Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/*	$NetBSD: rf_engine.c,v 1.53 2019/10/10 03:43:59 christos Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: William V. Courtright II, Mark Holland, Rachad Youssef
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/****************************************************************************
 *                                                                          *
 * engine.c -- code for DAG execution engine                                *
 *                                                                          *
 * Modified to work as follows (holland):                                   *
 *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
 *   are direct successors to the header node.  DispatchDAG then returns,   *
 *   and the rest of the I/O continues asynchronously.  As each node        *
 *   completes, the node execution function calls FinishNode().  FinishNode *
 *   scans the list of successors to the node and increments the antecedent *
 *   counts.  Each node that becomes enabled is placed on a central node    *
 *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
 *   queue and fires them.                                                  *
 *                                                                          *
 *   NULL nodes are never fired.                                            *
 *                                                                          *
 *   Terminator nodes are never fired, but rather cause the callback        *
 *   associated with the DAG to be invoked.                                 *
 *                                                                          *
 *   If a node fails, the dag either rolls forward to the completion or     *
 *   rolls back, undoing previously-completed nodes and fails atomically.   *
 *   The direction of recovery is determined by the location of the failed  *
 *   node in the graph.  If the failure occurred before the commit node in   *
 *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
 *   used.                                                                  *
 *                                                                          *
 ****************************************************************************/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.53 2019/10/10 03:43:59 christos Exp $");

#include <sys/errno.h>

#include "rf_threadstuff.h"
#include "rf_dag.h"
#include "rf_engine.h"
#include "rf_etimer.h"
#include "rf_general.h"
#include "rf_dagutils.h"
#include "rf_shutdown.h"
#include "rf_raid.h"
#include "rf_kintf.h"
#include "rf_paritymap.h"

static void rf_ShutdownEngine(void *);
static void DAGExecutionThread(RF_ThreadArg_t arg);
static void rf_RaidIOThread(RF_ThreadArg_t arg);

/* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */

#define DO_LOCK(_r_) \
	rf_lock_mutex2((_r_)->node_queue_mutex)

#define DO_UNLOCK(_r_) \
	rf_unlock_mutex2((_r_)->node_queue_mutex)

#define	DO_WAIT(_r_) \
	rf_wait_cond2((_r_)->node_queue_cv, (_r_)->node_queue_mutex)

#define	DO_SIGNAL(_r_) \
	rf_broadcast_cond2((_r_)->node_queue_cv)	/* XXX rf_signal_cond2? */

static void
rf_ShutdownEngine(void *arg)
{
	RF_Raid_t *raidPtr;

	raidPtr = (RF_Raid_t *) arg;

	/* Tell the rf_RaidIOThread to shutdown */
	rf_lock_mutex2(raidPtr->iodone_lock);

	raidPtr->shutdown_raidio = 1;
	rf_signal_cond2(raidPtr->iodone_cv);

	/* ...and wait for it to tell us it has finished */
	while (raidPtr->shutdown_raidio)
		rf_wait_cond2(raidPtr->iodone_cv, raidPtr->iodone_lock);

	rf_unlock_mutex2(raidPtr->iodone_lock);

 	/* Now shut down the DAG execution engine. */
 	DO_LOCK(raidPtr);
  	raidPtr->shutdown_engine = 1;
  	DO_SIGNAL(raidPtr);

	/* ...and wait for it to tell us it has finished */
	while (raidPtr->shutdown_engine)
		DO_WAIT(raidPtr);

 	DO_UNLOCK(raidPtr);

	rf_destroy_mutex2(raidPtr->node_queue_mutex);
	rf_destroy_cond2(raidPtr->node_queue_cv);

	rf_destroy_mutex2(raidPtr->iodone_lock);
	rf_destroy_cond2(raidPtr->iodone_cv);
}

int
rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
		   RF_Config_t *cfgPtr)
{

	/*
	 * Initialise iodone for the IO thread.
	 */
	TAILQ_INIT(&(raidPtr->iodone));
	rf_init_mutex2(raidPtr->iodone_lock, IPL_VM);
	rf_init_cond2(raidPtr->iodone_cv, "raidiow");

	rf_init_mutex2(raidPtr->node_queue_mutex, IPL_VM);
	rf_init_cond2(raidPtr->node_queue_cv, "rfnodeq");
	raidPtr->node_queue = NULL;
	raidPtr->dags_in_flight = 0;

	/* we create the execution thread only once per system boot. no need
	 * to check return code b/c the kernel panics if it can't create the
	 * thread. */
#if RF_DEBUG_ENGINE
	if (rf_engineDebug) {
		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
	}
#endif
	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
				    DAGExecutionThread, raidPtr,
				    "raid%d", raidPtr->raidid)) {
		printf("raid%d: Unable to create engine thread\n",
		       raidPtr->raidid);
		return (ENOMEM);
	}
	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
				    rf_RaidIOThread, raidPtr,
				    "raidio%d", raidPtr->raidid)) {
		printf("raid%d: Unable to create raidio thread\n",
		       raidPtr->raidid);
		return (ENOMEM);
	}
#if RF_DEBUG_ENGINE
	if (rf_engineDebug) {
		printf("raid%d: Created engine thread\n", raidPtr->raidid);
	}
#endif

	/* engine thread is now running and waiting for work */
#if RF_DEBUG_ENGINE
	if (rf_engineDebug) {
		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
	}
#endif
	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);

	return (0);
}

#if 0
static int
BranchDone(RF_DagNode_t *node)
{
	int     i;

	/* return true if forward execution is completed for a node and its
	 * succedents */
	switch (node->status) {
	case rf_wait:
		/* should never be called in this state */
		RF_PANIC();
		break;
	case rf_fired:
		/* node is currently executing, so we're not done */
		return (RF_FALSE);
	case rf_good:
		/* for each succedent recursively check branch */
		for (i = 0; i < node->numSuccedents; i++)
			if (!BranchDone(node->succedents[i]))
				return RF_FALSE;
		return RF_TRUE;	/* node and all succedent branches aren't in
				 * fired state */
	case rf_bad:
		/* succedents can't fire */
		return (RF_TRUE);
	case rf_recover:
		/* should never be called in this state */
		RF_PANIC();
		break;
	case rf_undone:
	case rf_panic:
		/* XXX need to fix this case */
		/* for now, assume that we're done */
		return (RF_TRUE);
	default:
		/* illegal node status */
		RF_PANIC();
		break;
	}
}
#endif

static int
NodeReady(RF_DagNode_t *node)
{
	int     ready;

	ready = RF_FALSE;

	switch (node->dagHdr->status) {
	case rf_enable:
	case rf_rollForward:
		if ((node->status == rf_wait) &&
		    (node->numAntecedents == node->numAntDone))
			ready = RF_TRUE;
		break;
	case rf_rollBackward:
		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
		if ((node->status == rf_good) &&
		    (node->numSuccDone == node->numSuccedents))
			ready = RF_TRUE;
		break;
	default:
		printf("Execution engine found illegal DAG status in NodeReady\n");
		RF_PANIC();
		break;
	}

	return (ready);
}



/* user context and dag-exec-thread context: Fire a node.  The node's
 * status field determines which function, do or undo, to be fired.
 * This routine assumes that the node's status field has alread been
 * set to "fired" or "recover" to indicate the direction of execution.
 */
static void
FireNode(RF_DagNode_t *node)
{
	switch (node->status) {
	case rf_fired:
		/* fire the do function of a node */
#if RF_DEBUG_ENGINE
		if (rf_engineDebug) {
			printf("raid%d: Firing node 0x%lx (%s)\n",
			       node->dagHdr->raidPtr->raidid,
			       (unsigned long) node, node->name);
		}
#endif
		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
#if defined(__NetBSD__) && defined(_KERNEL)
			/* thread_block(); */
			/* printf("Need to block the thread here...\n");  */
			/* XXX thread_block is actually mentioned in
			 * /usr/include/vm/vm_extern.h */
#else
			thread_block();
#endif
		}
		(*(node->doFunc)) (node);
		break;
	case rf_recover:
		/* fire the undo function of a node */
#if RF_DEBUG_ENGINE
		if (rf_engineDebug) {
			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
			       node->dagHdr->raidPtr->raidid,
			       (unsigned long) node, node->name);
		}
#endif
		if (node->flags & RF_DAGNODE_FLAG_YIELD)
#if defined(__NetBSD__) && defined(_KERNEL)
			/* thread_block(); */
			/* printf("Need to block the thread here...\n"); */
			/* XXX thread_block is actually mentioned in
			 * /usr/include/vm/vm_extern.h */
#else
			thread_block();
#endif
		(*(node->undoFunc)) (node);
		break;
	default:
		RF_PANIC();
		break;
	}
}



/* user context:
 * Attempt to fire each node in a linear array.
 * The entire list is fired atomically.
 */
static void
FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
{
	RF_DagStatus_t dstat;
	RF_DagNode_t *node;
	int     i, j;

	/* first, mark all nodes which are ready to be fired */
	for (i = 0; i < numNodes; i++) {
		node = nodeList[i];
		dstat = node->dagHdr->status;
		RF_ASSERT((node->status == rf_wait) ||
			  (node->status == rf_good));
		if (NodeReady(node)) {
			if ((dstat == rf_enable) ||
			    (dstat == rf_rollForward)) {
				RF_ASSERT(node->status == rf_wait);
				if (node->commitNode)
					node->dagHdr->numCommits++;
				node->status = rf_fired;
				for (j = 0; j < node->numAntecedents; j++)
					node->antecedents[j]->numSuccFired++;
			} else {
				RF_ASSERT(dstat == rf_rollBackward);
				RF_ASSERT(node->status == rf_good);
				/* only one commit node per graph */
				RF_ASSERT(node->commitNode == RF_FALSE);
				node->status = rf_recover;
			}
		}
	}
	/* now, fire the nodes */
	for (i = 0; i < numNodes; i++) {
		if ((nodeList[i]->status == rf_fired) ||
		    (nodeList[i]->status == rf_recover))
			FireNode(nodeList[i]);
	}
}


/* user context:
 * Attempt to fire each node in a linked list.
 * The entire list is fired atomically.
 */
static void
FireNodeList(RF_DagNode_t *nodeList)
{
	RF_DagNode_t *node, *next;
	RF_DagStatus_t dstat;
	int     j;

	if (nodeList) {
		/* first, mark all nodes which are ready to be fired */
		for (node = nodeList; node; node = next) {
			next = node->next;
			dstat = node->dagHdr->status;
			RF_ASSERT((node->status == rf_wait) ||
				  (node->status == rf_good));
			if (NodeReady(node)) {
				if ((dstat == rf_enable) ||
				    (dstat == rf_rollForward)) {
					RF_ASSERT(node->status == rf_wait);
					if (node->commitNode)
						node->dagHdr->numCommits++;
					node->status = rf_fired;
					for (j = 0; j < node->numAntecedents; j++)
						node->antecedents[j]->numSuccFired++;
				} else {
					RF_ASSERT(dstat == rf_rollBackward);
					RF_ASSERT(node->status == rf_good);
					/* only one commit node per graph */
					RF_ASSERT(node->commitNode == RF_FALSE);
					node->status = rf_recover;
				}
			}
		}
		/* now, fire the nodes */
		for (node = nodeList; node; node = next) {
			next = node->next;
			if ((node->status == rf_fired) ||
			    (node->status == rf_recover))
				FireNode(node);
		}
	}
}
/* interrupt context:
 * for each succedent
 *    propagate required results from node to succedent
 *    increment succedent's numAntDone
 *    place newly-enable nodes on node queue for firing
 *
 * To save context switches, we don't place NIL nodes on the node queue,
 * but rather just process them as if they had fired.  Note that NIL nodes
 * that are the direct successors of the header will actually get fired by
 * DispatchDAG, which is fine because no context switches are involved.
 *
 * Important:  when running at user level, this can be called by any
 * disk thread, and so the increment and check of the antecedent count
 * must be locked.  I used the node queue mutex and locked down the
 * entire function, but this is certainly overkill.
 */
static void
PropagateResults(RF_DagNode_t *node, int context)
{
	RF_DagNode_t *s, *a;
	RF_Raid_t *raidPtr;
	int     i;
	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
						 * finished */
	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
					 * antecedents */
	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
	RF_DagNode_t *q = NULL, *qh = NULL, *next;
	int     j, skipNode;

	raidPtr = node->dagHdr->raidPtr;

	DO_LOCK(raidPtr);

	/* debug - validate fire counts */
	for (i = 0; i < node->numAntecedents; i++) {
		a = *(node->antecedents + i);
		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
		a->numSuccDone++;
	}

	switch (node->dagHdr->status) {
	case rf_enable:
	case rf_rollForward:
		for (i = 0; i < node->numSuccedents; i++) {
			s = *(node->succedents + i);
			RF_ASSERT(s->status == rf_wait);
			(s->numAntDone)++;
			if (s->numAntDone == s->numAntecedents) {
				/* look for NIL nodes */
				if (s->doFunc == rf_NullNodeFunc) {
					/* don't fire NIL nodes, just process
					 * them */
					s->next = finishlist;
					finishlist = s;
				} else {
					/* look to see if the node is to be
					 * skipped */
					skipNode = RF_FALSE;
					for (j = 0; j < s->numAntecedents; j++)
						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
							skipNode = RF_TRUE;
					if (skipNode) {
						/* this node has one or more
						 * failed true data
						 * dependencies, so skip it */
						s->next = skiplist;
						skiplist = s;
					} else
						/* add s to list of nodes (q)
						 * to execute */
						if (context != RF_INTR_CONTEXT) {
							/* we only have to
							 * enqueue if we're at
							 * intr context */
							/* put node on
                                                           a list to
                                                           be fired
                                                           after we
                                                           unlock */
							s->next = firelist;
							firelist = s;
						} else {
							/* enqueue the
							   node for
							   the dag
							   exec thread
							   to fire */
							RF_ASSERT(NodeReady(s));
							if (q) {
								q->next = s;
								q = s;
							} else {
								qh = q = s;
								qh->next = NULL;
							}
						}
				}
			}
		}

		if (q) {
			/* xfer our local list of nodes to the node queue */
			q->next = raidPtr->node_queue;
			raidPtr->node_queue = qh;
			DO_SIGNAL(raidPtr);
		}
		DO_UNLOCK(raidPtr);

		for (; skiplist; skiplist = next) {
			next = skiplist->next;
			skiplist->status = rf_skipped;
			for (i = 0; i < skiplist->numAntecedents; i++) {
				skiplist->antecedents[i]->numSuccFired++;
			}
			if (skiplist->commitNode) {
				skiplist->dagHdr->numCommits++;
			}
			rf_FinishNode(skiplist, context);
		}
		for (; finishlist; finishlist = next) {
			/* NIL nodes: no need to fire them */
			next = finishlist->next;
			finishlist->status = rf_good;
			for (i = 0; i < finishlist->numAntecedents; i++) {
				finishlist->antecedents[i]->numSuccFired++;
			}
			if (finishlist->commitNode)
				finishlist->dagHdr->numCommits++;
			/*
		         * Okay, here we're calling rf_FinishNode() on
		         * nodes that have the null function as their
		         * work proc. Such a node could be the
		         * terminal node in a DAG. If so, it will
		         * cause the DAG to complete, which will in
		         * turn free memory used by the DAG, which
		         * includes the node in question. Thus, we
		         * must avoid referencing the node at all
		         * after calling rf_FinishNode() on it.  */
			rf_FinishNode(finishlist, context);	/* recursive call */
		}
		/* fire all nodes in firelist */
		FireNodeList(firelist);
		break;

	case rf_rollBackward:
		for (i = 0; i < node->numAntecedents; i++) {
			a = *(node->antecedents + i);
			RF_ASSERT(a->status == rf_good);
			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
			RF_ASSERT(a->numSuccDone <= a->numSuccFired);

			if (a->numSuccDone == a->numSuccFired) {
				if (a->undoFunc == rf_NullNodeFunc) {
					/* don't fire NIL nodes, just process
					 * them */
					a->next = finishlist;
					finishlist = a;
				} else {
					if (context != RF_INTR_CONTEXT) {
						/* we only have to enqueue if
						 * we're at intr context */
						/* put node on a list to be
						   fired after we unlock */
						a->next = firelist;

						firelist = a;
					} else {
						/* enqueue the node for the
						   dag exec thread to fire */
						RF_ASSERT(NodeReady(a));
						if (q) {
							q->next = a;
							q = a;
						} else {
							qh = q = a;
							qh->next = NULL;
						}
					}
				}
			}
		}
		if (q) {
			/* xfer our local list of nodes to the node queue */
			q->next = raidPtr->node_queue;
			raidPtr->node_queue = qh;
			DO_SIGNAL(raidPtr);
		}
		DO_UNLOCK(raidPtr);
		for (; finishlist; finishlist = next) {
			/* NIL nodes: no need to fire them */
			next = finishlist->next;
			finishlist->status = rf_good;
			/*
		         * Okay, here we're calling rf_FinishNode() on
		         * nodes that have the null function as their
		         * work proc. Such a node could be the first
		         * node in a DAG. If so, it will cause the DAG
		         * to complete, which will in turn free memory
		         * used by the DAG, which includes the node in
		         * question. Thus, we must avoid referencing
		         * the node at all after calling
		         * rf_FinishNode() on it.  */
			rf_FinishNode(finishlist, context);	/* recursive call */
		}
		/* fire all nodes in firelist */
		FireNodeList(firelist);

		break;
	default:
		printf("Engine found illegal DAG status in PropagateResults()\n");
		RF_PANIC();
		break;
	}
}



/*
 * Process a fired node which has completed
 */
static void
ProcessNode(RF_DagNode_t *node, int context)
{
#if RF_DEBUG_ENGINE
	RF_Raid_t *raidPtr;

	raidPtr = node->dagHdr->raidPtr;
#endif

	switch (node->status) {
	case rf_good:
		/* normal case, don't need to do anything */
		break;
	case rf_bad:
		if ((node->dagHdr->numCommits > 0) ||
		    (node->dagHdr->numCommitNodes == 0)) {
			/* crossed commit barrier */
			node->dagHdr->status = rf_rollForward;
#if RF_DEBUG_ENGINE
			if (rf_engineDebug) {
				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
			}
#endif
		} else {
			/* never reached commit barrier */
			node->dagHdr->status = rf_rollBackward;
#if RF_DEBUG_ENGINE
			if (rf_engineDebug) {
				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
			}
#endif
		}
		break;
	case rf_undone:
		/* normal rollBackward case, don't need to do anything */
		break;
	case rf_panic:
		/* an undo node failed!!! */
		printf("UNDO of a node failed!!!\n");
		break;
	default:
		printf("node finished execution with an illegal status!!!\n");
		RF_PANIC();
		break;
	}

	/* enqueue node's succedents (antecedents if rollBackward) for
	 * execution */
	PropagateResults(node, context);
}



/* user context or dag-exec-thread context:
 * This is the first step in post-processing a newly-completed node.
 * This routine is called by each node execution function to mark the node
 * as complete and fire off any successors that have been enabled.
 */
void
rf_FinishNode(RF_DagNode_t *node, int context)
{
	node->dagHdr->numNodesCompleted++;
	ProcessNode(node, context);
}


/* user context: submit dag for execution, return non-zero if we have
 * to wait for completion.  if and only if we return non-zero, we'll
 * cause cbFunc to get invoked with cbArg when the DAG has completed.
 *
 * for now we always return 1.  If the DAG does not cause any I/O,
 * then the callback may get invoked before DispatchDAG returns.
 * There's code in state 5 of ContinueRaidAccess to handle this.
 *
 * All we do here is fire the direct successors of the header node.
 * The DAG execution thread does the rest of the dag processing.  */
int
rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
	       void *cbArg)
{
	RF_Raid_t *raidPtr;

	raidPtr = dag->raidPtr;
#if RF_ACC_TRACE > 0
	if (dag->tracerec) {
		RF_ETIMER_START(dag->tracerec->timer);
	}
#endif
#if DEBUG
#if RF_DEBUG_VALIDATE_DAG
	if (rf_engineDebug || rf_validateDAGDebug) {
		if (rf_ValidateDAG(dag))
			RF_PANIC();
	}
#endif
#endif
#if RF_DEBUG_ENGINE
	if (rf_engineDebug) {
		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
	}
#endif
	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
					 * locking */
	dag->cbFunc = cbFunc;
	dag->cbArg = cbArg;
	dag->numNodesCompleted = 0;
	dag->status = rf_enable;
	FireNodeArray(dag->numSuccedents, dag->succedents);
	return (1);
}
/* dedicated kernel thread: the thread that handles all DAG node
 * firing.  To minimize locking and unlocking, we grab a copy of the
 * entire node queue and then set the node queue to NULL before doing
 * any firing of nodes.  This way we only have to release the lock
 * once.  Of course, it's probably rare that there's more than one
 * node in the queue at any one time, but it sometimes happens.
 */

static void
DAGExecutionThread(RF_ThreadArg_t arg)
{
	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
	RF_Raid_t *raidPtr;

	raidPtr = (RF_Raid_t *) arg;

#if RF_DEBUG_ENGINE
	if (rf_engineDebug) {
		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
	}
#endif

	DO_LOCK(raidPtr);
	while (!raidPtr->shutdown_engine) {

		while (raidPtr->node_queue != NULL) {
			local_nq = raidPtr->node_queue;
			fire_nq = NULL;
			term_nq = NULL;
			raidPtr->node_queue = NULL;
			DO_UNLOCK(raidPtr);

			/* first, strip out the terminal nodes */
			while (local_nq) {
				nd = local_nq;
				local_nq = local_nq->next;
				switch (nd->dagHdr->status) {
				case rf_enable:
				case rf_rollForward:
					if (nd->numSuccedents == 0) {
						/* end of the dag, add to
						 * callback list */
						nd->next = term_nq;
						term_nq = nd;
					} else {
						/* not the end, add to the
						 * fire queue */
						nd->next = fire_nq;
						fire_nq = nd;
					}
					break;
				case rf_rollBackward:
					if (nd->numAntecedents == 0) {
						/* end of the dag, add to the
						 * callback list */
						nd->next = term_nq;
						term_nq = nd;
					} else {
						/* not the end, add to the
						 * fire queue */
						nd->next = fire_nq;
						fire_nq = nd;
					}
					break;
				default:
					RF_PANIC();
					break;
				}
			}

			/* execute callback of dags which have reached the
			 * terminal node */
			while (term_nq) {
				nd = term_nq;
				term_nq = term_nq->next;
				nd->next = NULL;
				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
				raidPtr->dags_in_flight--;	/* debug only */
			}

			/* fire remaining nodes */
			FireNodeList(fire_nq);

			DO_LOCK(raidPtr);
		}
		while (!raidPtr->shutdown_engine &&
		       raidPtr->node_queue == NULL) {
			DO_WAIT(raidPtr);
		}
	}

	/* Let rf_ShutdownEngine know that we're done... */
	raidPtr->shutdown_engine = 0;
	DO_SIGNAL(raidPtr);

	DO_UNLOCK(raidPtr);

	kthread_exit(0);
}

/*
 * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
 * puts the I/O on a buffer queue, and then signals raidPtr->iodone.  If
 * necessary, this function calls raidstart() to initiate the I/O.
 * When I/O to a component completes, KernelWakeupFunc() puts the
 * completed request onto raidPtr->iodone TAILQ.  This function looks
 * after requests on that queue by calling rf_DiskIOComplete() for the
 * request, and by calling any required CompleteFunc for the request.  
 */

static void
rf_RaidIOThread(RF_ThreadArg_t arg)
{
	RF_Raid_t *raidPtr;
	RF_DiskQueueData_t *req;

	raidPtr = (RF_Raid_t *) arg;

	rf_lock_mutex2(raidPtr->iodone_lock);

	while (!raidPtr->shutdown_raidio) {
		/* if there is nothing to do, then snooze. */
		if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
		    rf_buf_queue_check(raidPtr)) {
			rf_wait_cond2(raidPtr->iodone_cv, raidPtr->iodone_lock);
		}

		/* Check for deferred parity-map-related work. */
		if (raidPtr->parity_map != NULL) {
			rf_unlock_mutex2(raidPtr->iodone_lock);
			rf_paritymap_checkwork(raidPtr->parity_map);
			rf_lock_mutex2(raidPtr->iodone_lock);
		}

		/* See what I/Os, if any, have arrived */
		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
			rf_unlock_mutex2(raidPtr->iodone_lock);
			rf_DiskIOComplete(req->queue, req, req->error);
			(req->CompleteFunc) (req->argument, req->error);
			rf_lock_mutex2(raidPtr->iodone_lock);
		}

		/* process any pending outgoing IO */
		rf_unlock_mutex2(raidPtr->iodone_lock);
		raidstart(raidPtr);
		rf_lock_mutex2(raidPtr->iodone_lock);

	}

	/* Let rf_ShutdownEngine know that we're done... */
	raidPtr->shutdown_raidio = 0;
	rf_signal_cond2(raidPtr->iodone_cv);

	rf_unlock_mutex2(raidPtr->iodone_lock);

	kthread_exit(0);
}