Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
/* SSA Dominator optimizations for trees
   Copyright (C) 2001-2020 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "cfganal.h"
#include "cfgloop.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "tree-inline.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "domwalk.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-threadupdate.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "tree-ssa-dom.h"
#include "gimplify.h"
#include "tree-cfgcleanup.h"
#include "dbgcnt.h"
#include "alloc-pool.h"
#include "tree-vrp.h"
#include "vr-values.h"
#include "gimple-ssa-evrp-analyze.h"
#include "alias.h"

/* This file implements optimizations on the dominator tree.  */

/* Structure for recording edge equivalences.

   Computing and storing the edge equivalences instead of creating
   them on-demand can save significant amounts of time, particularly
   for pathological cases involving switch statements.

   These structures live for a single iteration of the dominator
   optimizer in the edge's AUX field.  At the end of an iteration we
   free each of these structures.  */
class edge_info
{
 public:
  typedef std::pair <tree, tree> equiv_pair;
  edge_info (edge);
  ~edge_info ();

  /* Record a simple LHS = RHS equivalence.  This may trigger
     calls to derive_equivalences.  */
  void record_simple_equiv (tree, tree);

  /* If traversing this edge creates simple equivalences, we store
     them as LHS/RHS pairs within this vector.  */
  vec<equiv_pair> simple_equivalences;

  /* Traversing an edge may also indicate one or more particular conditions
     are true or false.  */
  vec<cond_equivalence> cond_equivalences;

 private:
  /* Derive equivalences by walking the use-def chains.  */
  void derive_equivalences (tree, tree, int);
};

/* Track whether or not we have changed the control flow graph.  */
static bool cfg_altered;

/* Bitmap of blocks that have had EH statements cleaned.  We should
   remove their dead edges eventually.  */
static bitmap need_eh_cleanup;
static vec<gimple *> need_noreturn_fixup;

/* Statistics for dominator optimizations.  */
struct opt_stats_d
{
  long num_stmts;
  long num_exprs_considered;
  long num_re;
  long num_const_prop;
  long num_copy_prop;
};

static struct opt_stats_d opt_stats;

/* Local functions.  */
static void record_equality (tree, tree, class const_and_copies *);
static void record_equivalences_from_phis (basic_block);
static void record_equivalences_from_incoming_edge (basic_block,
						    class const_and_copies *,
						    class avail_exprs_stack *);
static void eliminate_redundant_computations (gimple_stmt_iterator *,
					      class const_and_copies *,
					      class avail_exprs_stack *);
static void record_equivalences_from_stmt (gimple *, int,
					   class avail_exprs_stack *);
static void dump_dominator_optimization_stats (FILE *file,
					       hash_table<expr_elt_hasher> *);

/* Constructor for EDGE_INFO.  An EDGE_INFO instance is always
   associated with an edge E.  */

edge_info::edge_info (edge e)
{
  /* Free the old one associated with E, if it exists and
     associate our new object with E.  */
  free_dom_edge_info (e);
  e->aux = this;

  /* And initialize the embedded vectors.  */
  simple_equivalences = vNULL;
  cond_equivalences = vNULL;
}

/* Destructor just needs to release the vectors.  */

edge_info::~edge_info (void)
{
  this->cond_equivalences.release ();
  this->simple_equivalences.release ();
}

/* NAME is known to have the value VALUE, which must be a constant.

   Walk through its use-def chain to see if there are other equivalences
   we might be able to derive.

   RECURSION_LIMIT controls how far back we recurse through the use-def
   chains.  */

void
edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
{
  if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
    return;

  /* This records the equivalence for the toplevel object.  Do
     this before checking the recursion limit.  */
  simple_equivalences.safe_push (equiv_pair (name, value));

  /* Limit how far up the use-def chains we are willing to walk.  */
  if (recursion_limit == 0)
    return;

  /* We can walk up the use-def chains to potentially find more
     equivalences.  */
  gimple *def_stmt = SSA_NAME_DEF_STMT (name);
  if (is_gimple_assign (def_stmt))
    {
      enum tree_code code = gimple_assign_rhs_code (def_stmt);
      switch (code)
	{
	/* If the result of an OR is zero, then its operands are, too.  */
	case BIT_IOR_EXPR:
	  if (integer_zerop (value))
	    {
	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
	      tree rhs2 = gimple_assign_rhs2 (def_stmt);

	      value = build_zero_cst (TREE_TYPE (rhs1));
	      derive_equivalences (rhs1, value, recursion_limit - 1);
	      value = build_zero_cst (TREE_TYPE (rhs2));
	      derive_equivalences (rhs2, value, recursion_limit - 1);
	    }
	  break;

	/* If the result of an AND is nonzero, then its operands are, too.  */
	case BIT_AND_EXPR:
	  if (!integer_zerop (value))
	    {
	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
	      tree rhs2 = gimple_assign_rhs2 (def_stmt);

	      /* If either operand has a boolean range, then we
		 know its value must be one, otherwise we just know it
		 is nonzero.  The former is clearly useful, I haven't
		 seen cases where the latter is helpful yet.  */
	      if (TREE_CODE (rhs1) == SSA_NAME)
		{
		  if (ssa_name_has_boolean_range (rhs1))
		    {
		      value = build_one_cst (TREE_TYPE (rhs1));
		      derive_equivalences (rhs1, value, recursion_limit - 1);
		    }
		}
	      if (TREE_CODE (rhs2) == SSA_NAME)
		{
		  if (ssa_name_has_boolean_range (rhs2))
		    {
		      value = build_one_cst (TREE_TYPE (rhs2));
		      derive_equivalences (rhs2, value, recursion_limit - 1);
		    }
		}
	    }
	  break;

	/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
	   set via a widening type conversion, then we may be able to record
	   additional equivalences.  */
	case NOP_EXPR:
	case CONVERT_EXPR:
	  {
	    tree rhs = gimple_assign_rhs1 (def_stmt);
	    tree rhs_type = TREE_TYPE (rhs);
	    if (INTEGRAL_TYPE_P (rhs_type)
		&& (TYPE_PRECISION (TREE_TYPE (name))
		    >= TYPE_PRECISION (rhs_type))
		&& int_fits_type_p (value, rhs_type))
	      derive_equivalences (rhs,
				   fold_convert (rhs_type, value),
				   recursion_limit - 1);
	    break;
	  }

	/* We can invert the operation of these codes trivially if
	   one of the RHS operands is a constant to produce a known
	   value for the other RHS operand.  */
	case POINTER_PLUS_EXPR:
	case PLUS_EXPR:
	  {
	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
	    tree rhs2 = gimple_assign_rhs2 (def_stmt);

	    /* If either argument is a constant, then we can compute
	       a constant value for the nonconstant argument.  */
	    if (TREE_CODE (rhs1) == INTEGER_CST
		&& TREE_CODE (rhs2) == SSA_NAME)
	      derive_equivalences (rhs2,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						value, rhs1),
				   recursion_limit - 1);
	    else if (TREE_CODE (rhs2) == INTEGER_CST
		     && TREE_CODE (rhs1) == SSA_NAME)
	      derive_equivalences (rhs1,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						value, rhs2),
				   recursion_limit - 1);
	    break;
	  }

	/* If one of the operands is a constant, then we can compute
	   the value of the other operand.  If both operands are
	   SSA_NAMEs, then they must be equal if the result is zero.  */
	case MINUS_EXPR:
	  {
	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
	    tree rhs2 = gimple_assign_rhs2 (def_stmt);

	    /* If either argument is a constant, then we can compute
	       a constant value for the nonconstant argument.  */
	    if (TREE_CODE (rhs1) == INTEGER_CST
		&& TREE_CODE (rhs2) == SSA_NAME)
	      derive_equivalences (rhs2,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						rhs1, value),
				   recursion_limit - 1);
	    else if (TREE_CODE (rhs2) == INTEGER_CST
		     && TREE_CODE (rhs1) == SSA_NAME)
	      derive_equivalences (rhs1,
				   fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
						value, rhs2),
				   recursion_limit - 1);
	    else if (integer_zerop (value))
	      {
		tree cond = build2 (EQ_EXPR, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		record_conditions (&this->cond_equivalences, cond, inverted);
	      }
	    break;
	  }

	case EQ_EXPR:
	case NE_EXPR:
	  {
	    if ((code == EQ_EXPR && integer_onep (value))
		|| (code == NE_EXPR && integer_zerop (value)))
	      {
		tree rhs1 = gimple_assign_rhs1 (def_stmt);
		tree rhs2 = gimple_assign_rhs2 (def_stmt);

		/* If either argument is a constant, then record the
		   other argument as being the same as that constant.

		   If neither operand is a constant, then we have a
		   conditional name == name equivalence.  */
		if (TREE_CODE (rhs1) == INTEGER_CST)
		  derive_equivalences (rhs2, rhs1, recursion_limit - 1);
		else if (TREE_CODE (rhs2) == INTEGER_CST)
		  derive_equivalences (rhs1, rhs2, recursion_limit - 1);
	      }
	    else
	      {
		tree cond = build2 (code, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		if (integer_zerop (value))
		  std::swap (cond, inverted);
		record_conditions (&this->cond_equivalences, cond, inverted);
	      }
	    break;
	  }

	/* For BIT_NOT and NEGATE, we can just apply the operation to the
	   VALUE to get the new equivalence.  It will always be a constant
	   so we can recurse.  */
	case BIT_NOT_EXPR:
	case NEGATE_EXPR:
	  {
	    tree rhs = gimple_assign_rhs1 (def_stmt);
	    tree res;
	    /* If this is a NOT and the operand has a boolean range, then we
	       know its value must be zero or one.  We are not supposed to
	       have a BIT_NOT_EXPR for boolean types with precision > 1 in
	       the general case, see e.g. the handling of TRUTH_NOT_EXPR in
	       the gimplifier, but it can be generated by match.pd out of
	       a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR.  Now the handling
	       of BIT_AND_EXPR above already forces a specific semantics for
	       boolean types with precision > 1 so we must do the same here,
	       otherwise we could change the semantics of TRUTH_NOT_EXPR for
	       boolean types with precision > 1.  */
	    if (code == BIT_NOT_EXPR
		&& TREE_CODE (rhs) == SSA_NAME
		&& ssa_name_has_boolean_range (rhs))
	      {
		if ((TREE_INT_CST_LOW (value) & 1) == 0)
		  res = build_one_cst (TREE_TYPE (rhs));
		else
		  res = build_zero_cst (TREE_TYPE (rhs));
	      }
	    else
	      res = fold_build1 (code, TREE_TYPE (rhs), value);
	    derive_equivalences (rhs, res, recursion_limit - 1);
	    break;
	  }

	default:
	  {
	    if (TREE_CODE_CLASS (code) == tcc_comparison)
	      {
		tree cond = build2 (code, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		if (integer_zerop (value))
		  std::swap (cond, inverted);
		record_conditions (&this->cond_equivalences, cond, inverted);
		break;
	      }
	    break;
	  }
	}
    }
}

void
edge_info::record_simple_equiv (tree lhs, tree rhs)
{
  /* If the RHS is a constant, then we may be able to derive
     further equivalences.  Else just record the name = name
     equivalence.  */
  if (TREE_CODE (rhs) == INTEGER_CST)
    derive_equivalences (lhs, rhs, 4);
  else
    simple_equivalences.safe_push (equiv_pair (lhs, rhs));
}

/* Free the edge_info data attached to E, if it exists.  */

void
free_dom_edge_info (edge e)
{
  class edge_info *edge_info = (class edge_info *)e->aux;

  if (edge_info)
    delete edge_info;
}

/* Free all EDGE_INFO structures associated with edges in the CFG.
   If a particular edge can be threaded, copy the redirection
   target from the EDGE_INFO structure into the edge's AUX field
   as required by code to update the CFG and SSA graph for
   jump threading.  */

static void
free_all_edge_infos (void)
{
  basic_block bb;
  edge_iterator ei;
  edge e;

  FOR_EACH_BB_FN (bb, cfun)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
        {
	  free_dom_edge_info (e);
	  e->aux = NULL;
	}
    }
}

/* We have finished optimizing BB, record any information implied by
   taking a specific outgoing edge from BB.  */

static void
record_edge_info (basic_block bb)
{
  gimple_stmt_iterator gsi = gsi_last_bb (bb);
  class edge_info *edge_info;

  if (! gsi_end_p (gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      location_t loc = gimple_location (stmt);

      if (gimple_code (stmt) == GIMPLE_SWITCH)
	{
	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
	  tree index = gimple_switch_index (switch_stmt);

	  if (TREE_CODE (index) == SSA_NAME)
	    {
	      int i;
              int n_labels = gimple_switch_num_labels (switch_stmt);
	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
	      edge e;
	      edge_iterator ei;

	      for (i = 0; i < n_labels; i++)
		{
		  tree label = gimple_switch_label (switch_stmt, i);
		  basic_block target_bb
		    = label_to_block (cfun, CASE_LABEL (label));
		  if (CASE_HIGH (label)
		      || !CASE_LOW (label)
		      || info[target_bb->index])
		    info[target_bb->index] = error_mark_node;
		  else
		    info[target_bb->index] = label;
		}

	      FOR_EACH_EDGE (e, ei, bb->succs)
		{
		  basic_block target_bb = e->dest;
		  tree label = info[target_bb->index];

		  if (label != NULL && label != error_mark_node)
		    {
		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
						 CASE_LOW (label));
		      edge_info = new class edge_info (e);
		      edge_info->record_simple_equiv (index, x);
		    }
		}
	      free (info);
	    }
	}

      /* A COND_EXPR may create equivalences too.  */
      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  edge true_edge;
	  edge false_edge;

          tree op0 = gimple_cond_lhs (stmt);
          tree op1 = gimple_cond_rhs (stmt);
          enum tree_code code = gimple_cond_code (stmt);

	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

          /* Special case comparing booleans against a constant as we
             know the value of OP0 on both arms of the branch.  i.e., we
             can record an equivalence for OP0 rather than COND. 

	     However, don't do this if the constant isn't zero or one.
	     Such conditionals will get optimized more thoroughly during
	     the domwalk.  */
	  if ((code == EQ_EXPR || code == NE_EXPR)
	      && TREE_CODE (op0) == SSA_NAME
	      && ssa_name_has_boolean_range (op0)
	      && is_gimple_min_invariant (op1)
	      && (integer_zerop (op1) || integer_onep (op1)))
            {
	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));

              if (code == EQ_EXPR)
                {
		  edge_info = new class edge_info (true_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? false_val : true_val));
		  edge_info = new class edge_info (false_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? true_val : false_val));
                }
              else
                {
		  edge_info = new class edge_info (true_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? true_val : false_val));
		  edge_info = new class edge_info (false_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? false_val : true_val));
                }
            }
	  /* This can show up in the IL as a result of copy propagation
	     it will eventually be canonicalized, but we have to cope
	     with this case within the pass.  */
          else if (is_gimple_min_invariant (op0)
                   && TREE_CODE (op1) == SSA_NAME)
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
              bool can_infer_simple_equiv
                = !(HONOR_SIGNED_ZEROS (op0)
                    && real_zerop (op0));
	      class edge_info *edge_info;

	      edge_info = new class edge_info (true_edge);
              record_conditions (&edge_info->cond_equivalences, cond, inverted);

              if (can_infer_simple_equiv && code == EQ_EXPR)
		edge_info->record_simple_equiv (op1, op0);

	      edge_info = new class edge_info (false_edge);
              record_conditions (&edge_info->cond_equivalences, inverted, cond);

              if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
		edge_info->record_simple_equiv (op1, op0);
            }

          else if (TREE_CODE (op0) == SSA_NAME
                   && (TREE_CODE (op1) == SSA_NAME
                       || is_gimple_min_invariant (op1)))
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
              bool can_infer_simple_equiv
                = !(HONOR_SIGNED_ZEROS (op1)
                    && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
	      class edge_info *edge_info;

	      edge_info = new class edge_info (true_edge);
              record_conditions (&edge_info->cond_equivalences, cond, inverted);

              if (can_infer_simple_equiv && code == EQ_EXPR)
		edge_info->record_simple_equiv (op0, op1);

	      edge_info = new class edge_info (false_edge);
              record_conditions (&edge_info->cond_equivalences, inverted, cond);

              if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
		edge_info->record_simple_equiv (op0, op1);
            }
        }
    }
}


class dom_opt_dom_walker : public dom_walker
{
public:
  dom_opt_dom_walker (cdi_direction direction,
		      class const_and_copies *const_and_copies,
		      class avail_exprs_stack *avail_exprs_stack,
		      gcond *dummy_cond)
    : dom_walker (direction, REACHABLE_BLOCKS),
      m_const_and_copies (const_and_copies),
      m_avail_exprs_stack (avail_exprs_stack),
      evrp_range_analyzer (true),
      m_dummy_cond (dummy_cond) { }

  virtual edge before_dom_children (basic_block);
  virtual void after_dom_children (basic_block);

private:

  /* Unwindable equivalences, both const/copy and expression varieties.  */
  class const_and_copies *m_const_and_copies;
  class avail_exprs_stack *m_avail_exprs_stack;

  /* VRP data.  */
  class evrp_range_analyzer evrp_range_analyzer;

  /* Dummy condition to avoid creating lots of throw away statements.  */
  gcond *m_dummy_cond;

  /* Optimize a single statement within a basic block using the
     various tables mantained by DOM.  Returns the taken edge if
     the statement is a conditional with a statically determined
     value.  */
  edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
};

/* Jump threading, redundancy elimination and const/copy propagation.

   This pass may expose new symbols that need to be renamed into SSA.  For
   every new symbol exposed, its corresponding bit will be set in
   VARS_TO_RENAME.  */

namespace {

const pass_data pass_data_dominator =
{
  GIMPLE_PASS, /* type */
  "dom", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
};

class pass_dominator : public gimple_opt_pass
{
public:
  pass_dominator (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_dominator, ctxt),
      may_peel_loop_headers_p (false)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_dominator (m_ctxt); }
  void set_pass_param (unsigned int n, bool param)
    {
      gcc_assert (n == 0);
      may_peel_loop_headers_p = param;
    }
  virtual bool gate (function *) { return flag_tree_dom != 0; }
  virtual unsigned int execute (function *);

 private:
  /* This flag is used to prevent loops from being peeled repeatedly in jump
     threading; it will be removed once we preserve loop structures throughout
     the compilation -- we will be able to mark the affected loops directly in
     jump threading, and avoid peeling them next time.  */
  bool may_peel_loop_headers_p;
}; // class pass_dominator

unsigned int
pass_dominator::execute (function *fun)
{
  memset (&opt_stats, 0, sizeof (opt_stats));

  /* Create our hash tables.  */
  hash_table<expr_elt_hasher> *avail_exprs
    = new hash_table<expr_elt_hasher> (1024);
  class avail_exprs_stack *avail_exprs_stack
    = new class avail_exprs_stack (avail_exprs);
  class const_and_copies *const_and_copies = new class const_and_copies ();
  need_eh_cleanup = BITMAP_ALLOC (NULL);
  need_noreturn_fixup.create (0);

  calculate_dominance_info (CDI_DOMINATORS);
  cfg_altered = false;

  /* We need to know loop structures in order to avoid destroying them
     in jump threading.  Note that we still can e.g. thread through loop
     headers to an exit edge, or through loop header to the loop body, assuming
     that we update the loop info.

     TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
     to several overly conservative bail-outs in jump threading, case
     gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
     missing.  We should improve jump threading in future then
     LOOPS_HAVE_PREHEADERS won't be needed here.  */
  loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES
		       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);

  /* Initialize the value-handle array.  */
  threadedge_initialize_values ();

  /* We need accurate information regarding back edges in the CFG
     for jump threading; this may include back edges that are not part of
     a single loop.  */
  mark_dfs_back_edges ();

  /* We want to create the edge info structures before the dominator walk
     so that they'll be in place for the jump threader, particularly when
     threading through a join block.

     The conditions will be lazily updated with global equivalences as
     we reach them during the dominator walk.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, fun)
    record_edge_info (bb);

  gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
					 integer_zero_node, NULL, NULL);

  /* Recursively walk the dominator tree optimizing statements.  */
  dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
			     avail_exprs_stack, dummy_cond);
  walker.walk (fun->cfg->x_entry_block_ptr);

  /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
     edge.  When found, remove jump threads which contain any outgoing
     edge from the affected block.  */
  if (cfg_altered)
    {
      FOR_EACH_BB_FN (bb, fun)
	{
	  edge_iterator ei;
	  edge e;

	  /* First see if there are any edges without EDGE_EXECUTABLE
	     set.  */
	  bool found = false;
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      if ((e->flags & EDGE_EXECUTABLE) == 0)
		{
		  found = true;
		  break;
		}
	    }

	  /* If there were any such edges found, then remove jump threads
	     containing any edge leaving BB.  */
	  if (found)
	    FOR_EACH_EDGE (e, ei, bb->succs)
	      remove_jump_threads_including (e);
	}
    }

  {
    gimple_stmt_iterator gsi;
    basic_block bb;
    FOR_EACH_BB_FN (bb, fun)
      {
	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	  update_stmt_if_modified (gsi_stmt (gsi));
      }
  }

  /* If we exposed any new variables, go ahead and put them into
     SSA form now, before we handle jump threading.  This simplifies
     interactions between rewriting of _DECL nodes into SSA form
     and rewriting SSA_NAME nodes into SSA form after block
     duplication and CFG manipulation.  */
  update_ssa (TODO_update_ssa);

  free_all_edge_infos ();

  /* Thread jumps, creating duplicate blocks as needed.  */
  cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);

  if (cfg_altered)
    free_dominance_info (CDI_DOMINATORS);

  /* Removal of statements may make some EH edges dead.  Purge
     such edges from the CFG as needed.  */
  if (!bitmap_empty_p (need_eh_cleanup))
    {
      unsigned i;
      bitmap_iterator bi;

      /* Jump threading may have created forwarder blocks from blocks
	 needing EH cleanup; the new successor of these blocks, which
	 has inherited from the original block, needs the cleanup.
	 Don't clear bits in the bitmap, as that can break the bitmap
	 iterator.  */
      EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
	{
	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
	  if (bb == NULL)
	    continue;
	  while (single_succ_p (bb)
		 && (single_succ_edge (bb)->flags
		     & (EDGE_EH|EDGE_DFS_BACK)) == 0)
	    bb = single_succ (bb);
	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
	    continue;
	  if ((unsigned) bb->index != i)
	    bitmap_set_bit (need_eh_cleanup, bb->index);
	}

      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
      bitmap_clear (need_eh_cleanup);
    }

  /* Fixup stmts that became noreturn calls.  This may require splitting
     blocks and thus isn't possible during the dominator walk or before
     jump threading finished.  Do this in reverse order so we don't
     inadvertedly remove a stmt we want to fixup by visiting a dominating
     now noreturn call first.  */
  while (!need_noreturn_fixup.is_empty ())
    {
      gimple *stmt = need_noreturn_fixup.pop ();
      if (dump_file && dump_flags & TDF_DETAILS)
	{
	  fprintf (dump_file, "Fixing up noreturn call ");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "\n");
	}
      fixup_noreturn_call (stmt);
    }

  statistics_counter_event (fun, "Redundant expressions eliminated",
			    opt_stats.num_re);
  statistics_counter_event (fun, "Constants propagated",
			    opt_stats.num_const_prop);
  statistics_counter_event (fun, "Copies propagated",
			    opt_stats.num_copy_prop);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & TDF_STATS))
    dump_dominator_optimization_stats (dump_file, avail_exprs);

  loop_optimizer_finalize ();

  /* Delete our main hashtable.  */
  delete avail_exprs;
  avail_exprs = NULL;

  /* Free asserted bitmaps and stacks.  */
  BITMAP_FREE (need_eh_cleanup);
  need_noreturn_fixup.release ();
  delete avail_exprs_stack;
  delete const_and_copies;

  /* Free the value-handle array.  */
  threadedge_finalize_values ();

  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_dominator (gcc::context *ctxt)
{
  return new pass_dominator (ctxt);
}

/* A hack until we remove threading from tree-vrp.c and bring the
   simplification routine into the dom_opt_dom_walker class.  */
static class vr_values *x_vr_values;

/* A trivial wrapper so that we can present the generic jump
   threading code with a simple API for simplifying statements.  */
static tree
simplify_stmt_for_jump_threading (gimple *stmt,
				  gimple *within_stmt ATTRIBUTE_UNUSED,
				  class avail_exprs_stack *avail_exprs_stack,
				  basic_block bb ATTRIBUTE_UNUSED)
{
  /* First query our hash table to see if the expression is available
     there.  A non-NULL return value will be either a constant or another
     SSA_NAME.  */
  tree cached_lhs =  avail_exprs_stack->lookup_avail_expr (stmt, false, true);
  if (cached_lhs)
    return cached_lhs;

  /* If the hash table query failed, query VRP information.  This is
     essentially the same as tree-vrp's simplification routine.  The
     copy in tree-vrp is scheduled for removal in gcc-9.  */
  if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
    {
      cached_lhs
	= x_vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
						 gimple_cond_lhs (cond_stmt),
						 gimple_cond_rhs (cond_stmt),
						 within_stmt);
      return cached_lhs;
    }

  if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
    {
      tree op = gimple_switch_index (switch_stmt);
      if (TREE_CODE (op) != SSA_NAME)
	return NULL_TREE;

      const value_range_equiv *vr = x_vr_values->get_value_range (op);
      if (vr->undefined_p ()
	  || vr->varying_p ()
	  || vr->symbolic_p ())
	return NULL_TREE;

      if (vr->kind () == VR_RANGE)
	{
	  size_t i, j;

	  find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);

	  /* Is there only one such label?  */
	  if (i == j)
	    {
	      tree label = gimple_switch_label (switch_stmt, i);
	      tree singleton;

	      /* The i'th label will only be taken if the value range of the
		 operand is entirely within the bounds of this label.  */
	      if (CASE_HIGH (label) != NULL_TREE
		  ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
		     && tree_int_cst_compare (CASE_HIGH (label), vr->max ()) >= 0)
		  : (vr->singleton_p (&singleton)
		     && tree_int_cst_equal (CASE_LOW (label), singleton)))
		return label;
	    }

	  /* If there are no such labels, then the default label
	     will be taken.  */
	  if (i > j)
	    return gimple_switch_label (switch_stmt, 0);
	}

      if (vr->kind () == VR_ANTI_RANGE)
          {
            unsigned n = gimple_switch_num_labels (switch_stmt);
            tree min_label = gimple_switch_label (switch_stmt, 1);
            tree max_label = gimple_switch_label (switch_stmt, n - 1);

            /* The default label will be taken only if the anti-range of the
               operand is entirely outside the bounds of all the (non-default)
               case labels.  */
            if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
                && (CASE_HIGH (max_label) != NULL_TREE
                    ? tree_int_cst_compare (vr->max (), CASE_HIGH (max_label)) >= 0
                    : tree_int_cst_compare (vr->max (), CASE_LOW (max_label)) >= 0))
            return gimple_switch_label (switch_stmt, 0);
          }
	return NULL_TREE;
    }

  if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
    {
      tree lhs = gimple_assign_lhs (assign_stmt);
      if (TREE_CODE (lhs) == SSA_NAME
	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
	  && stmt_interesting_for_vrp (stmt))
	{
	  edge dummy_e;
	  tree dummy_tree;
	  value_range_equiv new_vr;
	  x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
						&dummy_tree, &new_vr);
	  tree singleton;
	  if (new_vr.singleton_p (&singleton))
	    return singleton;
	}
    }
  return NULL;
}

/* Valueize hook for gimple_fold_stmt_to_constant_1.  */

static tree
dom_valueize (tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    {
      tree tem = SSA_NAME_VALUE (t);
      if (tem)
	return tem;
    }
  return t;
}

/* We have just found an equivalence for LHS on an edge E.
   Look backwards to other uses of LHS and see if we can derive
   additional equivalences that are valid on edge E.  */
static void
back_propagate_equivalences (tree lhs, edge e,
			     class const_and_copies *const_and_copies)
{
  use_operand_p use_p;
  imm_use_iterator iter;
  bitmap domby = NULL;
  basic_block dest = e->dest;

  /* Iterate over the uses of LHS to see if any dominate E->dest.
     If so, they may create useful equivalences too.

     ???  If the code gets re-organized to a worklist to catch more
     indirect opportunities and it is made to handle PHIs then this
     should only consider use_stmts in basic-blocks we have already visited.  */
  FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
    {
      gimple *use_stmt = USE_STMT (use_p);

      /* Often the use is in DEST, which we trivially know we can't use.
	 This is cheaper than the dominator set tests below.  */
      if (dest == gimple_bb (use_stmt))
	continue;

      /* Filter out statements that can never produce a useful
	 equivalence.  */
      tree lhs2 = gimple_get_lhs (use_stmt);
      if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
	continue;

      /* Profiling has shown the domination tests here can be fairly
	 expensive.  We get significant improvements by building the
	 set of blocks that dominate BB.  We can then just test
	 for set membership below.

	 We also initialize the set lazily since often the only uses
	 are going to be in the same block as DEST.  */
      if (!domby)
	{
	  domby = BITMAP_ALLOC (NULL);
	  basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
	  while (bb)
	    {
	      bitmap_set_bit (domby, bb->index);
	      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
	    }
	}

      /* This tests if USE_STMT does not dominate DEST.  */
      if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
	continue;

      /* At this point USE_STMT dominates DEST and may result in a
	 useful equivalence.  Try to simplify its RHS to a constant
	 or SSA_NAME.  */
      tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
						 no_follow_ssa_edges);
      if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
	record_equality (lhs2, res, const_and_copies);
    }

  if (domby)
    BITMAP_FREE (domby);
}

/* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
   by traversing edge E (which are cached in E->aux).

   Callers are responsible for managing the unwinding markers.  */
void
record_temporary_equivalences (edge e,
			       class const_and_copies *const_and_copies,
			       class avail_exprs_stack *avail_exprs_stack)
{
  int i;
  class edge_info *edge_info = (class edge_info *) e->aux;

  /* If we have info associated with this edge, record it into
     our equivalence tables.  */
  if (edge_info)
    {
      cond_equivalence *eq;
      /* If we have 0 = COND or 1 = COND equivalences, record them
	 into our expression hash tables.  */
      for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
	avail_exprs_stack->record_cond (eq);

      edge_info::equiv_pair *seq;
      for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
	{
	  tree lhs = seq->first;
	  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
	    continue;

	  /* Record the simple NAME = VALUE equivalence.  */
	  tree rhs = seq->second;

	  /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
	     cheaper to compute than the other, then set up the equivalence
	     such that we replace the expensive one with the cheap one.

	     If they are the same cost to compute, then do not record
	     anything.  */
	  if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
	    {
	      gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
	      int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);

	      gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
	      int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);

	      if (rhs_cost > lhs_cost)
	        record_equality (rhs, lhs, const_and_copies);
	      else if (rhs_cost < lhs_cost)
	        record_equality (lhs, rhs, const_and_copies);
	    }
	  else
	    record_equality (lhs, rhs, const_and_copies);


	  /* Any equivalence found for LHS may result in additional
	     equivalences for other uses of LHS that we have already
	     processed.  */
	  back_propagate_equivalences (lhs, e, const_and_copies);
	}
    }
}

/* PHI nodes can create equivalences too.

   Ignoring any alternatives which are the same as the result, if
   all the alternatives are equal, then the PHI node creates an
   equivalence.  */

static void
record_equivalences_from_phis (basic_block bb)
{
  gphi_iterator gsi;

  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
    {
      gphi *phi = gsi.phi ();

      /* We might eliminate the PHI, so advance GSI now.  */
      gsi_next (&gsi);

      tree lhs = gimple_phi_result (phi);
      tree rhs = NULL;
      size_t i;

      for (i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  tree t = gimple_phi_arg_def (phi, i);

	  /* Ignore alternatives which are the same as our LHS.  Since
	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
	     can simply compare pointers.  */
	  if (lhs == t)
	    continue;

	  /* If the associated edge is not marked as executable, then it
	     can be ignored.  */
	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
	    continue;

	  t = dom_valueize (t);

	  /* If T is an SSA_NAME and its associated edge is a backedge,
	     then quit as we cannot utilize this equivalence.  */
	  if (TREE_CODE (t) == SSA_NAME
	      && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
	    break;

	  /* If we have not processed an alternative yet, then set
	     RHS to this alternative.  */
	  if (rhs == NULL)
	    rhs = t;
	  /* If we have processed an alternative (stored in RHS), then
	     see if it is equal to this one.  If it isn't, then stop
	     the search.  */
	  else if (! operand_equal_for_phi_arg_p (rhs, t))
	    break;
	}

      /* If we had no interesting alternatives, then all the RHS alternatives
	 must have been the same as LHS.  */
      if (!rhs)
	rhs = lhs;

      /* If we managed to iterate through each PHI alternative without
	 breaking out of the loop, then we have a PHI which may create
	 a useful equivalence.  We do not need to record unwind data for
	 this, since this is a true assignment and not an equivalence
	 inferred from a comparison.  All uses of this ssa name are dominated
	 by this assignment, so unwinding just costs time and space.  */
      if (i == gimple_phi_num_args (phi))
	{
	  if (may_propagate_copy (lhs, rhs))
	    set_ssa_name_value (lhs, rhs);
	  else if (virtual_operand_p (lhs))
	    {
	      gimple *use_stmt;
	      imm_use_iterator iter;
	      use_operand_p use_p;
	      /* For virtual operands we have to propagate into all uses as
	         otherwise we will create overlapping life-ranges.  */
	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
	        FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
	          SET_USE (use_p, rhs);
	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
	        SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
	      gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
	      remove_phi_node (&tmp_gsi, true);
	    }
	}
    }
}

/* Record any equivalences created by the incoming edge to BB into
   CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
   incoming edge, then no equivalence is created.  */

static void
record_equivalences_from_incoming_edge (basic_block bb,
    class const_and_copies *const_and_copies,
    class avail_exprs_stack *avail_exprs_stack)
{
  edge e;
  basic_block parent;

  /* If our parent block ended with a control statement, then we may be
     able to record some equivalences based on which outgoing edge from
     the parent was followed.  */
  parent = get_immediate_dominator (CDI_DOMINATORS, bb);

  e = single_pred_edge_ignoring_loop_edges (bb, true);

  /* If we had a single incoming edge from our parent block, then enter
     any data associated with the edge into our tables.  */
  if (e && e->src == parent)
    record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
}

/* Dump statistics for the hash table HTAB.  */

static void
htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
{
  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
	   (long) htab.size (),
	   (long) htab.elements (),
	   htab.collisions ());
}

/* Dump SSA statistics on FILE.  */

static void
dump_dominator_optimization_stats (FILE *file,
				   hash_table<expr_elt_hasher> *avail_exprs)
{
  fprintf (file, "Total number of statements:                   %6ld\n\n",
	   opt_stats.num_stmts);
  fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
           opt_stats.num_exprs_considered);

  fprintf (file, "\nHash table statistics:\n");

  fprintf (file, "    avail_exprs: ");
  htab_statistics (file, *avail_exprs);
}


/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
   This constrains the cases in which we may treat this as assignment.  */

static void
record_equality (tree x, tree y, class const_and_copies *const_and_copies)
{
  tree prev_x = NULL, prev_y = NULL;

  if (tree_swap_operands_p (x, y))
    std::swap (x, y);

  /* Most of the time tree_swap_operands_p does what we want.  But there
     are cases where we know one operand is better for copy propagation than
     the other.  Given no other code cares about ordering of equality
     comparison operators for that purpose, we just handle the special cases
     here.  */
  if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
    {
      /* If one operand is a single use operand, then make it
	 X.  This will preserve its single use properly and if this
	 conditional is eliminated, the computation of X can be
	 eliminated as well.  */
      if (has_single_use (y) && ! has_single_use (x))
	std::swap (x, y);
    }
  if (TREE_CODE (x) == SSA_NAME)
    prev_x = SSA_NAME_VALUE (x);
  if (TREE_CODE (y) == SSA_NAME)
    prev_y = SSA_NAME_VALUE (y);

  /* If one of the previous values is invariant, or invariant in more loops
     (by depth), then use that.
     Otherwise it doesn't matter which value we choose, just so
     long as we canonicalize on one value.  */
  if (is_gimple_min_invariant (y))
    ;
  else if (is_gimple_min_invariant (x))
    prev_x = x, x = y, y = prev_x, prev_x = prev_y;
  else if (prev_x && is_gimple_min_invariant (prev_x))
    x = y, y = prev_x, prev_x = prev_y;
  else if (prev_y)
    y = prev_y;

  /* After the swapping, we must have one SSA_NAME.  */
  if (TREE_CODE (x) != SSA_NAME)
    return;

  /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
     variable compared against zero.  If we're honoring signed zeros,
     then we cannot record this value unless we know that the value is
     nonzero.  */
  if (HONOR_SIGNED_ZEROS (x)
      && (TREE_CODE (y) != REAL_CST
	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
    return;

  const_and_copies->record_const_or_copy (x, y, prev_x);
}

/* Returns true when STMT is a simple iv increment.  It detects the
   following situation:

   i_1 = phi (..., i_k)
   [...]
   i_j = i_{j-1}  for each j : 2 <= j <= k-1
   [...]
   i_k = i_{k-1} +/- ...  */

bool
simple_iv_increment_p (gimple *stmt)
{
  enum tree_code code;
  tree lhs, preinc;
  gimple *phi;
  size_t i;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;

  lhs = gimple_assign_lhs (stmt);
  if (TREE_CODE (lhs) != SSA_NAME)
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (code != PLUS_EXPR
      && code != MINUS_EXPR
      && code != POINTER_PLUS_EXPR)
    return false;

  preinc = gimple_assign_rhs1 (stmt);
  if (TREE_CODE (preinc) != SSA_NAME)
    return false;

  phi = SSA_NAME_DEF_STMT (preinc);
  while (gimple_code (phi) != GIMPLE_PHI)
    {
      /* Follow trivial copies, but not the DEF used in a back edge,
	 so that we don't prevent coalescing.  */
      if (!gimple_assign_ssa_name_copy_p (phi))
	return false;
      preinc = gimple_assign_rhs1 (phi);
      phi = SSA_NAME_DEF_STMT (preinc);
    }

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    if (gimple_phi_arg_def (phi, i) == lhs)
      return true;

  return false;
}

/* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
   successors of BB.  */

static void
cprop_into_successor_phis (basic_block bb,
			   class const_and_copies *const_and_copies)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      int indx;
      gphi_iterator gsi;

      /* If this is an abnormal edge, then we do not want to copy propagate
	 into the PHI alternative associated with this edge.  */
      if (e->flags & EDGE_ABNORMAL)
	continue;

      gsi = gsi_start_phis (e->dest);
      if (gsi_end_p (gsi))
	continue;

      /* We may have an equivalence associated with this edge.  While
	 we cannot propagate it into non-dominated blocks, we can
	 propagate them into PHIs in non-dominated blocks.  */

      /* Push the unwind marker so we can reset the const and copies
	 table back to its original state after processing this edge.  */
      const_and_copies->push_marker ();

      /* Extract and record any simple NAME = VALUE equivalences.

	 Don't bother with [01] = COND equivalences, they're not useful
	 here.  */
      class edge_info *edge_info = (class edge_info *) e->aux;

      if (edge_info)
	{
	  edge_info::equiv_pair *seq;
	  for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
	    {
	      tree lhs = seq->first;
	      tree rhs = seq->second;

	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
		const_and_copies->record_const_or_copy (lhs, rhs);
	    }

	}

      indx = e->dest_idx;
      for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  tree new_val;
	  use_operand_p orig_p;
	  tree orig_val;
          gphi *phi = gsi.phi ();

	  /* The alternative may be associated with a constant, so verify
	     it is an SSA_NAME before doing anything with it.  */
	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
	  orig_val = get_use_from_ptr (orig_p);
	  if (TREE_CODE (orig_val) != SSA_NAME)
	    continue;

	  /* If we have *ORIG_P in our constant/copy table, then replace
	     ORIG_P with its value in our constant/copy table.  */
	  new_val = SSA_NAME_VALUE (orig_val);
	  if (new_val
	      && new_val != orig_val
	      && may_propagate_copy (orig_val, new_val))
	    propagate_value (orig_p, new_val);
	}

      const_and_copies->pop_to_marker ();
    }
}

edge
dom_opt_dom_walker::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);

  evrp_range_analyzer.enter (bb);

  /* Push a marker on the stacks of local information so that we know how
     far to unwind when we finalize this block.  */
  m_avail_exprs_stack->push_marker ();
  m_const_and_copies->push_marker ();

  record_equivalences_from_incoming_edge (bb, m_const_and_copies,
					  m_avail_exprs_stack);

  /* PHI nodes can create equivalences too.  */
  record_equivalences_from_phis (bb);

  /* Create equivalences from redundant PHIs.  PHIs are only truly
     redundant when they exist in the same block, so push another
     marker and unwind right afterwards.  */
  m_avail_exprs_stack->push_marker ();
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    eliminate_redundant_computations (&gsi, m_const_and_copies,
				      m_avail_exprs_stack);
  m_avail_exprs_stack->pop_to_marker ();

  edge taken_edge = NULL;
  /* Initialize visited flag ahead of us, it has undefined state on
     pass entry.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    gimple_set_visited (gsi_stmt (gsi), false);
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
    {
      /* Do not optimize a stmt twice, substitution might end up with
         _3 = _3 which is not valid.  */
      if (gimple_visited_p (gsi_stmt (gsi)))
	{
	  gsi_next (&gsi);
	  continue;
	}

      /* Compute range information and optimize the stmt.  */
      evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
      bool removed_p = false;
      taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
      if (!removed_p)
	gimple_set_visited (gsi_stmt (gsi), true);

      /* Go back and visit stmts inserted by folding after substituting
	 into the stmt at gsi.  */
      if (gsi_end_p (gsi))
	{
	  gcc_checking_assert (removed_p);
	  gsi = gsi_last_bb (bb);
	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
	    gsi_prev (&gsi);
	}
      else
	{
	  do
	    {
	      gsi_prev (&gsi);
	    }
	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
	}
      if (gsi_end_p (gsi))
	gsi = gsi_start_bb (bb);
      else
	gsi_next (&gsi);
    }

  /* Now prepare to process dominated blocks.  */
  record_edge_info (bb);
  cprop_into_successor_phis (bb, m_const_and_copies);
  if (taken_edge && !dbg_cnt (dom_unreachable_edges))
    return NULL;

  return taken_edge;
}

/* We have finished processing the dominator children of BB, perform
   any finalization actions in preparation for leaving this node in
   the dominator tree.  */

void
dom_opt_dom_walker::after_dom_children (basic_block bb)
{
  x_vr_values = evrp_range_analyzer.get_vr_values ();
  thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
			 m_avail_exprs_stack,
			 &evrp_range_analyzer,
			 simplify_stmt_for_jump_threading);
  x_vr_values = NULL;

  /* These remove expressions local to BB from the tables.  */
  m_avail_exprs_stack->pop_to_marker ();
  m_const_and_copies->pop_to_marker ();
  evrp_range_analyzer.leave (bb);
}

/* Search for redundant computations in STMT.  If any are found, then
   replace them with the variable holding the result of the computation.

   If safe, record this expression into AVAIL_EXPRS_STACK and
   CONST_AND_COPIES.  */

static void
eliminate_redundant_computations (gimple_stmt_iterator* gsi,
				  class const_and_copies *const_and_copies,
				  class avail_exprs_stack *avail_exprs_stack)
{
  tree expr_type;
  tree cached_lhs;
  tree def;
  bool insert = true;
  bool assigns_var_p = false;

  gimple *stmt = gsi_stmt (*gsi);

  if (gimple_code (stmt) == GIMPLE_PHI)
    def = gimple_phi_result (stmt);
  else
    def = gimple_get_lhs (stmt);

  /* Certain expressions on the RHS can be optimized away, but cannot
     themselves be entered into the hash tables.  */
  if (! def
      || TREE_CODE (def) != SSA_NAME
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
      || gimple_vdef (stmt)
      /* Do not record equivalences for increments of ivs.  This would create
	 overlapping live ranges for a very questionable gain.  */
      || simple_iv_increment_p (stmt))
    insert = false;

  /* Check if the expression has been computed before.  */
  cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);

  opt_stats.num_exprs_considered++;

  /* Get the type of the expression we are trying to optimize.  */
  if (is_gimple_assign (stmt))
    {
      expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gimple_code (stmt) == GIMPLE_COND)
    expr_type = boolean_type_node;
  else if (is_gimple_call (stmt))
    {
      gcc_assert (gimple_call_lhs (stmt));
      expr_type = TREE_TYPE (gimple_call_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
    expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
  else if (gimple_code (stmt) == GIMPLE_PHI)
    /* We can't propagate into a phi, so the logic below doesn't apply.
       Instead record an equivalence between the cached LHS and the
       PHI result of this statement, provided they are in the same block.
       This should be sufficient to kill the redundant phi.  */
    {
      if (def && cached_lhs)
	const_and_copies->record_const_or_copy (def, cached_lhs);
      return;
    }
  else
    gcc_unreachable ();

  if (!cached_lhs)
    return;

  /* It is safe to ignore types here since we have already done
     type checking in the hashing and equality routines.  In fact
     type checking here merely gets in the way of constant
     propagation.  Also, make sure that it is safe to propagate
     CACHED_LHS into the expression in STMT.  */
  if ((TREE_CODE (cached_lhs) != SSA_NAME
       && (assigns_var_p
           || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
      || may_propagate_copy_into_stmt (stmt, cached_lhs))
  {
      gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
			   || is_gimple_min_invariant (cached_lhs));

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced redundant expr '");
	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
	  fprintf (dump_file, "' with '");
	  print_generic_expr (dump_file, cached_lhs, dump_flags);
          fprintf (dump_file, "'\n");
	}

      opt_stats.num_re++;

      if (assigns_var_p
	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
	cached_lhs = fold_convert (expr_type, cached_lhs);

      propagate_tree_value_into_stmt (gsi, cached_lhs);

      /* Since it is always necessary to mark the result as modified,
         perhaps we should move this into propagate_tree_value_into_stmt
         itself.  */
      gimple_set_modified (gsi_stmt (*gsi), true);
  }
}

/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
   the available expressions table or the const_and_copies table.
   Detect and record those equivalences into AVAIL_EXPRS_STACK. 

   We handle only very simple copy equivalences here.  The heavy
   lifing is done by eliminate_redundant_computations.  */

static void
record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
			       class avail_exprs_stack *avail_exprs_stack)
{
  tree lhs;
  enum tree_code lhs_code;

  gcc_assert (is_gimple_assign (stmt));

  lhs = gimple_assign_lhs (stmt);
  lhs_code = TREE_CODE (lhs);

  if (lhs_code == SSA_NAME
      && gimple_assign_single_p (stmt))
    {
      tree rhs = gimple_assign_rhs1 (stmt);

      /* If the RHS of the assignment is a constant or another variable that
	 may be propagated, register it in the CONST_AND_COPIES table.  We
	 do not need to record unwind data for this, since this is a true
	 assignment and not an equivalence inferred from a comparison.  All
	 uses of this ssa name are dominated by this assignment, so unwinding
	 just costs time and space.  */
      if (may_optimize_p
	  && (TREE_CODE (rhs) == SSA_NAME
	      || is_gimple_min_invariant (rhs)))
	{
	  rhs = dom_valueize (rhs);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "==== ASGN ");
	      print_generic_expr (dump_file, lhs);
	      fprintf (dump_file, " = ");
	      print_generic_expr (dump_file, rhs);
	      fprintf (dump_file, "\n");
	    }

	  set_ssa_name_value (lhs, rhs);
	}
    }

  /* Make sure we can propagate &x + CST.  */
  if (lhs_code == SSA_NAME
      && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
      && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
      && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
    {
      tree op0 = gimple_assign_rhs1 (stmt);
      tree op1 = gimple_assign_rhs2 (stmt);
      tree new_rhs
	= build1 (ADDR_EXPR, TREE_TYPE (op0),
		  fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
			       unshare_expr (op0), fold_convert (ptr_type_node,
								 op1)));
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "==== ASGN ");
	  print_generic_expr (dump_file, lhs);
	  fprintf (dump_file, " = ");
	  print_generic_expr (dump_file, new_rhs);
	  fprintf (dump_file, "\n");
	}

      set_ssa_name_value (lhs, new_rhs);
    }

  /* A memory store, even an aliased store, creates a useful
     equivalence.  By exchanging the LHS and RHS, creating suitable
     vops and recording the result in the available expression table,
     we may be able to expose more redundant loads.  */
  if (!gimple_has_volatile_ops (stmt)
      && gimple_references_memory_p (stmt)
      && gimple_assign_single_p (stmt)
      && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
      && !is_gimple_reg (lhs))
    {
      tree rhs = gimple_assign_rhs1 (stmt);
      gassign *new_stmt;

      /* Build a new statement with the RHS and LHS exchanged.  */
      if (TREE_CODE (rhs) == SSA_NAME)
        {
          /* NOTE tuples.  The call to gimple_build_assign below replaced
             a call to build_gimple_modify_stmt, which did not set the
             SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
             may cause an SSA validation failure, as the LHS may be a
             default-initialized name and should have no definition.  I'm
             a bit dubious of this, as the artificial statement that we
             generate here may in fact be ill-formed, but it is simply
             used as an internal device in this pass, and never becomes
             part of the CFG.  */
	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
          new_stmt = gimple_build_assign (rhs, lhs);
          SSA_NAME_DEF_STMT (rhs) = defstmt;
        }
      else
        new_stmt = gimple_build_assign (rhs, lhs);

      gimple_set_vuse (new_stmt, gimple_vdef (stmt));

      /* Finally enter the statement into the available expression
	 table.  */
      avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
    }
}

/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
   CONST_AND_COPIES.  */

static void
cprop_operand (gimple *stmt, use_operand_p op_p, vr_values *vr_values)
{
  tree val;
  tree op = USE_FROM_PTR (op_p);

  /* If the operand has a known constant value or it is known to be a
     copy of some other variable, use the value or copy stored in
     CONST_AND_COPIES.  */
  val = SSA_NAME_VALUE (op);
  if (!val)
    val = vr_values->op_with_constant_singleton_value_range (op);

  if (val && val != op)
    {
      /* Do not replace hard register operands in asm statements.  */
      if (gimple_code (stmt) == GIMPLE_ASM
	  && !may_propagate_copy_into_asm (op))
	return;

      /* Certain operands are not allowed to be copy propagated due
	 to their interaction with exception handling and some GCC
	 extensions.  */
      if (!may_propagate_copy (op, val))
	return;

      /* Do not propagate copies into BIVs.
         See PR23821 and PR62217 for how this can disturb IV and
	 number of iteration analysis.  */
      if (TREE_CODE (val) != INTEGER_CST)
	{
	  gimple *def = SSA_NAME_DEF_STMT (op);
	  if (gimple_code (def) == GIMPLE_PHI
	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
	    return;
	}

      /* Dump details.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced '");
	  print_generic_expr (dump_file, op, dump_flags);
	  fprintf (dump_file, "' with %s '",
		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
	  print_generic_expr (dump_file, val, dump_flags);
	  fprintf (dump_file, "'\n");
	}

      if (TREE_CODE (val) != SSA_NAME)
	opt_stats.num_const_prop++;
      else
	opt_stats.num_copy_prop++;

      propagate_value (op_p, val);

      /* And note that we modified this statement.  This is now
	 safe, even if we changed virtual operands since we will
	 rescan the statement and rewrite its operands again.  */
      gimple_set_modified (stmt, true);
    }
}

/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
   known value for that SSA_NAME (or NULL if no value is known).

   Propagate values from CONST_AND_COPIES into the uses, vuses and
   vdef_ops of STMT.  */

static void
cprop_into_stmt (gimple *stmt, vr_values *vr_values)
{
  use_operand_p op_p;
  ssa_op_iter iter;
  tree last_copy_propagated_op = NULL;

  FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
    {
      tree old_op = USE_FROM_PTR (op_p);

      /* If we have A = B and B = A in the copy propagation tables
	 (due to an equality comparison), avoid substituting B for A
	 then A for B in the trivially discovered cases.   This allows
	 optimization of statements were A and B appear as input
	 operands.  */
      if (old_op != last_copy_propagated_op)
	{
	  cprop_operand (stmt, op_p, vr_values);

	  tree new_op = USE_FROM_PTR (op_p);
	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
	    last_copy_propagated_op = new_op;
	}
    }
}

/* If STMT contains a relational test, try to convert it into an
   equality test if there is only a single value which can ever
   make the test true.

   For example, if the expression hash table contains:

    TRUE = (i <= 1)

   And we have a test within statement of i >= 1, then we can safely
   rewrite the test as i == 1 since there only a single value where
   the test is true.

   This is similar to code in VRP.  */

static void
test_for_singularity (gimple *stmt, gcond *dummy_cond,
		      avail_exprs_stack *avail_exprs_stack)
{
  /* We want to support gimple conditionals as well as assignments
     where the RHS contains a conditional.  */
  if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
    {
      enum tree_code code = ERROR_MARK;
      tree lhs, rhs;

      /* Extract the condition of interest from both forms we support.  */
      if (is_gimple_assign (stmt))
	{
	  code = gimple_assign_rhs_code (stmt);
	  lhs = gimple_assign_rhs1 (stmt);
	  rhs = gimple_assign_rhs2 (stmt);
	}
      else if (gimple_code (stmt) == GIMPLE_COND)
	{
	  code = gimple_cond_code (as_a <gcond *> (stmt));
	  lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
	  rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
	}

      /* We're looking for a relational test using LE/GE.  Also note we can
	 canonicalize LT/GT tests against constants into LE/GT tests.  */
      if (code == LE_EXPR || code == GE_EXPR
	  || ((code == LT_EXPR || code == GT_EXPR)
	       && TREE_CODE (rhs) == INTEGER_CST))
	{
	  /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR.  */
	  if (code == LT_EXPR)
	    rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
			       rhs, build_int_cst (TREE_TYPE (rhs), 1));

	  if (code == GT_EXPR)
	    rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
			       rhs, build_int_cst (TREE_TYPE (rhs), 1));

	  /* Determine the code we want to check for in the hash table.  */
	  enum tree_code test_code;
	  if (code == GE_EXPR || code == GT_EXPR)
	    test_code = LE_EXPR;
	  else
	    test_code = GE_EXPR;

	  /* Update the dummy statement so we can query the hash tables.  */
	  gimple_cond_set_code (dummy_cond, test_code);
	  gimple_cond_set_lhs (dummy_cond, lhs);
	  gimple_cond_set_rhs (dummy_cond, rhs);
	  tree cached_lhs
	    = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);

	  /* If the lookup returned 1 (true), then the expression we
	     queried was in the hash table.  As a result there is only
	     one value that makes the original conditional true.  Update
	     STMT accordingly.  */
	  if (cached_lhs && integer_onep (cached_lhs))
	    {
	      if (is_gimple_assign (stmt))
		{
		  gimple_assign_set_rhs_code (stmt, EQ_EXPR);
		  gimple_assign_set_rhs2 (stmt, rhs);
		  gimple_set_modified (stmt, true);
		}
	      else
		{
		  gimple_set_modified (stmt, true);
		  gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
		  gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
		  gimple_set_modified (stmt, true);
		}
	    }
	}
    }
}

/* Optimize the statement in block BB pointed to by iterator SI.

   We try to perform some simplistic global redundancy elimination and
   constant propagation:

   1- To detect global redundancy, we keep track of expressions that have
      been computed in this block and its dominators.  If we find that the
      same expression is computed more than once, we eliminate repeated
      computations by using the target of the first one.

   2- Constant values and copy assignments.  This is used to do very
      simplistic constant and copy propagation.  When a constant or copy
      assignment is found, we map the value on the RHS of the assignment to
      the variable in the LHS in the CONST_AND_COPIES table.

   3- Very simple redundant store elimination is performed.

   4- We can simplify a condition to a constant or from a relational
      condition to an equality condition.  */

edge
dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
				   bool *removed_p)
{
  gimple *stmt, *old_stmt;
  bool may_optimize_p;
  bool modified_p = false;
  bool was_noreturn;
  edge retval = NULL;

  old_stmt = stmt = gsi_stmt (*si);
  was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Optimizing statement ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }

  update_stmt_if_modified (stmt);
  opt_stats.num_stmts++;

  /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
  cprop_into_stmt (stmt, evrp_range_analyzer.get_vr_values ());

  /* If the statement has been modified with constant replacements,
     fold its RHS before checking for redundant computations.  */
  if (gimple_modified_p (stmt))
    {
      tree rhs = NULL;

      /* Try to fold the statement making sure that STMT is kept
	 up to date.  */
      if (fold_stmt (si))
	{
	  stmt = gsi_stmt (*si);
	  gimple_set_modified (stmt, true);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "  Folded to: ");
	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	    }
	}

      /* We only need to consider cases that can yield a gimple operand.  */
      if (gimple_assign_single_p (stmt))
        rhs = gimple_assign_rhs1 (stmt);
      else if (gimple_code (stmt) == GIMPLE_GOTO)
        rhs = gimple_goto_dest (stmt);
      else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
        /* This should never be an ADDR_EXPR.  */
        rhs = gimple_switch_index (swtch_stmt);

      if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
        recompute_tree_invariant_for_addr_expr (rhs);

      /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
	 even if fold_stmt updated the stmt already and thus cleared
	 gimple_modified_p flag on it.  */
      modified_p = true;
    }

  /* Check for redundant computations.  Do this optimization only
     for assignments that have no volatile ops and conditionals.  */
  may_optimize_p = (!gimple_has_side_effects (stmt)
                    && (is_gimple_assign (stmt)
                        || (is_gimple_call (stmt)
                            && gimple_call_lhs (stmt) != NULL_TREE)
                        || gimple_code (stmt) == GIMPLE_COND
                        || gimple_code (stmt) == GIMPLE_SWITCH));

  if (may_optimize_p)
    {
      if (gimple_code (stmt) == GIMPLE_CALL)
	{
	  /* Resolve __builtin_constant_p.  If it hasn't been
	     folded to integer_one_node by now, it's fairly
	     certain that the value simply isn't constant.  */
	  tree callee = gimple_call_fndecl (stmt);
	  if (callee
	      && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
	    {
	      propagate_tree_value_into_stmt (si, integer_zero_node);
	      stmt = gsi_stmt (*si);
	    }
	}

      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  tree lhs = gimple_cond_lhs (stmt);
	  tree rhs = gimple_cond_rhs (stmt);

	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
	     then this conditional is computable at compile time.  We can just
	     shove either 0 or 1 into the LHS, mark the statement as modified
	     and all the right things will just happen below.

	     Note this would apply to any case where LHS has a range
	     narrower than its type implies and RHS is outside that
	     narrower range.  Future work.  */
	  if (TREE_CODE (lhs) == SSA_NAME
	      && ssa_name_has_boolean_range (lhs)
	      && TREE_CODE (rhs) == INTEGER_CST
	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
	    {
	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
				   fold_convert (TREE_TYPE (lhs),
						 integer_zero_node));
	      gimple_set_modified (stmt, true);
	    }
	  else if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      /* Exploiting EVRP data is not yet fully integrated into DOM
		 but we need to do something for this case to avoid regressing
		 udr4.f90 and new1.C which have unexecutable blocks with
		 undefined behavior that get diagnosed if they're left in the
		 IL because we've attached range information to new
		 SSA_NAMES.  */
	      update_stmt_if_modified (stmt);
	      edge taken_edge = NULL;
	      evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
						       &taken_edge);
	      if (taken_edge)
		{
		  if (taken_edge->flags & EDGE_TRUE_VALUE)
		    gimple_cond_make_true (as_a <gcond *> (stmt));
		  else if (taken_edge->flags & EDGE_FALSE_VALUE)
		    gimple_cond_make_false (as_a <gcond *> (stmt));
		  else
		    gcc_unreachable ();
		  gimple_set_modified (stmt, true);
		  update_stmt (stmt);
		  cfg_altered = true;
		  return taken_edge;
		}
	    }
	}

      update_stmt_if_modified (stmt);
      eliminate_redundant_computations (si, m_const_and_copies,
					m_avail_exprs_stack);
      stmt = gsi_stmt (*si);

      /* Perform simple redundant store elimination.  */
      if (gimple_assign_single_p (stmt)
	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
	{
	  tree lhs = gimple_assign_lhs (stmt);
	  tree rhs = gimple_assign_rhs1 (stmt);
	  tree cached_lhs;
	  gassign *new_stmt;
	  rhs = dom_valueize (rhs);
	  /* Build a new statement with the RHS and LHS exchanged.  */
	  if (TREE_CODE (rhs) == SSA_NAME)
	    {
	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
	      new_stmt = gimple_build_assign (rhs, lhs);
	      SSA_NAME_DEF_STMT (rhs) = defstmt;
	    }
	  else
	    new_stmt = gimple_build_assign (rhs, lhs);
	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
	  expr_hash_elt *elt = NULL;
	  cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
							       false, &elt);
	  if (cached_lhs
	      && operand_equal_p (rhs, cached_lhs, 0)
	      && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
				       ? elt->expr ()->ops.single.rhs
				       : NULL_TREE, lhs))
	    {
	      basic_block bb = gimple_bb (stmt);
	      unlink_stmt_vdef (stmt);
	      if (gsi_remove (si, true))
		{
		  bitmap_set_bit (need_eh_cleanup, bb->index);
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    fprintf (dump_file, "  Flagged to clear EH edges.\n");
		}
	      release_defs (stmt);
	      *removed_p = true;
	      return retval;
	    }
	}

      /* If this statement was not redundant, we may still be able to simplify
	 it, which may in turn allow other part of DOM or other passes to do
	 a better job.  */
      test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack);
    }

  /* Record any additional equivalences created by this statement.  */
  if (is_gimple_assign (stmt))
    record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);

  /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
     know where it goes.  */
  if (gimple_modified_p (stmt) || modified_p)
    {
      tree val = NULL;

      if (gimple_code (stmt) == GIMPLE_COND)
        val = fold_binary_loc (gimple_location (stmt),
			       gimple_cond_code (stmt), boolean_type_node,
			       gimple_cond_lhs (stmt),
			       gimple_cond_rhs (stmt));
      else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
	val = gimple_switch_index (swtch_stmt);

      if (val && TREE_CODE (val) == INTEGER_CST)
	{
	  retval = find_taken_edge (bb, val);
	  if (retval)
	    {
	      /* Fix the condition to be either true or false.  */
	      if (gimple_code (stmt) == GIMPLE_COND)
		{
		  if (integer_zerop (val))
		    gimple_cond_make_false (as_a <gcond *> (stmt));
		  else if (integer_onep (val))
		    gimple_cond_make_true (as_a <gcond *> (stmt));
		  else
		    gcc_unreachable ();

		  gimple_set_modified (stmt, true);
		}

	      /* Further simplifications may be possible.  */
	      cfg_altered = true;
	    }
	}

      update_stmt_if_modified (stmt);

      /* If we simplified a statement in such a way as to be shown that it
	 cannot trap, update the eh information and the cfg to match.  */
      if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
	{
	  bitmap_set_bit (need_eh_cleanup, bb->index);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
	}

      if (!was_noreturn
	  && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
	need_noreturn_fixup.safe_push (stmt);
    }
  return retval;
}