Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
// Internal policy header for unordered_set and unordered_map -*- C++ -*-

// Copyright (C) 2010-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file bits/hashtable_policy.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly.
 *  @headername{unordered_map,unordered_set}
 */

#ifndef _HASHTABLE_POLICY_H
#define _HASHTABLE_POLICY_H 1

#include <tuple>		// for std::tuple, std::forward_as_tuple
#include <limits>		// for std::numeric_limits
#include <bits/stl_algobase.h>	// for std::min, std::is_permutation.

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    class _Hashtable;

namespace __detail
{
  /**
   *  @defgroup hashtable-detail Base and Implementation Classes
   *  @ingroup unordered_associative_containers
   *  @{
   */
  template<typename _Key, typename _Value,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _Traits>
    struct _Hashtable_base;

  // Helper function: return distance(first, last) for forward
  // iterators, or 0/1 for input iterators.
  template<class _Iterator>
    inline typename std::iterator_traits<_Iterator>::difference_type
    __distance_fw(_Iterator __first, _Iterator __last,
		  std::input_iterator_tag)
    { return __first != __last ? 1 : 0; }

  template<class _Iterator>
    inline typename std::iterator_traits<_Iterator>::difference_type
    __distance_fw(_Iterator __first, _Iterator __last,
		  std::forward_iterator_tag)
    { return std::distance(__first, __last); }

  template<class _Iterator>
    inline typename std::iterator_traits<_Iterator>::difference_type
    __distance_fw(_Iterator __first, _Iterator __last)
    { return __distance_fw(__first, __last,
			   std::__iterator_category(__first)); }

  struct _Identity
  {
    template<typename _Tp>
      _Tp&&
      operator()(_Tp&& __x) const
      { return std::forward<_Tp>(__x); }
  };

  struct _Select1st
  {
    template<typename _Tp>
      auto
      operator()(_Tp&& __x) const
      -> decltype(std::get<0>(std::forward<_Tp>(__x)))
      { return std::get<0>(std::forward<_Tp>(__x)); }
  };

  template<typename _NodeAlloc>
    struct _Hashtable_alloc;

  // Functor recycling a pool of nodes and using allocation once the pool is
  // empty.
  template<typename _NodeAlloc>
    struct _ReuseOrAllocNode
    {
    private:
      using __node_alloc_type = _NodeAlloc;
      using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
      using __node_alloc_traits =
	typename __hashtable_alloc::__node_alloc_traits;
      using __node_type = typename __hashtable_alloc::__node_type;

    public:
      _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
      : _M_nodes(__nodes), _M_h(__h) { }
      _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;

      ~_ReuseOrAllocNode()
      { _M_h._M_deallocate_nodes(_M_nodes); }

      template<typename _Arg>
	__node_type*
	operator()(_Arg&& __arg) const
	{
	  if (_M_nodes)
	    {
	      __node_type* __node = _M_nodes;
	      _M_nodes = _M_nodes->_M_next();
	      __node->_M_nxt = nullptr;
	      auto& __a = _M_h._M_node_allocator();
	      __node_alloc_traits::destroy(__a, __node->_M_valptr());
	      __try
		{
		  __node_alloc_traits::construct(__a, __node->_M_valptr(),
						 std::forward<_Arg>(__arg));
		}
	      __catch(...)
		{
		  _M_h._M_deallocate_node_ptr(__node);
		  __throw_exception_again;
		}
	      return __node;
	    }
	  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
	}

    private:
      mutable __node_type* _M_nodes;
      __hashtable_alloc& _M_h;
    };

  // Functor similar to the previous one but without any pool of nodes to
  // recycle.
  template<typename _NodeAlloc>
    struct _AllocNode
    {
    private:
      using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
      using __node_type = typename __hashtable_alloc::__node_type;

    public:
      _AllocNode(__hashtable_alloc& __h)
      : _M_h(__h) { }

      template<typename _Arg>
	__node_type*
	operator()(_Arg&& __arg) const
	{ return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }

    private:
      __hashtable_alloc& _M_h;
    };

  // Auxiliary types used for all instantiations of _Hashtable nodes
  // and iterators.

  /**
   *  struct _Hashtable_traits
   *
   *  Important traits for hash tables.
   *
   *  @tparam _Cache_hash_code  Boolean value. True if the value of
   *  the hash function is stored along with the value. This is a
   *  time-space tradeoff.  Storing it may improve lookup speed by
   *  reducing the number of times we need to call the _Hash or _Equal
   *  functors.
   *
   *  @tparam _Constant_iterators  Boolean value. True if iterator and
   *  const_iterator are both constant iterator types. This is true
   *  for unordered_set and unordered_multiset, false for
   *  unordered_map and unordered_multimap.
   *
   *  @tparam _Unique_keys  Boolean value. True if the return value
   *  of _Hashtable::count(k) is always at most one, false if it may
   *  be an arbitrary number. This is true for unordered_set and
   *  unordered_map, false for unordered_multiset and
   *  unordered_multimap.
   */
  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
    struct _Hashtable_traits
    {
      using __hash_cached = __bool_constant<_Cache_hash_code>;
      using __constant_iterators = __bool_constant<_Constant_iterators>;
      using __unique_keys = __bool_constant<_Unique_keys>;
    };

  /**
   *  struct _Hash_node_base
   *
   *  Nodes, used to wrap elements stored in the hash table.  A policy
   *  template parameter of class template _Hashtable controls whether
   *  nodes also store a hash code. In some cases (e.g. strings) this
   *  may be a performance win.
   */
  struct _Hash_node_base
  {
    _Hash_node_base* _M_nxt;

    _Hash_node_base() noexcept : _M_nxt() { }

    _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
  };

  /**
   *  struct _Hash_node_value_base
   *
   *  Node type with the value to store.
   */
  template<typename _Value>
    struct _Hash_node_value_base : _Hash_node_base
    {
      typedef _Value value_type;

      __gnu_cxx::__aligned_buffer<_Value> _M_storage;

      _Value*
      _M_valptr() noexcept
      { return _M_storage._M_ptr(); }

      const _Value*
      _M_valptr() const noexcept
      { return _M_storage._M_ptr(); }

      _Value&
      _M_v() noexcept
      { return *_M_valptr(); }

      const _Value&
      _M_v() const noexcept
      { return *_M_valptr(); }
    };

  /**
   *  Primary template struct _Hash_node.
   */
  template<typename _Value, bool _Cache_hash_code>
    struct _Hash_node;

  /**
   *  Specialization for nodes with caches, struct _Hash_node.
   *
   *  Base class is __detail::_Hash_node_value_base.
   */
  template<typename _Value>
    struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
    {
      std::size_t  _M_hash_code;

      _Hash_node*
      _M_next() const noexcept
      { return static_cast<_Hash_node*>(this->_M_nxt); }
    };

  /**
   *  Specialization for nodes without caches, struct _Hash_node.
   *
   *  Base class is __detail::_Hash_node_value_base.
   */
  template<typename _Value>
    struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
    {
      _Hash_node*
      _M_next() const noexcept
      { return static_cast<_Hash_node*>(this->_M_nxt); }
    };

  /// Base class for node iterators.
  template<typename _Value, bool _Cache_hash_code>
    struct _Node_iterator_base
    {
      using __node_type = _Hash_node<_Value, _Cache_hash_code>;

      __node_type*  _M_cur;

      _Node_iterator_base(__node_type* __p) noexcept
      : _M_cur(__p) { }

      void
      _M_incr() noexcept
      { _M_cur = _M_cur->_M_next(); }
    };

  template<typename _Value, bool _Cache_hash_code>
    inline bool
    operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
	       const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
    noexcept
    { return __x._M_cur == __y._M_cur; }

  template<typename _Value, bool _Cache_hash_code>
    inline bool
    operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
	       const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
    noexcept
    { return __x._M_cur != __y._M_cur; }

  /// Node iterators, used to iterate through all the hashtable.
  template<typename _Value, bool __constant_iterators, bool __cache>
    struct _Node_iterator
    : public _Node_iterator_base<_Value, __cache>
    {
    private:
      using __base_type = _Node_iterator_base<_Value, __cache>;
      using __node_type = typename __base_type::__node_type;

    public:
      typedef _Value					value_type;
      typedef std::ptrdiff_t				difference_type;
      typedef std::forward_iterator_tag			iterator_category;

      using pointer = typename std::conditional<__constant_iterators,
						const _Value*, _Value*>::type;

      using reference = typename std::conditional<__constant_iterators,
						  const _Value&, _Value&>::type;

      _Node_iterator() noexcept
      : __base_type(0) { }

      explicit
      _Node_iterator(__node_type* __p) noexcept
      : __base_type(__p) { }

      reference
      operator*() const noexcept
      { return this->_M_cur->_M_v(); }

      pointer
      operator->() const noexcept
      { return this->_M_cur->_M_valptr(); }

      _Node_iterator&
      operator++() noexcept
      {
	this->_M_incr();
	return *this;
      }

      _Node_iterator
      operator++(int) noexcept
      {
	_Node_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };

  /// Node const_iterators, used to iterate through all the hashtable.
  template<typename _Value, bool __constant_iterators, bool __cache>
    struct _Node_const_iterator
    : public _Node_iterator_base<_Value, __cache>
    {
    private:
      using __base_type = _Node_iterator_base<_Value, __cache>;
      using __node_type = typename __base_type::__node_type;

    public:
      typedef _Value					value_type;
      typedef std::ptrdiff_t				difference_type;
      typedef std::forward_iterator_tag			iterator_category;

      typedef const _Value*				pointer;
      typedef const _Value&				reference;

      _Node_const_iterator() noexcept
      : __base_type(0) { }

      explicit
      _Node_const_iterator(__node_type* __p) noexcept
      : __base_type(__p) { }

      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
			   __cache>& __x) noexcept
      : __base_type(__x._M_cur) { }

      reference
      operator*() const noexcept
      { return this->_M_cur->_M_v(); }

      pointer
      operator->() const noexcept
      { return this->_M_cur->_M_valptr(); }

      _Node_const_iterator&
      operator++() noexcept
      {
	this->_M_incr();
	return *this;
      }

      _Node_const_iterator
      operator++(int) noexcept
      {
	_Node_const_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };

  // Many of class template _Hashtable's template parameters are policy
  // classes.  These are defaults for the policies.

  /// Default range hashing function: use division to fold a large number
  /// into the range [0, N).
  struct _Mod_range_hashing
  {
    typedef std::size_t first_argument_type;
    typedef std::size_t second_argument_type;
    typedef std::size_t result_type;

    result_type
    operator()(first_argument_type __num,
	       second_argument_type __den) const noexcept
    { return __num % __den; }
  };

  /// Default ranged hash function H.  In principle it should be a
  /// function object composed from objects of type H1 and H2 such that
  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
  /// h1 and h2.  So instead we'll just use a tag to tell class template
  /// hashtable to do that composition.
  struct _Default_ranged_hash { };

  /// Default value for rehash policy.  Bucket size is (usually) the
  /// smallest prime that keeps the load factor small enough.
  struct _Prime_rehash_policy
  {
    using __has_load_factor = true_type;

    _Prime_rehash_policy(float __z = 1.0) noexcept
    : _M_max_load_factor(__z), _M_next_resize(0) { }

    float
    max_load_factor() const noexcept
    { return _M_max_load_factor; }

    // Return a bucket size no smaller than n.
    std::size_t
    _M_next_bkt(std::size_t __n) const;

    // Return a bucket count appropriate for n elements
    std::size_t
    _M_bkt_for_elements(std::size_t __n) const
    { return __builtin_ceill(__n / (long double)_M_max_load_factor); }

    // __n_bkt is current bucket count, __n_elt is current element count,
    // and __n_ins is number of elements to be inserted.  Do we need to
    // increase bucket count?  If so, return make_pair(true, n), where n
    // is the new bucket count.  If not, return make_pair(false, 0).
    std::pair<bool, std::size_t>
    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
		   std::size_t __n_ins) const;

    typedef std::size_t _State;

    _State
    _M_state() const
    { return _M_next_resize; }

    void
    _M_reset() noexcept
    { _M_next_resize = 0; }

    void
    _M_reset(_State __state)
    { _M_next_resize = __state; }

    static const std::size_t _S_growth_factor = 2;

    float		_M_max_load_factor;
    mutable std::size_t	_M_next_resize;
  };

  /// Range hashing function assuming that second arg is a power of 2.
  struct _Mask_range_hashing
  {
    typedef std::size_t first_argument_type;
    typedef std::size_t second_argument_type;
    typedef std::size_t result_type;

    result_type
    operator()(first_argument_type __num,
	       second_argument_type __den) const noexcept
    { return __num & (__den - 1); }
  };

  /// Compute closest power of 2 not less than __n
  inline std::size_t
  __clp2(std::size_t __n) noexcept
  {
    // Equivalent to return __n ? std::bit_ceil(__n) : 0;
    if (__n < 2)
      return __n;
    const unsigned __lz = sizeof(size_t) > sizeof(long)
      ? __builtin_clzll(__n - 1ull)
      : __builtin_clzl(__n - 1ul);
    // Doing two shifts avoids undefined behaviour when __lz == 0.
    return (size_t(1) << (numeric_limits<size_t>::digits - __lz - 1)) << 1;
  }

  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
  /// operations.
  struct _Power2_rehash_policy
  {
    using __has_load_factor = true_type;

    _Power2_rehash_policy(float __z = 1.0) noexcept
    : _M_max_load_factor(__z), _M_next_resize(0) { }

    float
    max_load_factor() const noexcept
    { return _M_max_load_factor; }

    // Return a bucket size no smaller than n (as long as n is not above the
    // highest power of 2).
    std::size_t
    _M_next_bkt(std::size_t __n) noexcept
    {
      if (__n == 0)
	// Special case on container 1st initialization with 0 bucket count
	// hint. We keep _M_next_resize to 0 to make sure that next time we
	// want to add an element allocation will take place.
	return 1;

      const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
      const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
      std::size_t __res = __clp2(__n);

      if (__res == 0)
	__res = __max_bkt;
      else if (__res == 1)
	// If __res is 1 we force it to 2 to make sure there will be an
	// allocation so that nothing need to be stored in the initial
	// single bucket
	__res = 2;

      if (__res == __max_bkt)
	// Set next resize to the max value so that we never try to rehash again
	// as we already reach the biggest possible bucket number.
	// Note that it might result in max_load_factor not being respected.
	_M_next_resize = numeric_limits<size_t>::max();
      else
	_M_next_resize
	  = __builtin_floorl(__res * (long double)_M_max_load_factor);

      return __res;
    }

    // Return a bucket count appropriate for n elements
    std::size_t
    _M_bkt_for_elements(std::size_t __n) const noexcept
    { return __builtin_ceill(__n / (long double)_M_max_load_factor); }

    // __n_bkt is current bucket count, __n_elt is current element count,
    // and __n_ins is number of elements to be inserted.  Do we need to
    // increase bucket count?  If so, return make_pair(true, n), where n
    // is the new bucket count.  If not, return make_pair(false, 0).
    std::pair<bool, std::size_t>
    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
		   std::size_t __n_ins) noexcept
    {
      if (__n_elt + __n_ins > _M_next_resize)
	{
	  // If _M_next_resize is 0 it means that we have nothing allocated so
	  // far and that we start inserting elements. In this case we start
	  // with an initial bucket size of 11.
	  long double __min_bkts
	    = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11)
	      / (long double)_M_max_load_factor;
	  if (__min_bkts >= __n_bkt)
	    return { true,
	      _M_next_bkt(std::max<std::size_t>(__builtin_floorl(__min_bkts) + 1,
						__n_bkt * _S_growth_factor)) };

	  _M_next_resize
	    = __builtin_floorl(__n_bkt * (long double)_M_max_load_factor);
	  return { false, 0 };
	}
      else
	return { false, 0 };
    }

    typedef std::size_t _State;

    _State
    _M_state() const noexcept
    { return _M_next_resize; }

    void
    _M_reset() noexcept
    { _M_next_resize = 0; }

    void
    _M_reset(_State __state) noexcept
    { _M_next_resize = __state; }

    static const std::size_t _S_growth_factor = 2;

    float	_M_max_load_factor;
    std::size_t	_M_next_resize;
  };

  // Base classes for std::_Hashtable.  We define these base classes
  // because in some cases we want to do different things depending on
  // the value of a policy class.  In some cases the policy class
  // affects which member functions and nested typedefs are defined;
  // we handle that by specializing base class templates.  Several of
  // the base class templates need to access other members of class
  // template _Hashtable, so we use a variant of the "Curiously
  // Recurring Template Pattern" (CRTP) technique.

  /**
   *  Primary class template _Map_base.
   *
   *  If the hashtable has a value type of the form pair<T1, T2> and a
   *  key extraction policy (_ExtractKey) that returns the first part
   *  of the pair, the hashtable gets a mapped_type typedef.  If it
   *  satisfies those criteria and also has unique keys, then it also
   *  gets an operator[].
   */
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits,
	   bool _Unique_keys = _Traits::__unique_keys::value>
    struct _Map_base { };

  /// Partial specialization, __unique_keys set to false.
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
    {
      using mapped_type = typename std::tuple_element<1, _Pair>::type;
    };

  /// Partial specialization, __unique_keys set to true.
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
    {
    private:
      using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
							 _Select1st,
							_Equal, _H1, _H2, _Hash,
							  _Traits>;

      using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
				     _Select1st, _Equal,
				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;

      using __hash_code = typename __hashtable_base::__hash_code;
      using __node_type = typename __hashtable_base::__node_type;

    public:
      using key_type = typename __hashtable_base::key_type;
      using iterator = typename __hashtable_base::iterator;
      using mapped_type = typename std::tuple_element<1, _Pair>::type;

      mapped_type&
      operator[](const key_type& __k);

      mapped_type&
      operator[](key_type&& __k);

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 761. unordered_map needs an at() member function.
      mapped_type&
      at(const key_type& __k);

      const mapped_type&
      at(const key_type& __k) const;
    };

  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
    operator[](const key_type& __k)
    -> mapped_type&
    {
      __hashtable* __h = static_cast<__hashtable*>(this);
      __hash_code __code = __h->_M_hash_code(__k);
      std::size_t __bkt = __h->_M_bucket_index(__k, __code);
      if (__node_type* __node = __h->_M_find_node(__bkt, __k, __code))
	return __node->_M_v().second;

      typename __hashtable::_Scoped_node __node {
	__h,
	std::piecewise_construct,
	std::tuple<const key_type&>(__k),
	std::tuple<>()
      };
      auto __pos
	= __h->_M_insert_unique_node(__k, __bkt, __code, __node._M_node);
      __node._M_node = nullptr;
      return __pos->second;
    }

  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
    operator[](key_type&& __k)
    -> mapped_type&
    {
      __hashtable* __h = static_cast<__hashtable*>(this);
      __hash_code __code = __h->_M_hash_code(__k);
      std::size_t __bkt = __h->_M_bucket_index(__k, __code);
      if (__node_type* __node = __h->_M_find_node(__bkt, __k, __code))
	return __node->_M_v().second;

      typename __hashtable::_Scoped_node __node {
	__h,
	std::piecewise_construct,
	std::forward_as_tuple(std::move(__k)),
	std::tuple<>()
      };
      auto __pos
	= __h->_M_insert_unique_node(__k, __bkt, __code, __node._M_node);
      __node._M_node = nullptr;
      return __pos->second;
    }

  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
    at(const key_type& __k)
    -> mapped_type&
    {
      __hashtable* __h = static_cast<__hashtable*>(this);
      __hash_code __code = __h->_M_hash_code(__k);
      std::size_t __bkt = __h->_M_bucket_index(__k, __code);
      __node_type* __p = __h->_M_find_node(__bkt, __k, __code);

      if (!__p)
	__throw_out_of_range(__N("_Map_base::at"));
      return __p->_M_v().second;
    }

  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    auto
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
    at(const key_type& __k) const
    -> const mapped_type&
    {
      const __hashtable* __h = static_cast<const __hashtable*>(this);
      __hash_code __code = __h->_M_hash_code(__k);
      std::size_t __bkt = __h->_M_bucket_index(__k, __code);
      __node_type* __p = __h->_M_find_node(__bkt, __k, __code);

      if (!__p)
	__throw_out_of_range(__N("_Map_base::at"));
      return __p->_M_v().second;
    }

  /**
   *  Primary class template _Insert_base.
   *
   *  Defines @c insert member functions appropriate to all _Hashtables.
   */
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Insert_base
    {
    protected:
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
				     _Equal, _H1, _H2, _Hash,
				     _RehashPolicy, _Traits>;

      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
					       _Equal, _H1, _H2, _Hash,
					       _Traits>;

      using value_type = typename __hashtable_base::value_type;
      using iterator = typename __hashtable_base::iterator;
      using const_iterator =  typename __hashtable_base::const_iterator;
      using size_type = typename __hashtable_base::size_type;

      using __unique_keys = typename __hashtable_base::__unique_keys;
      using __ireturn_type = typename __hashtable_base::__ireturn_type;
      using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
      using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
      using __node_gen_type = _AllocNode<__node_alloc_type>;

      __hashtable&
      _M_conjure_hashtable()
      { return *(static_cast<__hashtable*>(this)); }

      template<typename _InputIterator, typename _NodeGetter>
	void
	_M_insert_range(_InputIterator __first, _InputIterator __last,
			const _NodeGetter&, true_type);

      template<typename _InputIterator, typename _NodeGetter>
	void
	_M_insert_range(_InputIterator __first, _InputIterator __last,
			const _NodeGetter&, false_type);

    public:
      __ireturn_type
      insert(const value_type& __v)
      {
	__hashtable& __h = _M_conjure_hashtable();
	__node_gen_type __node_gen(__h);
	return __h._M_insert(__v, __node_gen, __unique_keys());
      }

      iterator
      insert(const_iterator __hint, const value_type& __v)
      {
	__hashtable& __h = _M_conjure_hashtable();
	__node_gen_type __node_gen(__h);	
	return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
      }

      void
      insert(initializer_list<value_type> __l)
      { this->insert(__l.begin(), __l.end()); }

      template<typename _InputIterator>
	void
	insert(_InputIterator __first, _InputIterator __last)
	{
	  __hashtable& __h = _M_conjure_hashtable();
	  __node_gen_type __node_gen(__h);
	  return _M_insert_range(__first, __last, __node_gen, __unique_keys());
	}
    };

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    template<typename _InputIterator, typename _NodeGetter>
      void
      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
		    _RehashPolicy, _Traits>::
      _M_insert_range(_InputIterator __first, _InputIterator __last,
		      const _NodeGetter& __node_gen, true_type)
      {
	size_type __n_elt = __detail::__distance_fw(__first, __last);
	if (__n_elt == 0)
	  return;

	__hashtable& __h = _M_conjure_hashtable();
	for (; __first != __last; ++__first)
	  {
	    if (__h._M_insert(*__first, __node_gen, __unique_keys(),
			      __n_elt).second)
	      __n_elt = 1;
	    else if (__n_elt != 1)
	      --__n_elt;
	  }
      }

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    template<typename _InputIterator, typename _NodeGetter>
      void
      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
		    _RehashPolicy, _Traits>::
      _M_insert_range(_InputIterator __first, _InputIterator __last,
		      const _NodeGetter& __node_gen, false_type)
      {
	using __rehash_type = typename __hashtable::__rehash_type;
	using __rehash_state = typename __hashtable::__rehash_state;
	using pair_type = std::pair<bool, std::size_t>;

	size_type __n_elt = __detail::__distance_fw(__first, __last);
	if (__n_elt == 0)
	  return;

	__hashtable& __h = _M_conjure_hashtable();
	__rehash_type& __rehash = __h._M_rehash_policy;
	const __rehash_state& __saved_state = __rehash._M_state();
	pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
							__h._M_element_count,
							__n_elt);

	if (__do_rehash.first)
	  __h._M_rehash(__do_rehash.second, __saved_state);

	for (; __first != __last; ++__first)
	  __h._M_insert(*__first, __node_gen, __unique_keys());
      }

  /**
   *  Primary class template _Insert.
   *
   *  Defines @c insert member functions that depend on _Hashtable policies,
   *  via partial specializations.
   */
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits,
	   bool _Constant_iterators = _Traits::__constant_iterators::value>
    struct _Insert;

  /// Specialization.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
		   _RehashPolicy, _Traits, true>
    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
    {
      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
					_Equal, _H1, _H2, _Hash,
					_RehashPolicy, _Traits>;

      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
					       _Equal, _H1, _H2, _Hash,
					       _Traits>;

      using value_type = typename __base_type::value_type;
      using iterator = typename __base_type::iterator;
      using const_iterator =  typename __base_type::const_iterator;

      using __unique_keys = typename __base_type::__unique_keys;
      using __ireturn_type = typename __hashtable_base::__ireturn_type;
      using __hashtable = typename __base_type::__hashtable;
      using __node_gen_type = typename __base_type::__node_gen_type;

      using __base_type::insert;

      __ireturn_type
      insert(value_type&& __v)
      {
	__hashtable& __h = this->_M_conjure_hashtable();
	__node_gen_type __node_gen(__h);
	return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
      }

      iterator
      insert(const_iterator __hint, value_type&& __v)
      {
	__hashtable& __h = this->_M_conjure_hashtable();
	__node_gen_type __node_gen(__h);
	return __h._M_insert(__hint, std::move(__v), __node_gen,
			     __unique_keys());
      }
    };

  /// Specialization.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
		   _RehashPolicy, _Traits, false>
    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
    {
      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
				       _Equal, _H1, _H2, _Hash,
				       _RehashPolicy, _Traits>;
      using value_type = typename __base_type::value_type;
      using iterator = typename __base_type::iterator;
      using const_iterator =  typename __base_type::const_iterator;

      using __unique_keys = typename __base_type::__unique_keys;
      using __hashtable = typename __base_type::__hashtable;
      using __ireturn_type = typename __base_type::__ireturn_type;

      using __base_type::insert;

      template<typename _Pair>
	using __is_cons = std::is_constructible<value_type, _Pair&&>;

      template<typename _Pair>
	using _IFcons = std::enable_if<__is_cons<_Pair>::value>;

      template<typename _Pair>
	using _IFconsp = typename _IFcons<_Pair>::type;

      template<typename _Pair, typename = _IFconsp<_Pair>>
	__ireturn_type
	insert(_Pair&& __v)
	{
	  __hashtable& __h = this->_M_conjure_hashtable();
	  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
	}

      template<typename _Pair, typename = _IFconsp<_Pair>>
	iterator
	insert(const_iterator __hint, _Pair&& __v)
	{
	  __hashtable& __h = this->_M_conjure_hashtable();
	  return __h._M_emplace(__hint, __unique_keys(),
				std::forward<_Pair>(__v));
	}
   };

  template<typename _Policy>
    using __has_load_factor = typename _Policy::__has_load_factor;

  /**
   *  Primary class template  _Rehash_base.
   *
   *  Give hashtable the max_load_factor functions and reserve iff the
   *  rehash policy supports it.
  */
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits,
	   typename =
	     __detected_or_t<false_type, __has_load_factor, _RehashPolicy>>
    struct _Rehash_base;

  /// Specialization when rehash policy doesn't provide load factor management.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		      _H1, _H2, _Hash, _RehashPolicy, _Traits,
		      false_type>
    {
    };

  /// Specialization when rehash policy provide load factor management.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy, _Traits,
			true_type>
    {
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
				     _Equal, _H1, _H2, _Hash,
				     _RehashPolicy, _Traits>;

      float
      max_load_factor() const noexcept
      {
	const __hashtable* __this = static_cast<const __hashtable*>(this);
	return __this->__rehash_policy().max_load_factor();
      }

      void
      max_load_factor(float __z)
      {
	__hashtable* __this = static_cast<__hashtable*>(this);
	__this->__rehash_policy(_RehashPolicy(__z));
      }

      void
      reserve(std::size_t __n)
      {
	__hashtable* __this = static_cast<__hashtable*>(this);
	__this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n));
      }
    };

  /**
   *  Primary class template _Hashtable_ebo_helper.
   *
   *  Helper class using EBO when it is not forbidden (the type is not
   *  final) and when it is worth it (the type is empty.)
   */
  template<int _Nm, typename _Tp,
	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
    struct _Hashtable_ebo_helper;

  /// Specialization using EBO.
  template<int _Nm, typename _Tp>
    struct _Hashtable_ebo_helper<_Nm, _Tp, true>
    : private _Tp
    {
      _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { }

      template<typename _OtherTp>
	_Hashtable_ebo_helper(_OtherTp&& __tp)
	: _Tp(std::forward<_OtherTp>(__tp))
	{ }

      const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); }
      _Tp& _M_get() { return static_cast<_Tp&>(*this); }
    };

  /// Specialization not using EBO.
  template<int _Nm, typename _Tp>
    struct _Hashtable_ebo_helper<_Nm, _Tp, false>
    {
      _Hashtable_ebo_helper() = default;

      template<typename _OtherTp>
	_Hashtable_ebo_helper(_OtherTp&& __tp)
	: _M_tp(std::forward<_OtherTp>(__tp))
	{ }

      const _Tp& _M_cget() const { return _M_tp; }
      _Tp& _M_get() { return _M_tp; }

    private:
      _Tp _M_tp{};
    };

  /**
   *  Primary class template _Local_iterator_base.
   *
   *  Base class for local iterators, used to iterate within a bucket
   *  but not between buckets.
   */
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash,
	   bool __cache_hash_code>
    struct _Local_iterator_base;

  /**
   *  Primary class template _Hash_code_base.
   *
   *  Encapsulates two policy issues that aren't quite orthogonal.
   *   (1) the difference between using a ranged hash function and using
   *       the combination of a hash function and a range-hashing function.
   *       In the former case we don't have such things as hash codes, so
   *       we have a dummy type as placeholder.
   *   (2) Whether or not we cache hash codes.  Caching hash codes is
   *       meaningless if we have a ranged hash function.
   *
   *  We also put the key extraction objects here, for convenience.
   *  Each specialization derives from one or more of the template
   *  parameters to benefit from Ebo. This is important as this type
   *  is inherited in some cases by the _Local_iterator_base type used
   *  to implement local_iterator and const_local_iterator. As with
   *  any iterator type we prefer to make it as small as possible.
   *
   *  Primary template is unused except as a hook for specializations.
   */
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash,
	   bool __cache_hash_code>
    struct _Hash_code_base;

  /// Specialization: ranged hash function, no caching hash codes.  H1
  /// and H2 are provided but ignored.  We define a dummy hash code type.
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
    : private _Hashtable_ebo_helper<0, _ExtractKey>,
      private _Hashtable_ebo_helper<1, _Hash>
    {
    private:
      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
      using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;

    protected:
      typedef void* 					__hash_code;
      typedef _Hash_node<_Value, false>			__node_type;

      // We need the default constructor for the local iterators and _Hashtable
      // default constructor.
      _Hash_code_base() = default;

      _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
		      const _Hash& __h)
      : __ebo_extract_key(__ex), __ebo_hash(__h) { }

      __hash_code
      _M_hash_code(const _Key& __key) const
      { return 0; }

      std::size_t
      _M_bucket_index(const _Key& __k, __hash_code,
		      std::size_t __bkt_count) const
      { return _M_ranged_hash()(__k, __bkt_count); }

      std::size_t
      _M_bucket_index(const __node_type* __p, std::size_t __bkt_count) const
	noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
						   (std::size_t)0)) )
      { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __bkt_count); }

      void
      _M_store_code(__node_type*, __hash_code) const
      { }

      void
      _M_copy_code(__node_type*, const __node_type*) const
      { }

      void
      _M_swap(_Hash_code_base& __x)
      {
	std::swap(__ebo_extract_key::_M_get(),
		  __x.__ebo_extract_key::_M_get());
	std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get());
      }

      const _ExtractKey&
      _M_extract() const { return __ebo_extract_key::_M_cget(); }

      const _Hash&
      _M_ranged_hash() const { return __ebo_hash::_M_cget(); }
    };

  // No specialization for ranged hash function while caching hash codes.
  // That combination is meaningless, and trying to do it is an error.

  /// Specialization: ranged hash function, cache hash codes.  This
  /// combination is meaningless, so we provide only a declaration
  /// and no definition.
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;

  /// Specialization: hash function and range-hashing function, no
  /// caching of hash codes.
  /// Provides typedef and accessor required by C++ 11.
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
			   _Default_ranged_hash, false>
    : private _Hashtable_ebo_helper<0, _ExtractKey>,
      private _Hashtable_ebo_helper<1, _H1>,
      private _Hashtable_ebo_helper<2, _H2>
    {
    private:
      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;

      // Gives the local iterator implementation access to _M_bucket_index().
      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
					 _Default_ranged_hash, false>;

    public:
      typedef _H1 					hasher;

      hasher
      hash_function() const
      { return _M_h1(); }

    protected:
      typedef std::size_t 				__hash_code;
      typedef _Hash_node<_Value, false>			__node_type;

      // We need the default constructor for the local iterators and _Hashtable
      // default constructor.
      _Hash_code_base() = default;

      _Hash_code_base(const _ExtractKey& __ex,
		      const _H1& __h1, const _H2& __h2,
		      const _Default_ranged_hash&)
      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }

      __hash_code
      _M_hash_code(const _Key& __k) const
      {
	static_assert(__is_invocable<const _H1&, const _Key&>{},
	    "hash function must be invocable with an argument of key type");
	return _M_h1()(__k);
      }

      std::size_t
      _M_bucket_index(const _Key&, __hash_code __c,
		      std::size_t __bkt_count) const
      { return _M_h2()(__c, __bkt_count); }

      std::size_t
      _M_bucket_index(const __node_type* __p, std::size_t __bkt_count) const
	noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
		  && noexcept(declval<const _H2&>()((__hash_code)0,
						    (std::size_t)0)) )
      { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __bkt_count); }

      void
      _M_store_code(__node_type*, __hash_code) const
      { }

      void
      _M_copy_code(__node_type*, const __node_type*) const
      { }

      void
      _M_swap(_Hash_code_base& __x)
      {
	std::swap(__ebo_extract_key::_M_get(),
		  __x.__ebo_extract_key::_M_get());
	std::swap(__ebo_h1::_M_get(), __x.__ebo_h1::_M_get());
	std::swap(__ebo_h2::_M_get(), __x.__ebo_h2::_M_get());
      }

      const _ExtractKey&
      _M_extract() const { return __ebo_extract_key::_M_cget(); }

      const _H1&
      _M_h1() const { return __ebo_h1::_M_cget(); }

      const _H2&
      _M_h2() const { return __ebo_h2::_M_cget(); }
    };

  /// Specialization: hash function and range-hashing function,
  /// caching hash codes.  H is provided but ignored.  Provides
  /// typedef and accessor required by C++ 11.
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2>
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
			   _Default_ranged_hash, true>
    : private _Hashtable_ebo_helper<0, _ExtractKey>,
      private _Hashtable_ebo_helper<1, _H1>,
      private _Hashtable_ebo_helper<2, _H2>
    {
    private:
      // Gives the local iterator implementation access to _M_h2().
      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
					 _Default_ranged_hash, true>;

      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;

    public:
      typedef _H1 					hasher;

      hasher
      hash_function() const
      { return _M_h1(); }

    protected:
      typedef std::size_t 				__hash_code;
      typedef _Hash_node<_Value, true>			__node_type;

      // We need the default constructor for _Hashtable default constructor.
      _Hash_code_base() = default;
      _Hash_code_base(const _ExtractKey& __ex,
		      const _H1& __h1, const _H2& __h2,
		      const _Default_ranged_hash&)
      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }

      __hash_code
      _M_hash_code(const _Key& __k) const
      {
	static_assert(__is_invocable<const _H1&, const _Key&>{},
	    "hash function must be invocable with an argument of key type");
	return _M_h1()(__k);
      }

      std::size_t
      _M_bucket_index(const _Key&, __hash_code __c,
		      std::size_t __bkt_count) const
      { return _M_h2()(__c, __bkt_count); }

      std::size_t
      _M_bucket_index(const __node_type* __p, std::size_t __bkt_count) const
	noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
						 (std::size_t)0)) )
      { return _M_h2()(__p->_M_hash_code, __bkt_count); }

      void
      _M_store_code(__node_type* __n, __hash_code __c) const
      { __n->_M_hash_code = __c; }

      void
      _M_copy_code(__node_type* __to, const __node_type* __from) const
      { __to->_M_hash_code = __from->_M_hash_code; }

      void
      _M_swap(_Hash_code_base& __x)
      {
	std::swap(__ebo_extract_key::_M_get(),
		  __x.__ebo_extract_key::_M_get());
	std::swap(__ebo_h1::_M_get(), __x.__ebo_h1::_M_get());
	std::swap(__ebo_h2::_M_get(), __x.__ebo_h2::_M_get());
      }

      const _ExtractKey&
      _M_extract() const { return __ebo_extract_key::_M_cget(); }

      const _H1&
      _M_h1() const { return __ebo_h1::_M_cget(); }

      const _H2&
      _M_h2() const { return __ebo_h2::_M_cget(); }
    };

  /// Partial specialization used when nodes contain a cached hash code.
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash>
    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
				_H1, _H2, _Hash, true>
    : private _Hashtable_ebo_helper<0, _H2>
    {
    protected:
      using __base_type = _Hashtable_ebo_helper<0, _H2>;
      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
					       _H1, _H2, _Hash, true>;

      _Local_iterator_base() = default;
      _Local_iterator_base(const __hash_code_base& __base,
			   _Hash_node<_Value, true>* __p,
			   std::size_t __bkt, std::size_t __bkt_count)
      : __base_type(__base._M_h2()),
	_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }

      void
      _M_incr()
      {
	_M_cur = _M_cur->_M_next();
	if (_M_cur)
	  {
	    std::size_t __bkt
	      = __base_type::_M_get()(_M_cur->_M_hash_code,
					   _M_bucket_count);
	    if (__bkt != _M_bucket)
	      _M_cur = nullptr;
	  }
      }

      _Hash_node<_Value, true>*  _M_cur;
      std::size_t _M_bucket;
      std::size_t _M_bucket_count;

    public:
      const void*
      _M_curr() const { return _M_cur; }  // for equality ops

      std::size_t
      _M_get_bucket() const { return _M_bucket; }  // for debug mode
    };

  // Uninitialized storage for a _Hash_code_base.
  // This type is DefaultConstructible and Assignable even if the
  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
  // can be DefaultConstructible and Assignable.
  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
    struct _Hash_code_storage
    {
      __gnu_cxx::__aligned_buffer<_Tp> _M_storage;

      _Tp*
      _M_h() { return _M_storage._M_ptr(); }

      const _Tp*
      _M_h() const { return _M_storage._M_ptr(); }
    };

  // Empty partial specialization for empty _Hash_code_base types.
  template<typename _Tp>
    struct _Hash_code_storage<_Tp, true>
    {
      static_assert( std::is_empty<_Tp>::value, "Type must be empty" );

      // As _Tp is an empty type there will be no bytes written/read through
      // the cast pointer, so no strict-aliasing violation.
      _Tp*
      _M_h() { return reinterpret_cast<_Tp*>(this); }

      const _Tp*
      _M_h() const { return reinterpret_cast<const _Tp*>(this); }
    };

  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash>
    using __hash_code_for_local_iter
      = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
					   _H1, _H2, _Hash, false>>;

  // Partial specialization used when hash codes are not cached
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash>
    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
				_H1, _H2, _Hash, false>
    : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
    {
    protected:
      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
					       _H1, _H2, _Hash, false>;

      _Local_iterator_base() : _M_bucket_count(-1) { }

      _Local_iterator_base(const __hash_code_base& __base,
			   _Hash_node<_Value, false>* __p,
			   std::size_t __bkt, std::size_t __bkt_count)
      : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
      { _M_init(__base); }

      ~_Local_iterator_base()
      {
	if (_M_bucket_count != -1)
	  _M_destroy();
      }

      _Local_iterator_base(const _Local_iterator_base& __iter)
      : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
        _M_bucket_count(__iter._M_bucket_count)
      {
	if (_M_bucket_count != -1)
	  _M_init(*__iter._M_h());
      }

      _Local_iterator_base&
      operator=(const _Local_iterator_base& __iter)
      {
	if (_M_bucket_count != -1)
	  _M_destroy();
	_M_cur = __iter._M_cur;
	_M_bucket = __iter._M_bucket;
	_M_bucket_count = __iter._M_bucket_count;
	if (_M_bucket_count != -1)
	  _M_init(*__iter._M_h());
	return *this;
      }

      void
      _M_incr()
      {
	_M_cur = _M_cur->_M_next();
	if (_M_cur)
	  {
	    std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
							      _M_bucket_count);
	    if (__bkt != _M_bucket)
	      _M_cur = nullptr;
	  }
      }

      _Hash_node<_Value, false>*  _M_cur;
      std::size_t _M_bucket;
      std::size_t _M_bucket_count;

      void
      _M_init(const __hash_code_base& __base)
      { ::new(this->_M_h()) __hash_code_base(__base); }

      void
      _M_destroy() { this->_M_h()->~__hash_code_base(); }

    public:
      const void*
      _M_curr() const { return _M_cur; }  // for equality ops and debug mode

      std::size_t
      _M_get_bucket() const { return _M_bucket; }  // for debug mode
    };

  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash, bool __cache>
    inline bool
    operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
					  _H1, _H2, _Hash, __cache>& __x,
	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
					  _H1, _H2, _Hash, __cache>& __y)
    { return __x._M_curr() == __y._M_curr(); }

  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash, bool __cache>
    inline bool
    operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
					  _H1, _H2, _Hash, __cache>& __x,
	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
					  _H1, _H2, _Hash, __cache>& __y)
    { return __x._M_curr() != __y._M_curr(); }

  /// local iterators
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash,
	   bool __constant_iterators, bool __cache>
    struct _Local_iterator
    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
				  _H1, _H2, _Hash, __cache>
    {
    private:
      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
					       _H1, _H2, _Hash, __cache>;
      using __hash_code_base = typename __base_type::__hash_code_base;
    public:
      typedef _Value					value_type;
      typedef typename std::conditional<__constant_iterators,
					const _Value*, _Value*>::type
						       pointer;
      typedef typename std::conditional<__constant_iterators,
					const _Value&, _Value&>::type
						       reference;
      typedef std::ptrdiff_t				difference_type;
      typedef std::forward_iterator_tag			iterator_category;

      _Local_iterator() = default;

      _Local_iterator(const __hash_code_base& __base,
		      _Hash_node<_Value, __cache>* __n,
		      std::size_t __bkt, std::size_t __bkt_count)
      : __base_type(__base, __n, __bkt, __bkt_count)
      { }

      reference
      operator*() const
      { return this->_M_cur->_M_v(); }

      pointer
      operator->() const
      { return this->_M_cur->_M_valptr(); }

      _Local_iterator&
      operator++()
      {
	this->_M_incr();
	return *this;
      }

      _Local_iterator
      operator++(int)
      {
	_Local_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };

  /// local const_iterators
  template<typename _Key, typename _Value, typename _ExtractKey,
	   typename _H1, typename _H2, typename _Hash,
	   bool __constant_iterators, bool __cache>
    struct _Local_const_iterator
    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
				  _H1, _H2, _Hash, __cache>
    {
    private:
      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
					       _H1, _H2, _Hash, __cache>;
      using __hash_code_base = typename __base_type::__hash_code_base;

    public:
      typedef _Value					value_type;
      typedef const _Value*				pointer;
      typedef const _Value&				reference;
      typedef std::ptrdiff_t				difference_type;
      typedef std::forward_iterator_tag			iterator_category;

      _Local_const_iterator() = default;

      _Local_const_iterator(const __hash_code_base& __base,
			    _Hash_node<_Value, __cache>* __n,
			    std::size_t __bkt, std::size_t __bkt_count)
      : __base_type(__base, __n, __bkt, __bkt_count)
      { }

      _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
						  _H1, _H2, _Hash,
						  __constant_iterators,
						  __cache>& __x)
      : __base_type(__x)
      { }

      reference
      operator*() const
      { return this->_M_cur->_M_v(); }

      pointer
      operator->() const
      { return this->_M_cur->_M_valptr(); }

      _Local_const_iterator&
      operator++()
      {
	this->_M_incr();
	return *this;
      }

      _Local_const_iterator
      operator++(int)
      {
	_Local_const_iterator __tmp(*this);
	this->_M_incr();
	return __tmp;
      }
    };

  /**
   *  Primary class template _Hashtable_base.
   *
   *  Helper class adding management of _Equal functor to
   *  _Hash_code_base type.
   *
   *  Base class templates are:
   *    - __detail::_Hash_code_base
   *    - __detail::_Hashtable_ebo_helper
   */
  template<typename _Key, typename _Value,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _Traits>
  struct _Hashtable_base
  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
			   _Traits::__hash_cached::value>,
    private _Hashtable_ebo_helper<0, _Equal>
  {
  public:
    typedef _Key					key_type;
    typedef _Value					value_type;
    typedef _Equal					key_equal;
    typedef std::size_t					size_type;
    typedef std::ptrdiff_t				difference_type;

    using __traits_type = _Traits;
    using __hash_cached = typename __traits_type::__hash_cached;
    using __constant_iterators = typename __traits_type::__constant_iterators;
    using __unique_keys = typename __traits_type::__unique_keys;

    using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
					     _H1, _H2, _Hash,
					     __hash_cached::value>;

    using __hash_code = typename __hash_code_base::__hash_code;
    using __node_type = typename __hash_code_base::__node_type;

    using iterator = __detail::_Node_iterator<value_type,
					      __constant_iterators::value,
					      __hash_cached::value>;

    using const_iterator = __detail::_Node_const_iterator<value_type,
						   __constant_iterators::value,
						   __hash_cached::value>;

    using local_iterator = __detail::_Local_iterator<key_type, value_type,
						  _ExtractKey, _H1, _H2, _Hash,
						  __constant_iterators::value,
						     __hash_cached::value>;

    using const_local_iterator = __detail::_Local_const_iterator<key_type,
								 value_type,
					_ExtractKey, _H1, _H2, _Hash,
					__constant_iterators::value,
					__hash_cached::value>;

    using __ireturn_type = typename std::conditional<__unique_keys::value,
						     std::pair<iterator, bool>,
						     iterator>::type;
  private:
    using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;

    template<typename _NodeT>
      struct _Equal_hash_code
      {
       static bool
       _S_equals(__hash_code, const _NodeT&)
       { return true; }
      };

    template<typename _Ptr2>
      struct _Equal_hash_code<_Hash_node<_Ptr2, true>>
      {
       static bool
       _S_equals(__hash_code __c, const _Hash_node<_Ptr2, true>& __n)
       { return __c == __n._M_hash_code; }
      };

  protected:
    _Hashtable_base() = default;

    _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
		    const _Hash& __hash, const _Equal& __eq)
    : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
    { }

    bool
    _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
    {
      static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
	  "key equality predicate must be invocable with two arguments of "
	  "key type");
      return _Equal_hash_code<__node_type>::_S_equals(__c, *__n)
	&& _M_eq()(__k, this->_M_extract()(__n->_M_v()));
    }

    void
    _M_swap(_Hashtable_base& __x)
    {
      __hash_code_base::_M_swap(__x);
      std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get());
    }

    const _Equal&
    _M_eq() const { return _EqualEBO::_M_cget(); }
  };

  /**
   *  Primary class template  _Equality.
   *
   *  This is for implementing equality comparison for unordered
   *  containers, per N3068, by John Lakos and Pablo Halpern.
   *  Algorithmically, we follow closely the reference implementations
   *  therein.
   */
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits,
	   bool _Unique_keys = _Traits::__unique_keys::value>
    struct _Equality;

  /// unordered_map and unordered_set specializations.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
    {
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;

      bool
      _M_equal(const __hashtable&) const;
    };

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    bool
    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
    _M_equal(const __hashtable& __other) const
    {
      using __node_base = typename __hashtable::__node_base;
      using __node_type = typename __hashtable::__node_type;
      const __hashtable* __this = static_cast<const __hashtable*>(this);
      if (__this->size() != __other.size())
	return false;

      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
	{
	  std::size_t __ybkt = __other._M_bucket_index(__itx._M_cur);
	  __node_base* __prev_n = __other._M_buckets[__ybkt];
	  if (!__prev_n)
	    return false;

	  for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);;
	       __n = __n->_M_next())
	    {
	      if (__n->_M_v() == *__itx)
		break;

	      if (!__n->_M_nxt
		  || __other._M_bucket_index(__n->_M_next()) != __ybkt)
		return false;
	    }
	}

      return true;
    }

  /// unordered_multiset and unordered_multimap specializations.
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
    {
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;

      bool
      _M_equal(const __hashtable&) const;
    };

  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    bool
    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	      _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
    _M_equal(const __hashtable& __other) const
    {
      using __node_base = typename __hashtable::__node_base;
      using __node_type = typename __hashtable::__node_type;
      const __hashtable* __this = static_cast<const __hashtable*>(this);
      if (__this->size() != __other.size())
	return false;

      for (auto __itx = __this->begin(); __itx != __this->end();)
	{
	  std::size_t __x_count = 1;
	  auto __itx_end = __itx;
	  for (++__itx_end; __itx_end != __this->end()
		 && __this->key_eq()(_ExtractKey()(*__itx),
				     _ExtractKey()(*__itx_end));
	       ++__itx_end)
	    ++__x_count;

	  std::size_t __ybkt = __other._M_bucket_index(__itx._M_cur);
	  __node_base* __y_prev_n = __other._M_buckets[__ybkt];
	  if (!__y_prev_n)
	    return false;

	  __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt);
	  for (;; __y_n = __y_n->_M_next())
	    {
	      if (__this->key_eq()(_ExtractKey()(__y_n->_M_v()),
				   _ExtractKey()(*__itx)))
		break;

	      if (!__y_n->_M_nxt
		  || __other._M_bucket_index(__y_n->_M_next()) != __ybkt)
		return false;
	    }

	  typename __hashtable::const_iterator __ity(__y_n);
	  for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end)
	    if (--__x_count == 0)
	      break;

	  if (__x_count != 0)
	    return false;

	  if (!std::is_permutation(__itx, __itx_end, __ity))
	    return false;

	  __itx = __itx_end;
	}
      return true;
    }

  /**
   * This type deals with all allocation and keeps an allocator instance
   * through inheritance to benefit from EBO when possible.
   */
  template<typename _NodeAlloc>
    struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
    {
    private:
      using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
    public:
      using __node_type = typename _NodeAlloc::value_type;
      using __node_alloc_type = _NodeAlloc;
      // Use __gnu_cxx to benefit from _S_always_equal and al.
      using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;

      using __value_alloc_traits = typename __node_alloc_traits::template
	rebind_traits<typename __node_type::value_type>;

      using __node_base = __detail::_Hash_node_base;
      using __bucket_type = __node_base*;      
      using __bucket_alloc_type =
	__alloc_rebind<__node_alloc_type, __bucket_type>;
      using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;

      _Hashtable_alloc() = default;
      _Hashtable_alloc(const _Hashtable_alloc&) = default;
      _Hashtable_alloc(_Hashtable_alloc&&) = default;

      template<typename _Alloc>
	_Hashtable_alloc(_Alloc&& __a)
	: __ebo_node_alloc(std::forward<_Alloc>(__a))
	{ }

      __node_alloc_type&
      _M_node_allocator()
      { return __ebo_node_alloc::_M_get(); }

      const __node_alloc_type&
      _M_node_allocator() const
      { return __ebo_node_alloc::_M_cget(); }

      // Allocate a node and construct an element within it.
      template<typename... _Args>
	__node_type*
	_M_allocate_node(_Args&&... __args);

      // Destroy the element within a node and deallocate the node.
      void
      _M_deallocate_node(__node_type* __n);

      // Deallocate a node.
      void
      _M_deallocate_node_ptr(__node_type* __n);

      // Deallocate the linked list of nodes pointed to by __n.
      // The elements within the nodes are destroyed.
      void
      _M_deallocate_nodes(__node_type* __n);

      __bucket_type*
      _M_allocate_buckets(std::size_t __bkt_count);

      void
      _M_deallocate_buckets(__bucket_type*, std::size_t __bkt_count);
    };

  // Definitions of class template _Hashtable_alloc's out-of-line member
  // functions.
  template<typename _NodeAlloc>
    template<typename... _Args>
      auto
      _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
      -> __node_type*
      {
	auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
	__node_type* __n = std::__to_address(__nptr);
	__try
	  {
	    ::new ((void*)__n) __node_type;
	    __node_alloc_traits::construct(_M_node_allocator(),
					   __n->_M_valptr(),
					   std::forward<_Args>(__args)...);
	    return __n;
	  }
	__catch(...)
	  {
	    __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
	    __throw_exception_again;
	  }
      }

  template<typename _NodeAlloc>
    void
    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
    {
      __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
      _M_deallocate_node_ptr(__n);
    }

  template<typename _NodeAlloc>
    void
    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_type* __n)
    {
      typedef typename __node_alloc_traits::pointer _Ptr;
      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
      __n->~__node_type();
      __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
    }

  template<typename _NodeAlloc>
    void
    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
    {
      while (__n)
	{
	  __node_type* __tmp = __n;
	  __n = __n->_M_next();
	  _M_deallocate_node(__tmp);
	}
    }

  template<typename _NodeAlloc>
    typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
    _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count)
    {
      __bucket_alloc_type __alloc(_M_node_allocator());

      auto __ptr = __bucket_alloc_traits::allocate(__alloc, __bkt_count);
      __bucket_type* __p = std::__to_address(__ptr);
      __builtin_memset(__p, 0, __bkt_count * sizeof(__bucket_type));
      return __p;
    }

  template<typename _NodeAlloc>
    void
    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
							std::size_t __bkt_count)
    {
      typedef typename __bucket_alloc_traits::pointer _Ptr;
      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
      __bucket_alloc_type __alloc(_M_node_allocator());
      __bucket_alloc_traits::deallocate(__alloc, __ptr, __bkt_count);
    }

 ///@} hashtable-detail
} // namespace __detail
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // _HASHTABLE_POLICY_H