Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
# Generate the main loop of the simulator.
# Copyright (C) 1996-2020 Free Software Foundation, Inc.
# Contributed by Cygnus Support.
#
# This file is part of the GNU simulators.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# This file creates two files: eng.hin and mloop.cin.
# eng.hin defines a few macros that specify what kind of engine was selected
# based on the arguments to this script.
# mloop.cin contains the engine.
#
# ??? Rename mloop.c to eng.c?
# ??? Rename mainloop.in to engine.in?
# ??? Add options to specify output file names?
# ??? Rename this file to genengine.sh?
#
# Syntax: genmloop.sh [options]
#
# Options:
#
# -mono | -multi
#    - specify single cpu or multiple cpus (number specifyable at runtime),
#      maximum number is a configuration parameter
#    - -multi wip
#
# -fast: include support for fast execution in addition to full featured mode
#
#	Full featured mode is for tracing, profiling, etc. and is always
#	provided.  Fast mode contains no frills, except speed.
#	A target need only provide a "full" version of one of
#	simple,scache,pbb.  If the target wants it can also provide a fast
#	version of same.  It can't provide more than this.
#	??? Later add ability to have another set of full/fast semantics
#	for use in with-devices/with-smp situations (pbb can be inappropriate
#	here).
#
# -full-switch: same as -fast but for full featured version of -switch
#	Only needed if -fast present.
#
# -simple: simple execution engine (the default)
#
#	This engine fetches and executes one instruction at a time.
#	Field extraction is done in the semantic routines.
#
#	??? There are two possible flavours of -simple.  One that extracts
#	fields in the semantic routine (which is what is implemented here),
#	and one that stores the extracted fields in ARGBUF before calling the
#	semantic routine.  The latter is essentially the -scache case with a
#	cache size of one (and the scache lookup code removed).  There are no
#	current uses of this and it's not clear when doing this would be a win.
#	More complicated ISA's that want to use -simple may find this a win.
#	Should this ever be desirable, implement a new engine style here and
#	call it -extract (or some such).  It's believed that the CGEN-generated
#	code for the -scache case would be usable here, so no new code
#	generation option would be needed for CGEN.
#
# -scache: use the scache to speed things up (not always a win)
#
#	This engine caches the extracted instruction before executing it.
#	When executing instructions they are first looked up in the scache.
#
# -pbb: same as -scache but extract a (pseudo-) basic block at a time
#
#	This engine is basically identical to the scache version except that
#	extraction is done a pseudo-basic-block at a time and the address of
#	the scache entry of a branch target is recorded as well.
#	Additional speedups are then possible by defering Ctrl-C checking
#	to the end of basic blocks and by threading the insns together.
#	We call them pseudo-basic-block's instead of just basic-blocks because
#	they're not necessarily basic-blocks, though normally are.
#
# -parallel-read: support parallel execution with read-before-exec support.
# -parallel-write: support parallel execution with write-after-exec support.
# -parallel-generic-write: support parallel execution with generic queued
#       writes.
#
#	One of these options is specified in addition to -simple, -scache,
#	-pbb.  Note that while the code can determine if the cpu supports
#	parallel execution with HAVE_PARALLEL_INSNS [and thus this option is
#	technically unnecessary], having this option cuts down on the clutter
#	in the result.
#
# -parallel-only: semantic code only supports parallel version of insn
#
#	Semantic code only supports parallel versions of each insn.
#	Things can be sped up by generating both serial and parallel versions
#	and is better suited to mixed parallel architectures like the m32r.
#
# -prefix: string to prepend to function names in mloop.c/eng.h.
#
#       If no prefix is specified, the cpu type is used.
#
# -switch file: specify file containing semantics implemented as a switch()
#
# -cpu <cpu-family>
#
#	Specify the cpu family name.
#
# -infile <input-file>
#
#	Specify the mainloop.in input file.
#
# -outfile-suffix <output-file-suffix>
#
#	Specify the suffix to append to output files.
#
# -shell <shell>
#
#	Specify the shell to use to execute <input-file>
#
# Only one of -scache/-pbb may be selected.
# -simple is the default.
#
####
#
# TODO
# - build mainloop.in from .cpu file

type=mono
#scache=
#fast=
#full_switch=
#pbb=
parallel=no
parallel_only=no
switch=
cpu="unknown"
infile=""
prefix="unknown"
outsuffix=""

while test $# -gt 0
do
	case $1 in
	-mono) type=mono ;;
	-multi) type=multi ;;
	-no-fast) ;;
	-fast) fast=yes ;;
	-full-switch) full_switch=yes ;;
	-simple) ;;
	-scache) scache=yes ;;
	-pbb) pbb=yes ;;
	-no-parallel) ;;
	-outfile-suffix) shift ; outsuffix=$1 ;;
	-parallel-read) parallel=read ;;
	-parallel-write) parallel=write ;;
	-parallel-generic-write) parallel=genwrite ;;
	-parallel-only) parallel_only=yes ;;
	-prefix) shift ; prefix=$1 ;;
	-switch) shift ; switch=$1 ;;
	-cpu) shift ; cpu=$1 ;;
	-infile) shift ; infile=$1 ;;
	-shell) shift ; SHELL=$1 ;;
	*) echo "unknown option: $1" >&2 ; exit 1 ;;
	esac
	shift
done

# Argument validation.

if [ x$scache = xyes -a x$pbb = xyes ] ; then
    echo "only one of -scache and -pbb may be selected" >&2
    exit 1
fi

if [ "x$cpu" = xunknown ] ; then
    echo "cpu family not specified" >&2
    exit 1
fi

if [ "x$infile" = x ] ; then
    echo "mainloop.in not specified" >&2
    exit 1
fi

if [ "x$prefix" = xunknown ] ; then
    prefix=$cpu
fi

lowercase='abcdefghijklmnopqrstuvwxyz'
uppercase='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
CPU=`echo ${cpu} | tr "${lowercase}" "${uppercase}"`
PREFIX=`echo ${prefix} | tr "${lowercase}" "${uppercase}"`

##########################################################################

rm -f eng${outsuffix}.hin
exec 1>eng${outsuffix}.hin

echo "/* engine configuration for ${cpu} */"
echo ""

echo "/* WITH_FAST: non-zero if a fast version of the engine is available"
echo "   in addition to the full-featured version.  */"
if [ x$fast = xyes ] ; then
	echo "#define WITH_FAST 1"
else
	echo "#define WITH_FAST 0"
fi

echo ""
echo "/* WITH_SCACHE_PBB_${PREFIX}: non-zero if the pbb engine was selected.  */"
if [ x$pbb = xyes ] ; then
	echo "#define WITH_SCACHE_PBB_${PREFIX} 1"
else
	echo "#define WITH_SCACHE_PBB_${PREFIX} 0"
fi

echo ""
echo "/* HAVE_PARALLEL_INSNS: non-zero if cpu can parallelly execute > 1 insn.  */"
# blah blah blah, other ways to do this, blah blah blah
case x$parallel in
xno)
    echo "#define HAVE_PARALLEL_INSNS 0"
    echo "#define WITH_PARALLEL_READ 0"
    echo "#define WITH_PARALLEL_WRITE 0"
    echo "#define WITH_PARALLEL_GENWRITE 0"
    ;;
xread)
    echo "#define HAVE_PARALLEL_INSNS 1"
    echo "/* Parallel execution is supported by read-before-exec.  */"
    echo "#define WITH_PARALLEL_READ 1"
    echo "#define WITH_PARALLEL_WRITE 0"
    echo "#define WITH_PARALLEL_GENWRITE 0"
    ;;
xwrite)
    echo "#define HAVE_PARALLEL_INSNS 1"
    echo "/* Parallel execution is supported by write-after-exec.  */"
    echo "#define WITH_PARALLEL_READ 0"
    echo "#define WITH_PARALLEL_WRITE 1"
    echo "#define WITH_PARALLEL_GENWRITE 0"
    ;;
xgenwrite)
    echo "#define HAVE_PARALLEL_INSNS 1"
    echo "/* Parallel execution is supported by generic write-after-exec.  */"
    echo "#define WITH_PARALLEL_READ 0"
    echo "#define WITH_PARALLEL_WRITE 0"
    echo "#define WITH_PARALLEL_GENWRITE 1"
    ;;
esac

if [ "x$switch" != x ] ; then
	echo ""
	echo "/* WITH_SEM_SWITCH_FULL: non-zero if full-featured engine is"
	echo "   implemented as a switch().  */"
	if [ x$fast != xyes -o x$full_switch = xyes ] ; then
		echo "#define WITH_SEM_SWITCH_FULL 1"
	else
		echo "#define WITH_SEM_SWITCH_FULL 0"
	fi
	echo ""
	echo "/* WITH_SEM_SWITCH_FAST: non-zero if fast engine is"
	echo "   implemented as a switch().  */"
	if [ x$fast = xyes ] ; then
		echo "#define WITH_SEM_SWITCH_FAST 1"
	else
		echo "#define WITH_SEM_SWITCH_FAST 0"
	fi
fi

# Decls of functions we define.

echo ""
echo "/* Functions defined in the generated mainloop.c file"
echo "   (which doesn't necessarily have that file name).  */"
echo ""
echo "extern ENGINE_FN ${prefix}_engine_run_full;"
echo "extern ENGINE_FN ${prefix}_engine_run_fast;"

if [ x$pbb = xyes ] ; then
	echo ""
	echo "extern SEM_PC ${prefix}_pbb_begin (SIM_CPU *, int);"
	echo "extern SEM_PC ${prefix}_pbb_chain (SIM_CPU *, SEM_ARG);"
	echo "extern SEM_PC ${prefix}_pbb_cti_chain (SIM_CPU *, SEM_ARG, SEM_BRANCH_TYPE, PCADDR);"
	echo "extern void ${prefix}_pbb_before (SIM_CPU *, SCACHE *);"
	echo "extern void ${prefix}_pbb_after (SIM_CPU *, SCACHE *);"
fi

##########################################################################

rm -f tmp-mloop-$$.cin mloop${outsuffix}.cin
exec 1>tmp-mloop-$$.cin

# We use @cpu@ instead of ${cpu} because we still need to run sed to handle
# transformation of @cpu@ for mainloop.in, so there's no need to use ${cpu}
# here.

cat << EOF
/* This file is generated by the genmloop script.  DO NOT EDIT! */

/* Enable switch() support in cgen headers.  */
#define SEM_IN_SWITCH

#define WANT_CPU @cpu@
#define WANT_CPU_@CPU@

#include "sim-main.h"
#include "bfd.h"
#include "cgen-mem.h"
#include "cgen-ops.h"
#include "sim-assert.h"

/* Fill in the administrative ARGBUF fields required by all insns,
   virtual and real.  */

static INLINE void
@prefix@_fill_argbuf (const SIM_CPU *cpu, ARGBUF *abuf, const IDESC *idesc,
		    PCADDR pc, int fast_p)
{
#if WITH_SCACHE
  SEM_SET_CODE (abuf, idesc, fast_p);
  ARGBUF_ADDR (abuf) = pc;
#endif
  ARGBUF_IDESC (abuf) = idesc;
}

/* Fill in tracing/profiling fields of an ARGBUF.  */

static INLINE void
@prefix@_fill_argbuf_tp (const SIM_CPU *cpu, ARGBUF *abuf,
		       int trace_p, int profile_p)
{
  ARGBUF_TRACE_P (abuf) = trace_p;
  ARGBUF_PROFILE_P (abuf) = profile_p;
}

#if WITH_SCACHE_PBB

/* Emit the "x-before" handler.
   x-before is emitted before each insn (serial or parallel).
   This is as opposed to x-after which is only emitted at the end of a group
   of parallel insns.  */

static INLINE void
@prefix@_emit_before (SIM_CPU *current_cpu, SCACHE *sc, PCADDR pc, int first_p)
{
  ARGBUF *abuf = &sc[0].argbuf;
  const IDESC *id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEFORE];

  abuf->fields.before.first_p = first_p;
  @prefix@_fill_argbuf (current_cpu, abuf, id, pc, 0);
  /* no need to set trace_p,profile_p */
}

/* Emit the "x-after" handler.
   x-after is emitted after a serial insn or at the end of a group of
   parallel insns.  */

static INLINE void
@prefix@_emit_after (SIM_CPU *current_cpu, SCACHE *sc, PCADDR pc)
{
  ARGBUF *abuf = &sc[0].argbuf;
  const IDESC *id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_AFTER];

  @prefix@_fill_argbuf (current_cpu, abuf, id, pc, 0);
  /* no need to set trace_p,profile_p */
}

#endif /* WITH_SCACHE_PBB */

EOF

${SHELL} $infile support

##########################################################################

# Simple engine: fetch an instruction, execute the instruction.
#
# Instruction fields are not extracted into ARGBUF, they are extracted in
# the semantic routines themselves.  However, there is still a need to pass
# and return misc. information to the semantic routines so we still use ARGBUF.
# [One could certainly implement things differently and remove ARGBUF.
# It's not clear this is necessarily always a win.]
# ??? The use of the SCACHE struct is for consistency with the with-scache
# case though it might be a source of confusion.

if [ x$scache != xyes -a x$pbb != xyes ] ; then

    cat << EOF

#define FAST_P 0

void
@prefix@_engine_run_full (SIM_CPU *current_cpu)
{
#define FAST_P 0
  SIM_DESC current_state = CPU_STATE (current_cpu);
  /* ??? Use of SCACHE is a bit of a hack as we don't actually use the scache.
     We do however use ARGBUF so for consistency with the other engine flavours
     the SCACHE type is used.  */
  SCACHE cache[MAX_LIW_INSNS];
  SCACHE *sc = &cache[0];

EOF

case x$parallel in
xread | xwrite)
    cat << EOF
  PAREXEC pbufs[MAX_PARALLEL_INSNS];
  PAREXEC *par_exec;

EOF
    ;;
esac

# Any initialization code before looping starts.
# Note that this code may declare some locals.
${SHELL} $infile init

if [ x$parallel = xread ] ; then
  cat << EOF

#if defined (__GNUC__)
  {
    if (! CPU_IDESC_READ_INIT_P (current_cpu))
      {
/* ??? Later maybe paste read.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "readx.c"
	CPU_IDESC_READ_INIT_P (current_cpu) = 1;
      }
  }
#endif

EOF
fi

cat << EOF

  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
#if WITH_SEM_SWITCH_FULL
#if defined (__GNUC__)
/* ??? Later maybe paste sem-switch.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "$switch"
#endif
#else
      @prefix@_sem_init_idesc_table (current_cpu);
#endif
      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  do
    {
/* begin full-exec-simple */
EOF

${SHELL} $infile full-exec-simple

cat << EOF
/* end full-exec-simple */

      ++ CPU_INSN_COUNT (current_cpu);
    }
  while (0 /*CPU_RUNNING_P (current_cpu)*/);
}

#undef FAST_P

EOF

####################################

# Simple engine: fast version.
# ??? A somewhat dubious effort, but for completeness' sake.

if [ x$fast = xyes ] ; then

    cat << EOF

#define FAST_P 1

FIXME: "fast simple version unimplemented, delete -fast arg to genmloop.sh."

#undef FAST_P

EOF

fi # -fast

fi # simple engine

##########################################################################

# Non-parallel scache engine: lookup insn in scache, fetch if missing,
# then execute it.

if [ x$scache = xyes -a x$parallel = xno ] ; then

    cat << EOF

static INLINE SCACHE *
@prefix@_scache_lookup (SIM_CPU *current_cpu, PCADDR vpc, SCACHE *scache,
                     unsigned int hash_mask, int FAST_P)
{
  /* First step: look up current insn in hash table.  */
  SCACHE *sc = scache + SCACHE_HASH_PC (vpc, hash_mask);

  /* If the entry isn't the one we want (cache miss),
     fetch and decode the instruction.  */
  if (sc->argbuf.addr != vpc)
    {
      if (! FAST_P)
	PROFILE_COUNT_SCACHE_MISS (current_cpu);

/* begin extract-scache */
EOF

${SHELL} $infile extract-scache

cat << EOF
/* end extract-scache */
    }
  else if (! FAST_P)
    {
      PROFILE_COUNT_SCACHE_HIT (current_cpu);
      /* Make core access statistics come out right.
	 The size is a guess, but it's currently not used either.  */
      PROFILE_COUNT_CORE (current_cpu, vpc, 2, exec_map);
    }

  return sc;
}

#define FAST_P 0

void
@prefix@_engine_run_full (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
  SEM_PC vpc;

EOF

# Any initialization code before looping starts.
# Note that this code may declare some locals.
${SHELL} $infile init

cat << EOF

  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
#if ! WITH_SEM_SWITCH_FULL
      @prefix@_sem_init_idesc_table (current_cpu);
#endif
      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  vpc = GET_H_PC ();

  do
    {
      SCACHE *sc;

      sc = @prefix@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);

/* begin full-exec-scache */
EOF

${SHELL} $infile full-exec-scache

cat << EOF
/* end full-exec-scache */

      SET_H_PC (vpc);

      ++ CPU_INSN_COUNT (current_cpu);
    }
  while (0 /*CPU_RUNNING_P (current_cpu)*/);
}

#undef FAST_P

EOF

####################################

# Non-parallel scache engine: fast version.

if [ x$fast = xyes ] ; then

    cat << EOF

#define FAST_P 1

void
@prefix@_engine_run_fast (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
  SEM_PC vpc;

EOF

# Any initialization code before looping starts.
# Note that this code may declare some locals.
${SHELL} $infile init

cat << EOF

  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
#if WITH_SEM_SWITCH_FAST
#if defined (__GNUC__)
/* ??? Later maybe paste sem-switch.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "$switch"
#endif
#else
      @prefix@_semf_init_idesc_table (current_cpu);
#endif
      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  vpc = GET_H_PC ();

  do
    {
      SCACHE *sc;

      sc = @prefix@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);

/* begin fast-exec-scache */
EOF

${SHELL} $infile fast-exec-scache

cat << EOF
/* end fast-exec-scache */

      SET_H_PC (vpc);

      ++ CPU_INSN_COUNT (current_cpu);
    }
  while (0 /*CPU_RUNNING_P (current_cpu)*/);
}

#undef FAST_P

EOF

fi # -fast

fi # -scache && ! parallel

##########################################################################

# Parallel scache engine: lookup insn in scache, fetch if missing,
# then execute it.
# For the parallel case we give the target more flexibility.

if [ x$scache = xyes -a x$parallel != xno ] ; then

    cat << EOF

static INLINE SCACHE *
@prefix@_scache_lookup (SIM_CPU *current_cpu, PCADDR vpc, SCACHE *scache,
                     unsigned int hash_mask, int FAST_P)
{
  /* First step: look up current insn in hash table.  */
  SCACHE *sc = scache + SCACHE_HASH_PC (vpc, hash_mask);

  /* If the entry isn't the one we want (cache miss),
     fetch and decode the instruction.  */
  if (sc->argbuf.addr != vpc)
    {
      if (! FAST_P)
	PROFILE_COUNT_SCACHE_MISS (current_cpu);

#define SET_LAST_INSN_P(last_p) do { sc->last_insn_p = (last_p); } while (0)
/* begin extract-scache */
EOF

${SHELL} $infile extract-scache

cat << EOF
/* end extract-scache */
#undef SET_LAST_INSN_P
    }
  else if (! FAST_P)
    {
      PROFILE_COUNT_SCACHE_HIT (current_cpu);
      /* Make core access statistics come out right.
	 The size is a guess, but it's currently not used either.  */
      PROFILE_COUNT_CORE (current_cpu, vpc, 2, exec_map);
    }

  return sc;
}

#define FAST_P 0

void
@prefix@_engine_run_full (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
  SEM_PC vpc;

EOF

# Any initialization code before looping starts.
# Note that this code may declare some locals.
${SHELL} $infile init

if [ x$parallel = xread ] ; then
cat << EOF
#if defined (__GNUC__)
  {
    if (! CPU_IDESC_READ_INIT_P (current_cpu))
      {
/* ??? Later maybe paste read.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "readx.c"
	CPU_IDESC_READ_INIT_P (current_cpu) = 1;
      }
  }
#endif

EOF
fi

cat << EOF

  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
#if ! WITH_SEM_SWITCH_FULL
      @prefix@_sem_init_idesc_table (current_cpu);
#endif
      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  vpc = GET_H_PC ();

  do
    {
/* begin full-exec-scache */
EOF

${SHELL} $infile full-exec-scache

cat << EOF
/* end full-exec-scache */
    }
  while (0 /*CPU_RUNNING_P (current_cpu)*/);
}

#undef FAST_P

EOF

####################################

# Parallel scache engine: fast version.

if [ x$fast = xyes ] ; then

    cat << EOF

#define FAST_P 1

void
@prefix@_engine_run_fast (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
  SEM_PC vpc;
  PAREXEC pbufs[MAX_PARALLEL_INSNS];
  PAREXEC *par_exec;

EOF

# Any initialization code before looping starts.
# Note that this code may declare some locals.
${SHELL} $infile init

if [ x$parallel = xread ] ; then
cat << EOF

#if defined (__GNUC__)
  {
    if (! CPU_IDESC_READ_INIT_P (current_cpu))
      {
/* ??? Later maybe paste read.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "readx.c"
	CPU_IDESC_READ_INIT_P (current_cpu) = 1;
      }
  }
#endif

EOF
fi

cat << EOF

  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
#if WITH_SEM_SWITCH_FAST
#if defined (__GNUC__)
/* ??? Later maybe paste sem-switch.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "$switch"
#endif
#else
      @prefix@_semf_init_idesc_table (current_cpu);
#endif
      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  vpc = GET_H_PC ();

  do
    {
/* begin fast-exec-scache */
EOF

${SHELL} $infile fast-exec-scache

cat << EOF
/* end fast-exec-scache */
    }
  while (0 /*CPU_RUNNING_P (current_cpu)*/);
}

#undef FAST_P

EOF

fi # -fast

fi # -scache && parallel

##########################################################################

# Compilation engine: lookup insn in scache, extract a pbb
# (pseudo-basic-block) if missing, then execute the pbb.
# A "pbb" is a sequence of insns up to the next cti insn or until
# some prespecified maximum.
# CTI: control transfer instruction.

if [ x$pbb = xyes ] ; then

    cat << EOF

/* Record address of cti terminating a pbb.  */
#define SET_CTI_VPC(sc) do { _cti_sc = (sc); } while (0)
/* Record number of [real] insns in pbb.  */
#define SET_INSN_COUNT(n) do { _insn_count = (n); } while (0)

/* Fetch and extract a pseudo-basic-block.
   FAST_P is non-zero if no tracing/profiling/etc. is wanted.  */

INLINE SEM_PC
@prefix@_pbb_begin (SIM_CPU *current_cpu, int FAST_P)
{
  SEM_PC new_vpc;
  PCADDR pc;
  SCACHE *sc;
  int max_insns = CPU_SCACHE_MAX_CHAIN_LENGTH (current_cpu);

  pc = GET_H_PC ();

  new_vpc = scache_lookup_or_alloc (current_cpu, pc, max_insns, &sc);
  if (! new_vpc)
    {
      /* Leading '_' to avoid collision with mainloop.in.  */
      int _insn_count = 0;
      SCACHE *orig_sc = sc;
      SCACHE *_cti_sc = NULL;
      int slice_insns = CPU_MAX_SLICE_INSNS (current_cpu);

      /* First figure out how many instructions to compile.
	 MAX_INSNS is the size of the allocated buffer, which includes space
	 for before/after handlers if they're being used.
	 SLICE_INSNS is the maxinum number of real insns that can be
	 executed.  Zero means "as many as we want".  */
      /* ??? max_insns is serving two incompatible roles.
	 1) Number of slots available in scache buffer.
	 2) Number of real insns to execute.
	 They're incompatible because there are virtual insns emitted too
	 (chain,cti-chain,before,after handlers).  */

      if (slice_insns == 1)
	{
	  /* No need to worry about extra slots required for virtual insns
	     and parallel exec support because MAX_CHAIN_LENGTH is
	     guaranteed to be big enough to execute at least 1 insn!  */
	  max_insns = 1;
	}
      else
	{
	  /* Allow enough slop so that while compiling insns, if max_insns > 0
	     then there's guaranteed to be enough space to emit one real insn.
	     MAX_CHAIN_LENGTH is typically much longer than
	     the normal number of insns between cti's anyway.  */
	  max_insns -= (1 /* one for the trailing chain insn */
			+ (FAST_P
			   ? 0
			   : (1 + MAX_PARALLEL_INSNS) /* before+after */)
			+ (MAX_PARALLEL_INSNS > 1
			   ? (MAX_PARALLEL_INSNS * 2)
			   : 0));

	  /* Account for before/after handlers.  */
	  if (! FAST_P)
	    slice_insns *= 3;

	  if (slice_insns > 0
	      && slice_insns < max_insns)
	    max_insns = slice_insns;
	}

      new_vpc = sc;

      /* SC,PC must be updated to point passed the last entry used.
	 SET_CTI_VPC must be called if pbb is terminated by a cti.
	 SET_INSN_COUNT must be called to record number of real insns in
	 pbb [could be computed by us of course, extra cpu but perhaps
	 negligible enough].  */

/* begin extract-pbb */
EOF

${SHELL} $infile extract-pbb

cat << EOF
/* end extract-pbb */

      /* The last one is a pseudo-insn to link to the next chain.
	 It is also used to record the insn count for this chain.  */
      {
	const IDESC *id;

	/* Was pbb terminated by a cti?  */
	if (_cti_sc)
	  {
	    id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_CTI_CHAIN];
	  }
	else
	  {
	    id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_CHAIN];
	  }
	SEM_SET_CODE (&sc->argbuf, id, FAST_P);
	sc->argbuf.idesc = id;
	sc->argbuf.addr = pc;
	sc->argbuf.fields.chain.insn_count = _insn_count;
	sc->argbuf.fields.chain.next = 0;
	sc->argbuf.fields.chain.branch_target = 0;
	++sc;
      }

      /* Update the pointer to the next free entry, may not have used as
	 many entries as was asked for.  */
      CPU_SCACHE_NEXT_FREE (current_cpu) = sc;
      /* Record length of chain if profiling.
	 This includes virtual insns since they count against
	 max_insns too.  */
      if (! FAST_P)
	PROFILE_COUNT_SCACHE_CHAIN_LENGTH (current_cpu, sc - orig_sc);
    }

  return new_vpc;
}

/* Chain to the next block from a non-cti terminated previous block.  */

INLINE SEM_PC
@prefix@_pbb_chain (SIM_CPU *current_cpu, SEM_ARG sem_arg)
{
  ARGBUF *abuf = SEM_ARGBUF (sem_arg);

  PBB_UPDATE_INSN_COUNT (current_cpu, sem_arg);

  SET_H_PC (abuf->addr);

  /* If not running forever, exit back to main loop.  */
  if (CPU_MAX_SLICE_INSNS (current_cpu) != 0
      /* Also exit back to main loop if there's an event.
         Note that if CPU_MAX_SLICE_INSNS != 1, events won't get processed
	 at the "right" time, but then that was what was asked for.
	 There is no silver bullet for simulator engines.
         ??? Clearly this needs a cleaner interface.
	 At present it's just so Ctrl-C works.  */
      || STATE_EVENTS (CPU_STATE (current_cpu))->work_pending)
    CPU_RUNNING_P (current_cpu) = 0;

  /* If chained to next block, go straight to it.  */
  if (abuf->fields.chain.next)
    return abuf->fields.chain.next;
  /* See if next block has already been compiled.  */
  abuf->fields.chain.next = scache_lookup (current_cpu, abuf->addr);
  if (abuf->fields.chain.next)
    return abuf->fields.chain.next;
  /* Nope, so next insn is a virtual insn to invoke the compiler
     (begin a pbb).  */
  return CPU_SCACHE_PBB_BEGIN (current_cpu);
}

/* Chain to the next block from a cti terminated previous block.
   BR_TYPE indicates whether the branch was taken and whether we can cache
   the vpc of the branch target.
   NEW_PC is the target's branch address, and is only valid if
   BR_TYPE != SEM_BRANCH_UNTAKEN.  */

INLINE SEM_PC
@prefix@_pbb_cti_chain (SIM_CPU *current_cpu, SEM_ARG sem_arg,
		     SEM_BRANCH_TYPE br_type, PCADDR new_pc)
{
  SEM_PC *new_vpc_ptr;

  PBB_UPDATE_INSN_COUNT (current_cpu, sem_arg);

  /* If not running forever, exit back to main loop.  */
  if (CPU_MAX_SLICE_INSNS (current_cpu) != 0
      /* Also exit back to main loop if there's an event.
         Note that if CPU_MAX_SLICE_INSNS != 1, events won't get processed
	 at the "right" time, but then that was what was asked for.
	 There is no silver bullet for simulator engines.
         ??? Clearly this needs a cleaner interface.
	 At present it's just so Ctrl-C works.  */
      || STATE_EVENTS (CPU_STATE (current_cpu))->work_pending)
    CPU_RUNNING_P (current_cpu) = 0;

  /* Restart compiler if we branched to an uncacheable address
     (e.g. "j reg").  */
  if (br_type == SEM_BRANCH_UNCACHEABLE)
    {
      SET_H_PC (new_pc);
      return CPU_SCACHE_PBB_BEGIN (current_cpu);
    }

  /* If branch wasn't taken, update the pc and set BR_ADDR_PTR to our
     next chain ptr.  */
  if (br_type == SEM_BRANCH_UNTAKEN)
    {
      ARGBUF *abuf = SEM_ARGBUF (sem_arg);
      new_pc = abuf->addr;
      SET_H_PC (new_pc);
      new_vpc_ptr = &abuf->fields.chain.next;
    }
  else
    {
      ARGBUF *abuf = SEM_ARGBUF (sem_arg);
      SET_H_PC (new_pc);
      new_vpc_ptr = &abuf->fields.chain.branch_target;
    }

  /* If chained to next block, go straight to it.  */
  if (*new_vpc_ptr)
    return *new_vpc_ptr;
  /* See if next block has already been compiled.  */
  *new_vpc_ptr = scache_lookup (current_cpu, new_pc);
  if (*new_vpc_ptr)
    return *new_vpc_ptr;
  /* Nope, so next insn is a virtual insn to invoke the compiler
     (begin a pbb).  */
  return CPU_SCACHE_PBB_BEGIN (current_cpu);
}

/* x-before handler.
   This is called before each insn.  */

void
@prefix@_pbb_before (SIM_CPU *current_cpu, SCACHE *sc)
{
  SEM_ARG sem_arg = sc;
  const ARGBUF *abuf = SEM_ARGBUF (sem_arg);
  int first_p = abuf->fields.before.first_p;
  const ARGBUF *cur_abuf = SEM_ARGBUF (sc + 1);
  const IDESC *cur_idesc = cur_abuf->idesc;
  PCADDR pc = cur_abuf->addr;

  if (ARGBUF_PROFILE_P (cur_abuf))
    PROFILE_COUNT_INSN (current_cpu, pc, cur_idesc->num);

  /* If this isn't the first insn, finish up the previous one.  */

  if (! first_p)
    {
      if (PROFILE_MODEL_P (current_cpu))
	{
	  const SEM_ARG prev_sem_arg = sc - 1;
	  const ARGBUF *prev_abuf = SEM_ARGBUF (prev_sem_arg);
	  const IDESC *prev_idesc = prev_abuf->idesc;
	  int cycles;

	  /* ??? May want to measure all insns if doing insn tracing.  */
	  if (ARGBUF_PROFILE_P (prev_abuf))
	    {
	      cycles = (*prev_idesc->timing->model_fn) (current_cpu, prev_sem_arg);
	      @prefix@_model_insn_after (current_cpu, 0 /*last_p*/, cycles);
	    }
	}

      CGEN_TRACE_INSN_FINI (current_cpu, cur_abuf, 0 /*last_p*/);
    }

  /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}.  */
  if (PROFILE_MODEL_P (current_cpu)
      && ARGBUF_PROFILE_P (cur_abuf))
    @prefix@_model_insn_before (current_cpu, first_p);

  CGEN_TRACE_INSN_INIT (current_cpu, cur_abuf, first_p);
  CGEN_TRACE_INSN (current_cpu, cur_idesc->idata, cur_abuf, pc);
}

/* x-after handler.
   This is called after a serial insn or at the end of a group of parallel
   insns.  */

void
@prefix@_pbb_after (SIM_CPU *current_cpu, SCACHE *sc)
{
  SEM_ARG sem_arg = sc;
  const ARGBUF *abuf = SEM_ARGBUF (sem_arg);
  const SEM_ARG prev_sem_arg = sc - 1;
  const ARGBUF *prev_abuf = SEM_ARGBUF (prev_sem_arg);

  /* ??? May want to measure all insns if doing insn tracing.  */
  if (PROFILE_MODEL_P (current_cpu)
      && ARGBUF_PROFILE_P (prev_abuf))
    {
      const IDESC *prev_idesc = prev_abuf->idesc;
      int cycles;

      cycles = (*prev_idesc->timing->model_fn) (current_cpu, prev_sem_arg);
      @prefix@_model_insn_after (current_cpu, 1 /*last_p*/, cycles);
    }
  CGEN_TRACE_INSN_FINI (current_cpu, prev_abuf, 1 /*last_p*/);
}

#define FAST_P 0

void
@prefix@_engine_run_full (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  /* virtual program counter */
  SEM_PC vpc;
#if WITH_SEM_SWITCH_FULL
  /* For communication between cti's and cti-chain.  */
  SEM_BRANCH_TYPE pbb_br_type;
  PCADDR pbb_br_npc;
#endif

EOF

case x$parallel in
xread | xwrite)
    cat << EOF
  PAREXEC pbufs[MAX_PARALLEL_INSNS];
  PAREXEC *par_exec = &pbufs[0];

EOF
    ;;
esac

# Any initialization code before looping starts.
# Note that this code may declare some locals.
${SHELL} $infile init

cat << EOF

  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
      /* ??? 'twould be nice to move this up a level and only call it once.
	 On the other hand, in the "let's go fast" case the test is only done
	 once per pbb (since we only return to the main loop at the end of
	 a pbb).  And in the "let's run until we're done" case we don't return
	 until the program exits.  */

#if WITH_SEM_SWITCH_FULL
#if defined (__GNUC__)
/* ??? Later maybe paste sem-switch.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "$switch"
#endif
#else
      @prefix@_sem_init_idesc_table (current_cpu);
#endif

      /* Initialize the "begin (compile) a pbb" virtual insn.  */
      vpc = CPU_SCACHE_PBB_BEGIN (current_cpu);
      SEM_SET_FULL_CODE (SEM_ARGBUF (vpc),
			 & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN]);
      vpc->argbuf.idesc = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN];

      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  CPU_RUNNING_P (current_cpu) = 1;
  /* ??? In the case where we're returning to the main loop after every
     pbb we don't want to call pbb_begin each time (which hashes on the pc
     and does a table lookup).  A way to speed this up is to save vpc
     between calls.  */
  vpc = @prefix@_pbb_begin (current_cpu, FAST_P);

  do
    {
/* begin full-exec-pbb */
EOF

${SHELL} $infile full-exec-pbb

cat << EOF
/* end full-exec-pbb */
    }
  while (CPU_RUNNING_P (current_cpu));
}

#undef FAST_P

EOF

####################################

# Compile engine: fast version.

if [ x$fast = xyes ] ; then

    cat << EOF

#define FAST_P 1

void
@prefix@_engine_run_fast (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  /* virtual program counter */
  SEM_PC vpc;
#if WITH_SEM_SWITCH_FAST
  /* For communication between cti's and cti-chain.  */
  SEM_BRANCH_TYPE pbb_br_type;
  PCADDR pbb_br_npc;
#endif

EOF

case x$parallel in
xread | xwrite)
    cat << EOF
  PAREXEC pbufs[MAX_PARALLEL_INSNS];
  PAREXEC *par_exec = &pbufs[0];

EOF
    ;;
esac

# Any initialization code before looping starts.
# Note that this code may declare some locals.
${SHELL} $infile init

cat << EOF

  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
      /* ??? 'twould be nice to move this up a level and only call it once.
	 On the other hand, in the "let's go fast" case the test is only done
	 once per pbb (since we only return to the main loop at the end of
	 a pbb).  And in the "let's run until we're done" case we don't return
	 until the program exits.  */

#if WITH_SEM_SWITCH_FAST
#if defined (__GNUC__)
/* ??? Later maybe paste sem-switch.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "$switch"
#endif
#else
      @prefix@_semf_init_idesc_table (current_cpu);
#endif

      /* Initialize the "begin (compile) a pbb" virtual insn.  */
      vpc = CPU_SCACHE_PBB_BEGIN (current_cpu);
      SEM_SET_FAST_CODE (SEM_ARGBUF (vpc),
			 & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN]);
      vpc->argbuf.idesc = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN];

      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  CPU_RUNNING_P (current_cpu) = 1;
  /* ??? In the case where we're returning to the main loop after every
     pbb we don't want to call pbb_begin each time (which hashes on the pc
     and does a table lookup).  A way to speed this up is to save vpc
     between calls.  */
  vpc = @prefix@_pbb_begin (current_cpu, FAST_P);

  do
    {
/* begin fast-exec-pbb */
EOF

${SHELL} $infile fast-exec-pbb

cat << EOF
/* end fast-exec-pbb */
    }
  while (CPU_RUNNING_P (current_cpu));
}

#undef FAST_P

EOF
fi # -fast

fi # -pbb

# Expand @..@ macros appearing in tmp-mloop-{pid}.cin.
sed \
  -e "s/@cpu@/$cpu/g" -e "s/@CPU@/$CPU/g" \
  -e "s/@prefix@/$prefix/g" -e "s/@PREFIX@/$PREFIX/g" < tmp-mloop-$$.cin > mloop${outsuffix}.cin
rc=$?
rm -f tmp-mloop-$$.cin

exit $rc