/* AIX FPU-related code.
Copyright (C) 2005-2020 Free Software Foundation, Inc.
Contributed by Francois-Xavier Coudert <coudert@clipper.ens.fr>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* FPU-related code for AIX. */
#ifdef HAVE_FPTRAP_H
#include <fptrap.h>
#endif
#ifdef HAVE_FPXCP_H
#include <fpxcp.h>
#endif
#ifdef HAVE_FENV_H
#include <fenv.h>
#endif
/* Check we can actually store the FPU state in the allocated size. */
_Static_assert (sizeof(fenv_t) <= (size_t) GFC_FPE_STATE_BUFFER_SIZE,
"GFC_FPE_STATE_BUFFER_SIZE is too small");
void
set_fpu_trap_exceptions (int trap, int notrap)
{
fptrap_t mode_set = 0, mode_clr = 0;
#ifdef TRP_INVALID
if (trap & GFC_FPE_INVALID)
mode_set |= TRP_INVALID;
if (notrap & GFC_FPE_INVALID)
mode_clr |= TRP_INVALID;
#endif
#ifdef TRP_DIV_BY_ZERO
if (trap & GFC_FPE_ZERO)
mode_set |= TRP_DIV_BY_ZERO;
if (notrap & GFC_FPE_ZERO)
mode_clr |= TRP_DIV_BY_ZERO;
#endif
#ifdef TRP_OVERFLOW
if (trap & GFC_FPE_OVERFLOW)
mode_set |= TRP_OVERFLOW;
if (notrap & GFC_FPE_OVERFLOW)
mode_clr |= TRP_OVERFLOW;
#endif
#ifdef TRP_UNDERFLOW
if (trap & GFC_FPE_UNDERFLOW)
mode_set |= TRP_UNDERFLOW;
if (notrap & GFC_FPE_UNDERFLOW)
mode_clr |= TRP_UNDERFLOW;
#endif
#ifdef TRP_INEXACT
if (trap & GFC_FPE_INEXACT)
mode_set |= TRP_INEXACT;
if (notrap & GFC_FPE_INEXACT)
mode_clr |= TRP_INEXACT;
#endif
fp_trap (FP_TRAP_SYNC);
fp_enable (mode_set);
fp_disable (mode_clr);
}
int
get_fpu_trap_exceptions (void)
{
int res = 0;
#ifdef TRP_INVALID
if (fp_is_enabled (TRP_INVALID))
res |= GFC_FPE_INVALID;
#endif
#ifdef TRP_DIV_BY_ZERO
if (fp_is_enabled (TRP_DIV_BY_ZERO))
res |= GFC_FPE_ZERO;
#endif
#ifdef TRP_OVERFLOW
if (fp_is_enabled (TRP_OVERFLOW))
res |= GFC_FPE_OVERFLOW;
#endif
#ifdef TRP_UNDERFLOW
if (fp_is_enabled (TRP_UNDERFLOW))
res |= GFC_FPE_UNDERFLOW;
#endif
#ifdef TRP_INEXACT
if (fp_is_enabled (TRP_INEXACT))
res |= GFC_FPE_INEXACT;
#endif
return res;
}
int
support_fpu_trap (int flag)
{
return support_fpu_flag (flag);
}
void
set_fpu (void)
{
#ifndef TRP_INVALID
if (options.fpe & GFC_FPE_INVALID)
estr_write ("Fortran runtime warning: IEEE 'invalid operation' "
"exception not supported.\n");
#endif
if (options.fpe & GFC_FPE_DENORMAL)
estr_write ("Fortran runtime warning: Floating point 'denormal operand' "
"exception not supported.\n");
#ifndef TRP_DIV_BY_ZERO
if (options.fpe & GFC_FPE_ZERO)
estr_write ("Fortran runtime warning: IEEE 'division by zero' "
"exception not supported.\n");
#endif
#ifndef TRP_OVERFLOW
if (options.fpe & GFC_FPE_OVERFLOW)
estr_write ("Fortran runtime warning: IEEE 'overflow' "
"exception not supported.\n");
#endif
#ifndef TRP_UNDERFLOW
if (options.fpe & GFC_FPE_UNDERFLOW)
estr_write ("Fortran runtime warning: IEEE 'underflow' "
"exception not supported.\n");
#endif
#ifndef TRP_INEXACT
if (options.fpe & GFC_FPE_INEXACT)
estr_write ("Fortran runtime warning: IEEE 'inexact' "
"exception not supported.\n");
#endif
set_fpu_trap_exceptions (options.fpe, 0);
}
int
get_fpu_except_flags (void)
{
int result, set_excepts;
result = 0;
#ifdef HAVE_FPXCP_H
if (!fp_any_xcp ())
return 0;
if (fp_invalid_op ())
result |= GFC_FPE_INVALID;
if (fp_divbyzero ())
result |= GFC_FPE_ZERO;
if (fp_overflow ())
result |= GFC_FPE_OVERFLOW;
if (fp_underflow ())
result |= GFC_FPE_UNDERFLOW;
if (fp_inexact ())
result |= GFC_FPE_INEXACT;
#endif
return result;
}
void
set_fpu_except_flags (int set, int clear)
{
int exc_set = 0, exc_clr = 0;
#ifdef FP_INVALID
if (set & GFC_FPE_INVALID)
exc_set |= FP_INVALID;
else if (clear & GFC_FPE_INVALID)
exc_clr |= FP_INVALID;
#endif
#ifdef FP_DIV_BY_ZERO
if (set & GFC_FPE_ZERO)
exc_set |= FP_DIV_BY_ZERO;
else if (clear & GFC_FPE_ZERO)
exc_clr |= FP_DIV_BY_ZERO;
#endif
#ifdef FP_OVERFLOW
if (set & GFC_FPE_OVERFLOW)
exc_set |= FP_OVERFLOW;
else if (clear & GFC_FPE_OVERFLOW)
exc_clr |= FP_OVERFLOW;
#endif
#ifdef FP_UNDERFLOW
if (set & GFC_FPE_UNDERFLOW)
exc_set |= FP_UNDERFLOW;
else if (clear & GFC_FPE_UNDERFLOW)
exc_clr |= FP_UNDERFLOW;
#endif
/* AIX does not have FP_DENORMAL. */
#ifdef FP_INEXACT
if (set & GFC_FPE_INEXACT)
exc_set |= FP_INEXACT;
else if (clear & GFC_FPE_INEXACT)
exc_clr |= FP_INEXACT;
#endif
fp_clr_flag (exc_clr);
fp_set_flag (exc_set);
}
int
support_fpu_flag (int flag)
{
if (flag & GFC_FPE_INVALID)
{
#ifndef FP_INVALID
return 0;
#endif
}
else if (flag & GFC_FPE_ZERO)
{
#ifndef FP_DIV_BY_ZERO
return 0;
#endif
}
else if (flag & GFC_FPE_OVERFLOW)
{
#ifndef FP_OVERFLOW
return 0;
#endif
}
else if (flag & GFC_FPE_UNDERFLOW)
{
#ifndef FP_UNDERFLOW
return 0;
#endif
}
else if (flag & GFC_FPE_DENORMAL)
{
/* AIX does not support denormal flag. */
return 0;
}
else if (flag & GFC_FPE_INEXACT)
{
#ifndef FP_INEXACT
return 0;
#endif
}
return 1;
}
int
get_fpu_rounding_mode (void)
{
int rnd_mode;
rnd_mode = fegetround ();
switch (rnd_mode)
{
#ifdef FE_TONEAREST
case FE_TONEAREST:
return GFC_FPE_TONEAREST;
#endif
#ifdef FE_UPWARD
case FE_UPWARD:
return GFC_FPE_UPWARD;
#endif
#ifdef FE_DOWNWARD
case FE_DOWNWARD:
return GFC_FPE_DOWNWARD;
#endif
#ifdef FE_TOWARDZERO
case FE_TOWARDZERO:
return GFC_FPE_TOWARDZERO;
#endif
default:
return 0; /* Should be unreachable. */
}
}
void
set_fpu_rounding_mode (int mode)
{
int rnd_mode;
switch (mode)
{
#ifdef FE_TONEAREST
case GFC_FPE_TONEAREST:
rnd_mode = FE_TONEAREST;
break;
#endif
#ifdef FE_UPWARD
case GFC_FPE_UPWARD:
rnd_mode = FE_UPWARD;
break;
#endif
#ifdef FE_DOWNWARD
case GFC_FPE_DOWNWARD:
rnd_mode = FE_DOWNWARD;
break;
#endif
#ifdef FE_TOWARDZERO
case GFC_FPE_TOWARDZERO:
rnd_mode = FE_TOWARDZERO;
break;
#endif
default:
return; /* Should be unreachable. */
}
fesetround (rnd_mode);
}
int
support_fpu_rounding_mode (int mode)
{
switch (mode)
{
case GFC_FPE_TONEAREST:
#ifdef FE_TONEAREST
return 1;
#else
return 0;
#endif
case GFC_FPE_UPWARD:
#ifdef FE_UPWARD
return 1;
#else
return 0;
#endif
case GFC_FPE_DOWNWARD:
#ifdef FE_DOWNWARD
return 1;
#else
return 0;
#endif
case GFC_FPE_TOWARDZERO:
#ifdef FE_TOWARDZERO
return 1;
#else
return 0;
#endif
default:
return 0; /* Should be unreachable. */
}
}
void
get_fpu_state (void *state)
{
fegetenv (state);
}
void
set_fpu_state (void *state)
{
fesetenv (state);
}
int
support_fpu_underflow_control (int kind __attribute__((unused)))
{
return 0;
}
int
get_fpu_underflow_mode (void)
{
return 0;
}
void
set_fpu_underflow_mode (int gradual __attribute__((unused)))
{
}