components that should not be inserted
	     for this edge, and also those that are already put at the head
	     of the successor block.  */
	  bitmap_and_compl (tmp, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
	  bitmap_and (epi, epi, tmp);

	  /* Similarly, for the prologue.  */
	  bitmap_and_compl (tmp, SW (e->dest)->has_components,
			    SW (e->src)->has_components);
	  bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
	  bitmap_and (pro, pro, tmp);
	}

      /* If the last insn of this block is a control flow insn we cannot
	 put anything after it.  We can put our code before it instead,
	 but only if that jump insn is a simple jump.  */
      rtx_insn *last_insn = BB_END (bb);
      if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
	{
	  bitmap_clear (epi);
	  bitmap_clear (pro);
	}

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "  bb %d", bb->index);

      if (dump_file && !bitmap_empty_p (epi))
	dump_components ("epi", epi);
      if (dump_file && !bitmap_empty_p (pro))
	dump_components ("pro", pro);

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "\n");

      /* Put the code at the end of the BB, but before any final jump.  */
      if (!bitmap_empty_p (epi))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_epilogue_components (epi);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_epilogue_seq (seq);

	  if (control_flow_insn_p (last_insn))
	    emit_insn_before (seq, last_insn);
	  else
	    emit_insn_after (seq, last_insn);

	  bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
	}

      if (!bitmap_empty_p (pro))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_prologue_components (pro);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_prologue_seq (seq);

	  if (control_flow_insn_p (last_insn))
	    emit_insn_before (seq, last_insn);
	  else
	    emit_insn_after (seq, last_insn);

	  bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
	}
    }
}

/* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
   placed them inside blocks directly.  */
static void
insert_prologue_epilogue_for_components (sbitmap components)
{
  auto_sbitmap pro (SBITMAP_SIZE (components));
  auto_sbitmap epi (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      if (!bb->aux)
	continue;

      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  /* Find which pro/epilogue components are needed on this edge.  */
	  bitmap_and_compl (epi, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and_compl (pro, SW (e->dest)->has_components,
			    SW (e->src)->has_components);
	  bitmap_and (epi, epi, components);
	  bitmap_and (pro, pro, components);

	  /* Deselect those we already have put at the head or tail of the
	     edge's dest resp. src.  */
	  bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
	  bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
	  bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
	  bitmap_and_compl (pro, pro, SW (e->src)->tail_components);

	  if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "  %d->%d", e->src->index,
			   e->dest->index);
		  dump_components ("epi", epi);
		  dump_components ("pro", pro);
		  if (e->flags & EDGE_SIBCALL)
		    fprintf (dump_file, "  (SIBCALL)");
		  else if (e->flags & EDGE_ABNORMAL)
		    fprintf (dump_file, "  (ABNORMAL)");
		  fprintf (dump_file, "\n");
		}

	      /* Put the epilogue components in place.  */
	      start_sequence ();
	      targetm.shrink_wrap.emit_epilogue_components (epi);
	      rtx_insn *seq = get_insns ();
	      end_sequence ();
	      record_epilogue_seq (seq);

	      if (e->flags & EDGE_SIBCALL)
		{
		  gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));

		  rtx_insn *insn = BB_END (e->src);
		  gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
		  emit_insn_before (seq, insn);
		}
	      else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
		{
		  gcc_assert (e->flags & EDGE_FALLTHRU);
		  basic_block new_bb = split_edge (e);
		  emit_insn_after (seq, BB_END (new_bb));
		}
	      else
		insert_insn_on_edge (seq, e);

	      /* Put the prologue components in place.  */
	      start_sequence ();
	      targetm.shrink_wrap.emit_prologue_components (pro);
	      seq = get_insns ();
	      end_sequence ();
	      record_prologue_seq (seq);

	      insert_insn_on_edge (seq, e);
	    }
	}
    }

  commit_edge_insertions ();
}

/* The main entry point to this subpass.  FIRST_BB is where the prologue
   would be normally put.  */
void
try_shrink_wrapping_separate (basic_block first_bb)
{
  if (HAVE_cc0)
    return;

  if (!(SHRINK_WRAPPING_ENABLED
	&& flag_shrink_wrap_separate
	&& optimize_function_for_speed_p (cfun)
	&& targetm.shrink_wrap.get_separate_components))
    return;

  /* We don't handle "strange" functions.  */
  if (cfun->calls_alloca
      || cfun->calls_setjmp
      || cfun->can_throw_non_call_exceptions
      || crtl->calls_eh_return
      || crtl->has_nonlocal_goto
      || crtl->saves_all_registers)
    return;

  /* Ask the target what components there are.  If it returns NULL, don't
     do anything.  */
  sbitmap components = targetm.shrink_wrap.get_separate_components ();
  if (!components)
    return;

  /* We need LIVE info, not defining anything in the entry block and not
     using anything in the exit block.  A block then needs a component if
     the register for that component is in the IN or GEN or KILL set for
     that block.  */
  df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
  df_update_entry_exit_and_calls ();
  df_live_add_problem ();
  df_live_set_all_dirty ();
  df_analyze ();

  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);

  init_separate_shrink_wrap (components);

  sbitmap_iterator sbi;
  unsigned int j;
  EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
    place_prologue_for_one_component (j, first_bb);

  /* Try to minimize the number of saves and restores.  Do this as long as
     it changes anything.  This does not iterate more than a few times.  */
  int spread_times = 0;
  while (spread_components (components))
    {
      spread_times++;

      if (dump_file)
	fprintf (dump_file, "Now spread %d times.\n", spread_times);
    }

  disqualify_problematic_components (components);

  /* Don't separately shrink-wrap anything where the "main" prologue will
     go; the target code can often optimize things if it is presented with
     all components together (say, if it generates store-multiple insns).  */
  bitmap_and_compl (components, components, SW (first_bb)->has_components);

  if (bitmap_empty_p (components))
    {
      if (dump_file)
	fprintf (dump_file, "Not wrapping anything separately.\n");
    }
  else
    {
      if (dump_file)
	{
	  fprintf (dump_file, "The components we wrap separately are");
	  dump_components ("sep", components);
	  fprintf (dump_file, "\n");

	  fprintf (dump_file, "... Inserting common heads...\n");
	}

      emit_common_heads_for_components (components);

      if (dump_file)
	fprintf (dump_file, "... Inserting common tails...\n");

      emit_common_tails_for_components (components);

      if (dump_file)
	fprintf (dump_file, "... Inserting the more difficult ones...\n");

      insert_prologue_epilogue_for_components (components);

      if (dump_file)
	fprintf (dump_file, "... Done.\n");

      targetm.shrink_wrap.set_handled_components (components);

      crtl->shrink_wrapped_separate = true;
    }

  fini_separate_shrink_wrap ();

  sbitmap_free (components);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);

  /* All done.  */
  df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
  df_update_entry_exit_and_calls ();
  df_live_set_all_dirty ();
  df_analyze ();
}