Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/* $NetBSD: bus_dma.c,v 1.74 2022/07/26 20:08:54 andvar Exp $ */

/*-
 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
 * NASA Ames Research Center.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */

__KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.74 2022/07/26 20:08:54 andvar Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/mbuf.h>

#include <uvm/uvm_extern.h>

#define _ALPHA_BUS_DMA_PRIVATE
#include <sys/bus.h>
#include <machine/intr.h>

#include <dev/bus_dma/bus_dmamem_common.h>

static int	_bus_dmamap_load_buffer_direct(bus_dma_tag_t,
		    bus_dmamap_t, void *, bus_size_t, struct vmspace *, int,
		    paddr_t *, int *, int);

extern paddr_t avail_start, avail_end;	/* from pmap.c */

#define	DMA_COUNT_DECL(cnt)	_DMA_COUNT_DECL(dma_direct, cnt)
#define	DMA_COUNT(cnt)		_DMA_COUNT(dma_direct, cnt)

static size_t
_bus_dmamap_mapsize(int const nsegments)
{
	KASSERT(nsegments > 0);
	return sizeof(struct alpha_bus_dmamap) +
	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
}

/*
 * Common function for DMA map creation.  May be called by bus-specific
 * DMA map creation functions.
 */
int
_bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
{
	struct alpha_bus_dmamap *map;
	void *mapstore;

	/*
	 * Allocate and initialize the DMA map.  The end of the map
	 * is a variable-sized array of segments, so we allocate enough
	 * room for them in one shot.
	 *
	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
	 * of ALLOCNOW notifies others that we've reserved these resources,
	 * and they are not to be freed.
	 *
	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
	 * the (nsegments - 1).
	 */
	if ((mapstore = kmem_zalloc(_bus_dmamap_mapsize(nsegments),
	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
		return (ENOMEM);

	map = (struct alpha_bus_dmamap *)mapstore;
	map->_dm_size = size;
	map->_dm_segcnt = nsegments;
	map->_dm_maxmaxsegsz = maxsegsz;
	if (t->_boundary != 0 && t->_boundary < boundary)
		map->_dm_boundary = t->_boundary;
	else
		map->_dm_boundary = boundary;
	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
	map->dm_maxsegsz = maxsegsz;
	map->dm_mapsize = 0;		/* no valid mappings */
	map->dm_nsegs = 0;
	map->_dm_window = NULL;

	*dmamp = map;
	return (0);
}

/*
 * Common function for DMA map destruction.  May be called by bus-specific
 * DMA map destruction functions.
 */
void
_bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
{

	kmem_free(map, _bus_dmamap_mapsize(map->_dm_segcnt));
}

/*
 * Utility function to load a linear buffer.  lastaddrp holds state
 * between invocations (for multiple-buffer loads).  segp contains
 * the starting segment on entrance, and the ending segment on exit.
 * first indicates if this is the first invocation of this function.
 */
static int
_bus_dmamap_load_buffer_direct(bus_dma_tag_t t, bus_dmamap_t map,
    void *buf, size_t buflen, struct vmspace *vm, int flags, paddr_t *lastaddrp,
    int *segp, int first)
{
	bus_size_t sgsize;
	bus_addr_t curaddr, lastaddr, baddr, bmask;
	vaddr_t vaddr = (vaddr_t)buf;
	int seg;
	bool address_is_valid __diagused;

	lastaddr = *lastaddrp;
	bmask = ~(map->_dm_boundary - 1);

	for (seg = *segp; buflen > 0 ; ) {
		/*
		 * Get the physical address for this segment.
		 */
		address_is_valid =
		    pmap_extract(vm->vm_map.pmap, vaddr, &curaddr);
		KASSERT(address_is_valid);

		/*
		 * If we're beyond the current DMA window, indicate
		 * that and try to fall back into SGMAPs.
		 */
		if (t->_wsize != 0 && curaddr >= t->_wsize)
			return (EINVAL);

		curaddr |= t->_wbase;

		/*
		 * Compute the segment size, and adjust counts.
		 */
		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
		if (buflen < sgsize)
			sgsize = buflen;
		if (map->dm_maxsegsz < sgsize)
			sgsize = map->dm_maxsegsz;

		/*
		 * Make sure we don't cross any boundaries.
		 */
		if (map->_dm_boundary > 0) {
			baddr = (curaddr + map->_dm_boundary) & bmask;
			if (sgsize > (baddr - curaddr))
				sgsize = (baddr - curaddr);
		}

		/*
		 * Insert chunk into a segment, coalescing with
		 * the previous segment if possible.
		 */
		if (first) {
			map->dm_segs[seg].ds_addr = curaddr;
			map->dm_segs[seg].ds_len = sgsize;
			first = 0;
		} else {
			if ((map->_dm_flags & DMAMAP_NO_COALESCE) == 0 &&
			    curaddr == lastaddr &&
			    (map->dm_segs[seg].ds_len + sgsize) <=
			     map->dm_maxsegsz &&
			    (map->_dm_boundary == 0 ||
			     (map->dm_segs[seg].ds_addr & bmask) ==
			     (curaddr & bmask)))
				map->dm_segs[seg].ds_len += sgsize;
			else {
				if (++seg >= map->_dm_segcnt)
					break;
				map->dm_segs[seg].ds_addr = curaddr;
				map->dm_segs[seg].ds_len = sgsize;
			}
		}

		lastaddr = curaddr + sgsize;
		vaddr += sgsize;
		buflen -= sgsize;
	}

	*segp = seg;
	*lastaddrp = lastaddr;

	/*
	 * Did we fit?
	 */
	if (buflen != 0) {
		/*
		 * If there is a chained window, we will automatically
		 * fall back to it.
		 */
		return (EFBIG);		/* XXX better return value here? */
	}

	return (0);
}

DMA_COUNT_DECL(load);
DMA_COUNT_DECL(load_next_window);

/*
 * Common function for loading a direct-mapped DMA map with a linear
 * buffer.  Called by bus-specific DMA map load functions with the
 * OR value appropriate for indicating "direct-mapped" for that
 * chipset.
 */
int
_bus_dmamap_load_direct(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    bus_size_t buflen, struct proc *p, int flags)
{
	paddr_t lastaddr;
	int seg, error;
	struct vmspace *vm;

	/*
	 * Make sure that on error condition we return "no valid mappings".
	 */
	map->dm_mapsize = 0;
	map->dm_nsegs = 0;
	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
	KASSERT((map->_dm_flags & (BUS_DMA_READ|BUS_DMA_WRITE)) == 0);

	if (buflen > map->_dm_size)
		return (EINVAL);

	if (p != NULL) {
		vm = p->p_vmspace;
	} else {
		vm = vmspace_kernel();
	}
	seg = 0;
	error = _bus_dmamap_load_buffer_direct(t, map, buf, buflen,
	    vm, flags, &lastaddr, &seg, 1);
	if (error == 0) {
		DMA_COUNT(load);
		map->dm_mapsize = buflen;
		map->dm_nsegs = seg + 1;
		map->_dm_window = t;
	} else if (t->_next_window != NULL) {
		/*
		 * Give the next window a chance.
		 */
		DMA_COUNT(load_next_window);
		error = bus_dmamap_load(t->_next_window, map, buf, buflen,
		    p, flags);
	}
	return (error);
}

DMA_COUNT_DECL(load_mbuf);
DMA_COUNT_DECL(load_mbuf_next_window);

/*
 * Like _bus_dmamap_load_direct(), but for mbufs.
 */
int
_bus_dmamap_load_mbuf_direct(bus_dma_tag_t t, bus_dmamap_t map,
    struct mbuf *m0, int flags)
{
	paddr_t lastaddr;
	int seg, error, first;
	struct mbuf *m;

	/*
	 * Make sure that on error condition we return "no valid mappings."
	 */
	map->dm_mapsize = 0;
	map->dm_nsegs = 0;
	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
	KASSERT((map->_dm_flags & (BUS_DMA_READ|BUS_DMA_WRITE)) == 0);

#ifdef DIAGNOSTIC
	if ((m0->m_flags & M_PKTHDR) == 0)
		panic("_bus_dmamap_load_mbuf_direct: no packet header");
#endif

	if (m0->m_pkthdr.len > map->_dm_size)
		return (EINVAL);

	first = 1;
	seg = 0;
	error = 0;
	for (m = m0; m != NULL && error == 0; m = m->m_next) {
		if (m->m_len == 0)
			continue;
		/* XXX Could be better about coalescing. */
		/* XXX Doesn't check boundaries. */
		switch (m->m_flags & (M_EXT|M_EXT_CLUSTER)) {
		case M_EXT|M_EXT_CLUSTER:
			/* XXX KDASSERT */
			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
			lastaddr = m->m_ext.ext_paddr +
			    (m->m_data - m->m_ext.ext_buf);
 have_addr:
			if (first == 0 &&
			    ++seg >= map->_dm_segcnt) {
				error = EFBIG;
				break;
			}

			/*
			 * If we're beyond the current DMA window, indicate
			 * that and try to fall back into SGMAPs.
			 */
			if (t->_wsize != 0 && lastaddr >= t->_wsize) {
				error = EINVAL;
				break;
			}
			lastaddr |= t->_wbase;

			map->dm_segs[seg].ds_addr = lastaddr;
			map->dm_segs[seg].ds_len = m->m_len;
			lastaddr += m->m_len;
			break;

		case 0:
			lastaddr = m->m_paddr + M_BUFOFFSET(m) +
			    (m->m_data - M_BUFADDR(m));
			goto have_addr;

		default:
			error = _bus_dmamap_load_buffer_direct(t, map,
			    m->m_data, m->m_len, vmspace_kernel(), flags,
			    &lastaddr, &seg, first);
		}
		first = 0;
	}
	if (error == 0) {
		DMA_COUNT(load_mbuf);
		map->dm_mapsize = m0->m_pkthdr.len;
		map->dm_nsegs = seg + 1;
		map->_dm_window = t;
	} else if (t->_next_window != NULL) {
		/*
		 * Give the next window a chance.
		 */
		DMA_COUNT(load_mbuf_next_window);
		error = bus_dmamap_load_mbuf(t->_next_window, map, m0, flags);
	}
	return (error);
}

DMA_COUNT_DECL(load_uio);
DMA_COUNT_DECL(load_uio_next_window);

/*
 * Like _bus_dmamap_load_direct(), but for uios.
 */
int
_bus_dmamap_load_uio_direct(bus_dma_tag_t t, bus_dmamap_t map,
    struct uio *uio, int flags)
{
	paddr_t lastaddr;
	int seg, i, error, first;
	bus_size_t minlen, resid;
	struct vmspace *vm;
	struct iovec *iov;
	void *addr;

	/*
	 * Make sure that on error condition we return "no valid mappings."
	 */
	map->dm_mapsize = 0;
	map->dm_nsegs = 0;
	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
	KASSERT((map->_dm_flags & (BUS_DMA_READ|BUS_DMA_WRITE)) == 0);

	resid = uio->uio_resid;
	iov = uio->uio_iov;

	vm = uio->uio_vmspace;

	first = 1;
	seg = 0;
	error = 0;
	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
		/*
		 * Now at the first iovec to load.  Load each iovec
		 * until we have exhausted the residual count.
		 */
		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
		addr = (void *)iov[i].iov_base;

		error = _bus_dmamap_load_buffer_direct(t, map,
		    addr, minlen, vm, flags, &lastaddr, &seg, first);
		first = 0;

		resid -= minlen;
	}
	if (error == 0) {
		DMA_COUNT(load_uio);
		map->dm_mapsize = uio->uio_resid;
		map->dm_nsegs = seg + 1;
		map->_dm_window = t;
	} else if (t->_next_window != NULL) {
		/*
		 * Give the next window a chance.
		 */
		DMA_COUNT(load_uio_next_window);
		error = bus_dmamap_load_uio(t->_next_window, map, uio, flags);
	}
	return (error);
}

/*
 * Like _bus_dmamap_load_direct(), but for raw memory.
 */
int
_bus_dmamap_load_raw_direct(bus_dma_tag_t t, bus_dmamap_t map,
    bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
{

	panic("_bus_dmamap_load_raw_direct: not implemented");
}

/*
 * Common function for unloading a DMA map.  May be called by
 * chipset-specific DMA map unload functions.
 */
void
_bus_dmamap_unload_common(bus_dma_tag_t t, bus_dmamap_t map)
{

	/*
	 * No resources to free; just mark the mappings as
	 * invalid.
	 */
	map->dm_maxsegsz = map->_dm_maxmaxsegsz;
	map->dm_mapsize = 0;
	map->dm_nsegs = 0;
	map->_dm_window = NULL;
	map->_dm_flags &= ~(BUS_DMA_READ|BUS_DMA_WRITE);
}

DMA_COUNT_DECL(unload);

void
_bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
{
	KASSERT(map->_dm_window == t);
	DMA_COUNT(unload);
	_bus_dmamap_unload_common(t, map);
}

/*
 * Common function for DMA map synchronization.  May be called
 * by chipset-specific DMA map synchronization functions.
 */
void
_bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    bus_size_t len, int ops)
{

	alpha_mb();
}

/*
 * Common function for DMA-safe memory allocation.  May be called
 * by bus-specific DMA memory allocation functions.
 */
int
_bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
    bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
    int flags)
{

	return (_bus_dmamem_alloc_range(t, size, alignment, boundary,
	    segs, nsegs, rsegs, flags, 0, trunc_page(avail_end)));
}

/*
 * Allocate physical memory from the given physical address range.
 * Called by DMA-safe memory allocation methods.
 */
int
_bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
    bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
    int flags, paddr_t low, paddr_t high)
{

	return (_bus_dmamem_alloc_range_common(t, size, alignment, boundary,
					       segs, nsegs, rsegs, flags,
					       low, high));
}

/*
 * Common function for freeing DMA-safe memory.  May be called by
 * bus-specific DMA memory free functions.
 */
void
_bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
{

	_bus_dmamem_free_common(t, segs, nsegs);
}

/*
 * Common function for mapping DMA-safe memory.  May be called by
 * bus-specific DMA memory map functions.
 */
int
_bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
    size_t size, void **kvap, int flags)
{

	/*
	 * If we're only mapping 1 segment, use K0SEG, to avoid
	 * TLB thrashing.
	 */
	if (nsegs == 1) {
		*kvap = (void *)ALPHA_PHYS_TO_K0SEG(segs[0].ds_addr);
		return (0);
	}

	return (_bus_dmamem_map_common(t, segs, nsegs, size, kvap, flags, 0));
}

/*
 * Common function for unmapping DMA-safe memory.  May be called by
 * bus-specific DMA memory unmapping functions.
 */
void
_bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
{

	/*
	 * Nothing to do if we mapped it with K0SEG.
	 */
	if (kva >= (void *)ALPHA_K0SEG_BASE &&
	    kva <= (void *)ALPHA_K0SEG_END)
		return;

	_bus_dmamem_unmap_common(t, kva, size);
}

/*
 * Common function for mmap(2)'ing DMA-safe memory.  May be called by
 * bus-specific DMA mmap(2)'ing functions.
 */
paddr_t
_bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
    off_t off, int prot, int flags)
{
	bus_addr_t rv;

	rv = _bus_dmamem_mmap_common(t, segs, nsegs, off, prot, flags);
	if (rv == (bus_addr_t)-1)
		return (-1);

	return (alpha_btop((char *)rv));
}