// -*- C++ -*-
// Copyright (C) 2007-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 3, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file parallel/find.h
* @brief Parallel implementation base for std::find(), std::equal()
* and related functions.
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Felix Putze and Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_FIND_H
#define _GLIBCXX_PARALLEL_FIND_H 1
#include <bits/stl_algobase.h>
#include <parallel/features.h>
#include <parallel/parallel.h>
#include <parallel/compatibility.h>
#include <parallel/equally_split.h>
namespace __gnu_parallel
{
/**
* @brief Parallel std::find, switch for different algorithms.
* @param __begin1 Begin iterator of first sequence.
* @param __end1 End iterator of first sequence.
* @param __begin2 Begin iterator of second sequence. Must have same
* length as first sequence.
* @param __pred Find predicate.
* @param __selector _Functionality (e. g. std::find_if(), std::equal(),...)
* @return Place of finding in both sequences.
*/
template<typename _RAIter1,
typename _RAIter2,
typename _Pred,
typename _Selector>
inline std::pair<_RAIter1, _RAIter2>
__find_template(_RAIter1 __begin1, _RAIter1 __end1,
_RAIter2 __begin2, _Pred __pred, _Selector __selector)
{
switch (_Settings::get().find_algorithm)
{
case GROWING_BLOCKS:
return __find_template(__begin1, __end1, __begin2, __pred,
__selector, growing_blocks_tag());
case CONSTANT_SIZE_BLOCKS:
return __find_template(__begin1, __end1, __begin2, __pred,
__selector, constant_size_blocks_tag());
case EQUAL_SPLIT:
return __find_template(__begin1, __end1, __begin2, __pred,
__selector, equal_split_tag());
default:
_GLIBCXX_PARALLEL_ASSERT(false);
return std::make_pair(__begin1, __begin2);
}
}
#if _GLIBCXX_FIND_EQUAL_SPLIT
/**
* @brief Parallel std::find, equal splitting variant.
* @param __begin1 Begin iterator of first sequence.
* @param __end1 End iterator of first sequence.
* @param __begin2 Begin iterator of second sequence. Second __sequence
* must have same length as first sequence.
* @param __pred Find predicate.
* @param __selector _Functionality (e. g. std::find_if(), std::equal(),...)
* @return Place of finding in both sequences.
*/
template<typename _RAIter1,
typename _RAIter2,
typename _Pred,
typename _Selector>
std::pair<_RAIter1, _RAIter2>
__find_template(_RAIter1 __begin1, _RAIter1 __end1,
_RAIter2 __begin2, _Pred __pred,
_Selector __selector, equal_split_tag)
{
_GLIBCXX_CALL(__end1 - __begin1)
typedef std::iterator_traits<_RAIter1> _TraitsType;
typedef typename _TraitsType::difference_type _DifferenceType;
typedef typename _TraitsType::value_type _ValueType;
_DifferenceType __length = __end1 - __begin1;
_DifferenceType __result = __length;
_DifferenceType* __borders;
omp_lock_t __result_lock;
omp_init_lock(&__result_lock);
_ThreadIndex __num_threads = __get_max_threads();
# pragma omp parallel num_threads(__num_threads)
{
# pragma omp single
{
__num_threads = omp_get_num_threads();
__borders = new _DifferenceType[__num_threads + 1];
__equally_split(__length, __num_threads, __borders);
} //single
_ThreadIndex __iam = omp_get_thread_num();
_DifferenceType __start = __borders[__iam],
__stop = __borders[__iam + 1];
_RAIter1 __i1 = __begin1 + __start;
_RAIter2 __i2 = __begin2 + __start;
for (_DifferenceType __pos = __start; __pos < __stop; ++__pos)
{
# pragma omp flush(__result)
// Result has been set to something lower.
if (__result < __pos)
break;
if (__selector(__i1, __i2, __pred))
{
omp_set_lock(&__result_lock);
if (__pos < __result)
__result = __pos;
omp_unset_lock(&__result_lock);
break;
}
++__i1;
++__i2;
}
} //parallel
omp_destroy_lock(&__result_lock);
delete[] __borders;
return std::pair<_RAIter1, _RAIter2>(__begin1 + __result,
__begin2 + __result);
}
#endif
#if _GLIBCXX_FIND_GROWING_BLOCKS
/**
* @brief Parallel std::find, growing block size variant.
* @param __begin1 Begin iterator of first sequence.
* @param __end1 End iterator of first sequence.
* @param __begin2 Begin iterator of second sequence. Second __sequence
* must have same length as first sequence.
* @param __pred Find predicate.
* @param __selector _Functionality (e. g. std::find_if(), std::equal(),...)
* @return Place of finding in both sequences.
* @see __gnu_parallel::_Settings::find_sequential_search_size
* @see __gnu_parallel::_Settings::find_scale_factor
*
* There are two main differences between the growing blocks and
* the constant-size blocks variants.
* 1. For GB, the block size grows; for CSB, the block size is fixed.
* 2. For GB, the blocks are allocated dynamically;
* for CSB, the blocks are allocated in a predetermined manner,
* namely spacial round-robin.
*/
template<typename _RAIter1,
typename _RAIter2,
typename _Pred,
typename _Selector>
std::pair<_RAIter1, _RAIter2>
__find_template(_RAIter1 __begin1, _RAIter1 __end1,
_RAIter2 __begin2, _Pred __pred, _Selector __selector,
growing_blocks_tag)
{
_GLIBCXX_CALL(__end1 - __begin1)
typedef std::iterator_traits<_RAIter1> _TraitsType;
typedef typename _TraitsType::difference_type _DifferenceType;
typedef typename _TraitsType::value_type _ValueType;
const _Settings& __s = _Settings::get();
_DifferenceType __length = __end1 - __begin1;
_DifferenceType
__sequential_search_size = std::min<_DifferenceType>
(__length, __s.find_sequential_search_size);
// Try it sequentially first.
std::pair<_RAIter1, _RAIter2>
__find_seq_result = __selector._M_sequential_algorithm
(__begin1, __begin1 + __sequential_search_size,
__begin2, __pred);
if (__find_seq_result.first != (__begin1 + __sequential_search_size))
return __find_seq_result;
// Index of beginning of next free block (after sequential find).
_DifferenceType __next_block_start = __sequential_search_size;
_DifferenceType __result = __length;
omp_lock_t __result_lock;
omp_init_lock(&__result_lock);
const float __scale_factor = __s.find_scale_factor;
_ThreadIndex __num_threads = __get_max_threads();
# pragma omp parallel shared(__result) num_threads(__num_threads)
{
# pragma omp single
__num_threads = omp_get_num_threads();
// Not within first __k elements -> start parallel.
_ThreadIndex __iam = omp_get_thread_num();
_DifferenceType __block_size =
std::max<_DifferenceType>(1, __scale_factor * __next_block_start);
_DifferenceType __start = __fetch_and_add<_DifferenceType>
(&__next_block_start, __block_size);
// Get new block, update pointer to next block.
_DifferenceType __stop =
std::min<_DifferenceType>(__length, __start + __block_size);
std::pair<_RAIter1, _RAIter2> __local_result;
while (__start < __length)
{
# pragma omp flush(__result)
// Get new value of result.
if (__result < __start)
{
// No chance to find first element.
break;
}
__local_result = __selector._M_sequential_algorithm
(__begin1 + __start, __begin1 + __stop,
__begin2 + __start, __pred);
if (__local_result.first != (__begin1 + __stop))
{
omp_set_lock(&__result_lock);
if ((__local_result.first - __begin1) < __result)
{
__result = __local_result.first - __begin1;
// Result cannot be in future blocks, stop algorithm.
__fetch_and_add<_DifferenceType>(&__next_block_start,
__length);
}
omp_unset_lock(&__result_lock);
}
_DifferenceType __block_size =
std::max<_DifferenceType>(1, __scale_factor * __next_block_start);
// Get new block, update pointer to next block.
__start = __fetch_and_add<_DifferenceType>(&__next_block_start,
__block_size);
__stop =
std::min<_DifferenceType>(__length, __start + __block_size);
}
} //parallel
omp_destroy_lock(&__result_lock);
// Return iterator on found element.
return
std::pair<_RAIter1, _RAIter2>(__begin1 + __result,
__begin2 + __result);
}
#endif
#if _GLIBCXX_FIND_CONSTANT_SIZE_BLOCKS
/**
* @brief Parallel std::find, constant block size variant.
* @param __begin1 Begin iterator of first sequence.
* @param __end1 End iterator of first sequence.
* @param __begin2 Begin iterator of second sequence. Second __sequence
* must have same length as first sequence.
* @param __pred Find predicate.
* @param __selector _Functionality (e. g. std::find_if(), std::equal(),...)
* @return Place of finding in both sequences.
* @see __gnu_parallel::_Settings::find_sequential_search_size
* @see __gnu_parallel::_Settings::find_block_size
* There are two main differences between the growing blocks and the
* constant-size blocks variants.
* 1. For GB, the block size grows; for CSB, the block size is fixed.
* 2. For GB, the blocks are allocated dynamically; for CSB, the
* blocks are allocated in a predetermined manner, namely spacial
* round-robin.
*/
template<typename _RAIter1,
typename _RAIter2,
typename _Pred,
typename _Selector>
std::pair<_RAIter1, _RAIter2>
__find_template(_RAIter1 __begin1, _RAIter1 __end1,
_RAIter2 __begin2, _Pred __pred, _Selector __selector,
constant_size_blocks_tag)
{
_GLIBCXX_CALL(__end1 - __begin1)
typedef std::iterator_traits<_RAIter1> _TraitsType;
typedef typename _TraitsType::difference_type _DifferenceType;
typedef typename _TraitsType::value_type _ValueType;
const _Settings& __s = _Settings::get();
_DifferenceType __length = __end1 - __begin1;
_DifferenceType __sequential_search_size = std::min<_DifferenceType>
(__length, __s.find_sequential_search_size);
// Try it sequentially first.
std::pair<_RAIter1, _RAIter2>
__find_seq_result = __selector._M_sequential_algorithm
(__begin1, __begin1 + __sequential_search_size, __begin2, __pred);
if (__find_seq_result.first != (__begin1 + __sequential_search_size))
return __find_seq_result;
_DifferenceType __result = __length;
omp_lock_t __result_lock;
omp_init_lock(&__result_lock);
// Not within first __sequential_search_size elements -> start parallel.
_ThreadIndex __num_threads = __get_max_threads();
# pragma omp parallel shared(__result) num_threads(__num_threads)
{
# pragma omp single
__num_threads = omp_get_num_threads();
_ThreadIndex __iam = omp_get_thread_num();
_DifferenceType __block_size = __s.find_initial_block_size;
// First element of thread's current iteration.
_DifferenceType __iteration_start = __sequential_search_size;
// Where to work (initialization).
_DifferenceType __start = __iteration_start + __iam * __block_size;
_DifferenceType __stop = std::min<_DifferenceType>(__length,
__start
+ __block_size);
std::pair<_RAIter1, _RAIter2> __local_result;
while (__start < __length)
{
// Get new value of result.
# pragma omp flush(__result)
// No chance to find first element.
if (__result < __start)
break;
__local_result = __selector._M_sequential_algorithm
(__begin1 + __start, __begin1 + __stop,
__begin2 + __start, __pred);
if (__local_result.first != (__begin1 + __stop))
{
omp_set_lock(&__result_lock);
if ((__local_result.first - __begin1) < __result)
__result = __local_result.first - __begin1;
omp_unset_lock(&__result_lock);
// Will not find better value in its interval.
break;
}
__iteration_start += __num_threads * __block_size;
// Where to work.
__start = __iteration_start + __iam * __block_size;
__stop = std::min<_DifferenceType>(__length,
__start + __block_size);
}
} //parallel
omp_destroy_lock(&__result_lock);
// Return iterator on found element.
return std::pair<_RAIter1, _RAIter2>(__begin1 + __result,
__begin2 + __result);
}
#endif
} // end namespace
#endif /* _GLIBCXX_PARALLEL_FIND_H */