Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
/*	$NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $	*/

/*-
 * Copyright (c) 1990, 1993, 1994
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Margo Seltzer.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#include <sys/cdefs.h>
__RCSID("$NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $");

/*
 * PACKAGE: hash
 * DESCRIPTION:
 *	Big key/data handling for the hashing package.
 *
 * ROUTINES:
 * External
 *	__big_keydata
 *	__big_split
 *	__big_insert
 *	__big_return
 *	__big_delete
 *	__find_last_page
 * Internal
 *	collect_key
 *	collect_data
 */

#include <sys/param.h>

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include <db.h>
#include "hash.h"
#include "page.h"
#include "extern.h"

static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
static int collect_data(HTAB *, BUFHEAD *, int, int);

/*
 * Big_insert
 *
 * You need to do an insert and the key/data pair is too big
 *
 * Returns:
 * 0 ==> OK
 *-1 ==> ERROR
 */
int
__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
{
	uint16_t *p, n;
	size_t key_size, val_size;
	uint16_t space, move_bytes, off;
	char *cp, *key_data, *val_data;
	size_t temp;

	cp = bufp->page;		/* Character pointer of p. */
	p = (uint16_t *)(void *)cp;

	key_data = (char *)key->data;
	_DBFIT(key->size, int);
	key_size = key->size;
	val_data = (char *)val->data;
	_DBFIT(val->size, int);
	val_size = val->size;

	/* First move the Key */
	
	temp = FREESPACE(p) - BIGOVERHEAD;
	_DBFIT(temp, uint16_t);
	space = (uint16_t)temp;
	while (key_size) {
		size_t kspace = MIN(space, key_size);
		_DBFIT(kspace, uint16_t);
		move_bytes = (uint16_t)kspace;
		off = OFFSET(p) - move_bytes;
		memmove(cp + off, key_data, (size_t)move_bytes);
		key_size -= move_bytes;
		key_data += move_bytes;
		n = p[0];
		p[++n] = off;
		p[0] = ++n;
		temp = off - PAGE_META(n);
		_DBFIT(temp, uint16_t);
		FREESPACE(p) = (uint16_t)temp;
		OFFSET(p) = off;
		p[n] = PARTIAL_KEY;
		bufp = __add_ovflpage(hashp, bufp);
		if (!bufp)
			return (-1);
		n = p[0];
		if (!key_size) {
			space = FREESPACE(p);
			if (space) {
				size_t vspace = MIN(space, val_size);
				_DBFIT(vspace, uint16_t);
				move_bytes = (uint16_t)vspace;
				/*
				 * If the data would fit exactly in the
				 * remaining space, we must overflow it to the
				 * next page; otherwise the invariant that the
				 * data must end on a page with FREESPACE
				 * non-zero would fail.
				 */
				if (space == val_size && val_size == val->size)
					goto toolarge;
				off = OFFSET(p) - move_bytes;
				memmove(cp + off, val_data, (size_t)move_bytes);
				val_data += move_bytes;
				val_size -= move_bytes;
				p[n] = off;
				p[n - 2] = FULL_KEY_DATA;
				FREESPACE(p) = FREESPACE(p) - move_bytes;
				OFFSET(p) = off;
			} else {
			toolarge:
				p[n - 2] = FULL_KEY;
			}
		}
		p = (uint16_t *)(void *)bufp->page;
		cp = bufp->page;
		bufp->flags |= BUF_MOD;
		temp = FREESPACE(p) - BIGOVERHEAD;
		_DBFIT(temp, uint16_t);
		space = (uint16_t)temp;
	}

	/* Now move the data */
	temp = FREESPACE(p) - BIGOVERHEAD;
	_DBFIT(temp, uint16_t);
	space = (uint16_t)temp;
	while (val_size) {
		size_t vspace = MIN(space, val_size);
		_DBFIT(vspace, uint16_t);
		move_bytes = (uint16_t)vspace;
		/*
		 * Here's the hack to make sure that if the data ends on the
		 * same page as the key ends, FREESPACE is at least one.
		 */
		if (space == val_size && val_size == val->size)
			move_bytes--;
		off = OFFSET(p) - move_bytes;
		memmove(cp + off, val_data, (size_t)move_bytes);
		val_size -= move_bytes;
		val_data += move_bytes;
		n = p[0];
		p[++n] = off;
		p[0] = ++n;
		temp = off - PAGE_META(n);
		_DBFIT(temp, uint16_t);
		FREESPACE(p) = (uint16_t)temp;
		OFFSET(p) = off;
		if (val_size) {
			p[n] = FULL_KEY;
			bufp = __add_ovflpage(hashp, bufp);
			if (!bufp)
				return (-1);
			cp = bufp->page;
			p = (uint16_t *)(void *)cp;
		} else
			p[n] = FULL_KEY_DATA;
		bufp->flags |= BUF_MOD;
		temp = FREESPACE(p) - BIGOVERHEAD;
		_DBFIT(temp, uint16_t);
		space = (uint16_t)temp;
	}
	return (0);
}

/*
 * Called when bufp's page  contains a partial key (index should be 1)
 *
 * All pages in the big key/data pair except bufp are freed.  We cannot
 * free bufp because the page pointing to it is lost and we can't get rid
 * of its pointer.
 *
 * Returns:
 * 0 => OK
 *-1 => ERROR
 */
int
__big_delete(HTAB *hashp, BUFHEAD *bufp)
{
	BUFHEAD *last_bfp, *rbufp;
	uint16_t *bp, pageno;
	int key_done, n;
	size_t temp;

	rbufp = bufp;
	last_bfp = NULL;
	bp = (uint16_t *)(void *)bufp->page;
	pageno = 0;
	key_done = 0;

	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
			key_done = 1;

		/*
		 * If there is freespace left on a FULL_KEY_DATA page, then
		 * the data is short and fits entirely on this page, and this
		 * is the last page.
		 */
		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
			break;
		pageno = bp[bp[0] - 1];
		rbufp->flags |= BUF_MOD;
		rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
		if (last_bfp)
			__free_ovflpage(hashp, last_bfp);
		last_bfp = rbufp;
		if (!rbufp)
			return (-1);		/* Error. */
		bp = (uint16_t *)(void *)rbufp->page;
	}

	/*
	 * If we get here then rbufp points to the last page of the big
	 * key/data pair.  Bufp points to the first one -- it should now be
	 * empty pointing to the next page after this pair.  Can't free it
	 * because we don't have the page pointing to it.
	 */

	/* This is information from the last page of the pair. */
	n = bp[0];
	pageno = bp[n - 1];

	/* Now, bp is the first page of the pair. */
	bp = (uint16_t *)(void *)bufp->page;
	if (n > 2) {
		/* There is an overflow page. */
		bp[1] = pageno;
		bp[2] = OVFLPAGE;
		bufp->ovfl = rbufp->ovfl;
	} else
		/* This is the last page. */
		bufp->ovfl = NULL;
	n -= 2;
	bp[0] = n;
	temp = HASH_BSIZE(hashp) - PAGE_META(n);
	_DBFIT(temp, uint16_t);
	FREESPACE(bp) = (uint16_t)temp;
	OFFSET(bp) = HASH_BSIZE(hashp);

	bufp->flags |= BUF_MOD;
	if (rbufp)
		__free_ovflpage(hashp, rbufp);
	if (last_bfp && last_bfp != rbufp)
		__free_ovflpage(hashp, last_bfp);

	hashp->NKEYS--;
	return (0);
}
/*
 * Returns:
 *  0 = key not found
 * -1 = get next overflow page
 * -2 means key not found and this is big key/data
 * -3 error
 */
int
__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
{
	uint16_t *bp;
	char *p;
	int ksize;
	uint16_t bytes;
	char *kkey;

	bp = (uint16_t *)(void *)bufp->page;
	p = bufp->page;
	ksize = size;
	kkey = key;

	for (bytes = HASH_BSIZE(hashp) - bp[ndx];
	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
	    bytes = HASH_BSIZE(hashp) - bp[ndx]) {
		if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
			return (-2);
		kkey += bytes;
		ksize -= bytes;
		bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
		if (!bufp)
			return (-3);
		p = bufp->page;
		bp = (uint16_t *)(void *)p;
		ndx = 1;
	}

	if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
#ifdef HASH_STATISTICS
		++hash_collisions;
#endif
		return (-2);
	} else
		return (ndx);
}

/*
 * Given the buffer pointer of the first overflow page of a big pair,
 * find the end of the big pair
 *
 * This will set bpp to the buffer header of the last page of the big pair.
 * It will return the pageno of the overflow page following the last page
 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
 * bucket)
 */
uint16_t
__find_last_page(HTAB *hashp, BUFHEAD **bpp)
{
	BUFHEAD *bufp;
	uint16_t *bp, pageno;
	int n;

	bufp = *bpp;
	bp = (uint16_t *)(void *)bufp->page;
	for (;;) {
		n = bp[0];

		/*
		 * This is the last page if: the tag is FULL_KEY_DATA and
		 * either only 2 entries OVFLPAGE marker is explicit there
		 * is freespace on the page.
		 */
		if (bp[2] == FULL_KEY_DATA &&
		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
			break;

		pageno = bp[n - 1];
		bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
		if (!bufp)
			return (0);	/* Need to indicate an error! */
		bp = (uint16_t *)(void *)bufp->page;
	}

	*bpp = bufp;
	if (bp[0] > 2)
		return (bp[3]);
	else
		return (0);
}

/*
 * Return the data for the key/data pair that begins on this page at this
 * index (index should always be 1).
 */
int
__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
{
	BUFHEAD *save_p;
	uint16_t *bp, len, off, save_addr;
	char *tp;

	bp = (uint16_t *)(void *)bufp->page;
	while (bp[ndx + 1] == PARTIAL_KEY) {
		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
		if (!bufp)
			return (-1);
		bp = (uint16_t *)(void *)bufp->page;
		ndx = 1;
	}

	if (bp[ndx + 1] == FULL_KEY) {
		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
		if (!bufp)
			return (-1);
		bp = (uint16_t *)(void *)bufp->page;
		save_p = bufp;
		save_addr = save_p->addr;
		off = bp[1];
		len = 0;
	} else
		if (!FREESPACE(bp)) {
			/*
			 * This is a hack.  We can't distinguish between
			 * FULL_KEY_DATA that contains complete data or
			 * incomplete data, so we require that if the data
			 * is complete, there is at least 1 byte of free
			 * space left.
			 */
			off = bp[bp[0]];
			len = bp[1] - off;
			save_p = bufp;
			save_addr = bufp->addr;
			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
			    0);
			if (!bufp)
				return (-1);
			bp = (uint16_t *)(void *)bufp->page;
		} else {
			/* The data is all on one page. */
			tp = (char *)(void *)bp;
			off = bp[bp[0]];
			val->data = (uint8_t *)tp + off;
			val->size = bp[1] - off;
			if (set_current) {
				if (bp[0] == 2) {	/* No more buckets in
							 * chain */
					hashp->cpage = NULL;
					hashp->cbucket++;
					hashp->cndx = 1;
				} else {
					hashp->cpage = __get_buf(hashp,
					    (uint32_t)bp[bp[0] - 1], bufp, 0);
					if (!hashp->cpage)
						return (-1);
					hashp->cndx = 1;
					if (!((uint16_t *)(void *)
					    hashp->cpage->page)[0]) {
						hashp->cbucket++;
						hashp->cpage = NULL;
					}
				}
			}
			return (0);
		}

	val->size = collect_data(hashp, bufp, (int)len, set_current);
	if (val->size == (size_t)-1)
		return (-1);
	if (save_p->addr != save_addr) {
		/* We are pretty short on buffers. */
		errno = EINVAL;			/* OUT OF BUFFERS */
		return (-1);
	}
	memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
	val->data = (uint8_t *)hashp->tmp_buf;
	return (0);
}
/*
 * Count how big the total datasize is by recursing through the pages.  Then
 * allocate a buffer and copy the data as you recurse up.
 */
static int
collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
{
	uint16_t *bp;
	char *p;
	BUFHEAD *xbp;
	uint16_t save_addr;
	int mylen, totlen;

	p = bufp->page;
	bp = (uint16_t *)(void *)p;
	mylen = HASH_BSIZE(hashp) - bp[1];
	save_addr = bufp->addr;

	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
		totlen = len + mylen;
		if (hashp->tmp_buf)
			free(hashp->tmp_buf);
		if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
			return (-1);
		if (set) {
			hashp->cndx = 1;
			if (bp[0] == 2) {	/* No more buckets in chain */
				hashp->cpage = NULL;
				hashp->cbucket++;
			} else {
				hashp->cpage =
				    __get_buf(hashp, (uint32_t)bp[bp[0] - 1],
				    bufp, 0);
				if (!hashp->cpage)
					return (-1);
				else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
					hashp->cbucket++;
					hashp->cpage = NULL;
				}
			}
		}
	} else {
		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
		if (!xbp || ((totlen =
		    collect_data(hashp, xbp, len + mylen, set)) < 1))
			return (-1);
	}
	if (bufp->addr != save_addr) {
		errno = EINVAL;			/* Out of buffers. */
		return (-1);
	}
	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
	return (totlen);
}

/*
 * Fill in the key and data for this big pair.
 */
int
__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
{
	key->size = collect_key(hashp, bufp, 0, val, set);
	if (key->size == (size_t)-1)
		return (-1);
	key->data = (uint8_t *)hashp->tmp_key;
	return (0);
}

/*
 * Count how big the total key size is by recursing through the pages.  Then
 * collect the data, allocate a buffer and copy the key as you recurse up.
 */
static int
collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
{
	BUFHEAD *xbp;
	char *p;
	int mylen, totlen;
	uint16_t *bp, save_addr;

	p = bufp->page;
	bp = (uint16_t *)(void *)p;
	mylen = HASH_BSIZE(hashp) - bp[1];

	save_addr = bufp->addr;
	totlen = len + mylen;
	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
		if (hashp->tmp_key != NULL)
			free(hashp->tmp_key);
		if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
			return (-1);
		if (__big_return(hashp, bufp, 1, val, set))
			return (-1);
	} else {
		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
		if (!xbp || ((totlen =
		    collect_key(hashp, xbp, totlen, val, set)) < 1))
			return (-1);
	}
	if (bufp->addr != save_addr) {
		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
		return (-1);
	}
	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
	return (totlen);
}

/*
 * Returns:
 *  0 => OK
 * -1 => error
 */
int
__big_split(
	HTAB *hashp,
	BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
	BUFHEAD *np,	/* Pointer to new bucket page */
			/* Pointer to first page containing the big key/data */
	BUFHEAD *big_keyp,
	int addr,	/* Address of big_keyp */
	uint32_t   obucket,/* Old Bucket */
	SPLIT_RETURN *ret
)
{
	BUFHEAD *tmpp;
	uint16_t *tp;
	BUFHEAD *bp;
	DBT key, val;
	uint32_t change;
	uint16_t free_space, n, off;
	size_t temp;

	bp = big_keyp;

	/* Now figure out where the big key/data goes */
	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
		return (-1);
	change = (__call_hash(hashp, key.data, (int)key.size) != obucket);

	if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
		if (!(ret->nextp =
		    __get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
			return (-1);
	} else
		ret->nextp = NULL;

	/* Now make one of np/op point to the big key/data pair */
	_DIAGASSERT(np->ovfl == NULL);
	if (change)
		tmpp = np;
	else
		tmpp = op;

	tmpp->flags |= BUF_MOD;
#ifdef DEBUG1
	(void)fprintf(stderr,
	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
#endif
	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
	tp = (uint16_t *)(void *)tmpp->page;
	_DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
	n = tp[0];
	off = OFFSET(tp);
	free_space = FREESPACE(tp);
	tp[++n] = (uint16_t)addr;
	tp[++n] = OVFLPAGE;
	tp[0] = n;
	OFFSET(tp) = off;
	temp = free_space - OVFLSIZE;
	_DBFIT(temp, uint16_t);
	FREESPACE(tp) = (uint16_t)temp;

	/*
	 * Finally, set the new and old return values. BIG_KEYP contains a
	 * pointer to the last page of the big key_data pair. Make sure that
	 * big_keyp has no following page (2 elements) or create an empty
	 * following page.
	 */

	ret->newp = np;
	ret->oldp = op;

	tp = (uint16_t *)(void *)big_keyp->page;
	big_keyp->flags |= BUF_MOD;
	if (tp[0] > 2) {
		/*
		 * There may be either one or two offsets on this page.  If
		 * there is one, then the overflow page is linked on normally
		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
		 * the second offset and needs to get stuffed in after the
		 * next overflow page is added.
		 */
		n = tp[4];
		free_space = FREESPACE(tp);
		off = OFFSET(tp);
		tp[0] -= 2;
		temp = free_space + OVFLSIZE;
		_DBFIT(temp, uint16_t);
		FREESPACE(tp) = (uint16_t)temp;
		OFFSET(tp) = off;
		tmpp = __add_ovflpage(hashp, big_keyp);
		if (!tmpp)
			return (-1);
		tp[4] = n;
	} else
		tmpp = big_keyp;

	if (change)
		ret->newp = tmpp;
	else
		ret->oldp = tmpp;
	return (0);
}