/* $NetBSD: locks_up.c,v 1.12 2023/04/12 06:35:40 riastradh Exp $ */
/*
* Copyright (c) 2010 Antti Kantee. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Virtual uniprocessor rump kernel version of locks. Since the entire
* kernel is running on only one CPU in the system, there is no need
* to perform slow cache-coherent MP locking operations. This speeds
* up things quite dramatically and is a good example of that two
* disjoint kernels running simultaneously in an MP system can be
* massively faster than one with fine-grained locking.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: locks_up.c,v 1.12 2023/04/12 06:35:40 riastradh Exp $");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <rump-sys/kern.h>
#include <rump/rumpuser.h>
struct upmtx {
struct lwp *upm_owner;
int upm_wanted;
struct rumpuser_cv *upm_rucv;
};
#define UPMTX(mtx) struct upmtx *upm = *(struct upmtx **)mtx
static inline void
checkncpu(void)
{
if (__predict_false(ncpu != 1))
panic("UP lock implementation requires RUMP_NCPU == 1");
}
void
mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
{
struct upmtx *upm;
CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
checkncpu();
/*
* In uniprocessor locking we don't need to differentiate
* between spin mutexes and adaptive ones. We could
* replace mutex_enter() with a NOP for spin mutexes, but
* not bothering with that for now.
*/
/*
* XXX: pool_cache would be nice, but not easily possible,
* as pool cache init wants to call mutex_init() ...
*/
upm = rump_hypermalloc(sizeof(*upm), 0, true, "mutex_init");
memset(upm, 0, sizeof(*upm));
rumpuser_cv_init(&upm->upm_rucv);
memcpy(mtx, &upm, sizeof(void *));
}
void
mutex_destroy(kmutex_t *mtx)
{
UPMTX(mtx);
KASSERT(upm->upm_owner == NULL);
KASSERT(upm->upm_wanted == 0);
rumpuser_cv_destroy(upm->upm_rucv);
rump_hyperfree(upm, sizeof(*upm));
}
void
mutex_enter(kmutex_t *mtx)
{
UPMTX(mtx);
/* fastpath? */
if (mutex_tryenter(mtx))
return;
/*
* No? bummer, do it the slow and painful way then.
*/
upm->upm_wanted++;
while (!mutex_tryenter(mtx)) {
rump_schedlock_cv_wait(upm->upm_rucv);
}
upm->upm_wanted--;
KASSERT(upm->upm_wanted >= 0);
}
void
mutex_spin_enter(kmutex_t *mtx)
{
mutex_enter(mtx);
}
int
mutex_tryenter(kmutex_t *mtx)
{
UPMTX(mtx);
if (upm->upm_owner)
return 0;
upm->upm_owner = curlwp;
return 1;
}
void
mutex_exit(kmutex_t *mtx)
{
UPMTX(mtx);
if (upm->upm_wanted) {
rumpuser_cv_signal(upm->upm_rucv); /* CPU is our interlock */
}
upm->upm_owner = NULL;
}
void
mutex_spin_exit(kmutex_t *mtx)
{
mutex_exit(mtx);
}
int
mutex_owned(kmutex_t *mtx)
{
UPMTX(mtx);
return upm->upm_owner == curlwp;
}
struct uprw {
struct lwp *uprw_owner;
int uprw_readers;
uint16_t uprw_rwant;
uint16_t uprw_wwant;
struct rumpuser_cv *uprw_rucv_reader;
struct rumpuser_cv *uprw_rucv_writer;
};
#define UPRW(rw) struct uprw *uprw = *(struct uprw **)rw
/* reader/writer locks */
void
rw_init(krwlock_t *rw)
{
struct uprw *uprw;
CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
checkncpu();
uprw = rump_hypermalloc(sizeof(*uprw), 0, true, "rwinit");
memset(uprw, 0, sizeof(*uprw));
rumpuser_cv_init(&uprw->uprw_rucv_reader);
rumpuser_cv_init(&uprw->uprw_rucv_writer);
memcpy(rw, &uprw, sizeof(void *));
}
void
rw_destroy(krwlock_t *rw)
{
UPRW(rw);
rumpuser_cv_destroy(uprw->uprw_rucv_reader);
rumpuser_cv_destroy(uprw->uprw_rucv_writer);
rump_hyperfree(uprw, sizeof(*uprw));
}
/* take rwlock. prefer writers over readers (see rw_tryenter and rw_exit) */
void
rw_enter(krwlock_t *rw, const krw_t op)
{
UPRW(rw);
struct rumpuser_cv *rucv;
uint16_t *wp;
if (rw_tryenter(rw, op))
return;
/* lagpath */
if (op == RW_READER) {
rucv = uprw->uprw_rucv_reader;
wp = &uprw->uprw_rwant;
} else {
rucv = uprw->uprw_rucv_writer;
wp = &uprw->uprw_wwant;
}
(*wp)++;
while (!rw_tryenter(rw, op)) {
rump_schedlock_cv_wait(rucv);
}
(*wp)--;
}
int
rw_tryenter(krwlock_t *rw, const krw_t op)
{
UPRW(rw);
switch (op) {
case RW_READER:
if (uprw->uprw_owner == NULL && uprw->uprw_wwant == 0) {
uprw->uprw_readers++;
return 1;
}
break;
case RW_WRITER:
if (uprw->uprw_owner == NULL && uprw->uprw_readers == 0) {
uprw->uprw_owner = curlwp;
return 1;
}
break;
}
return 0;
}
void
rw_exit(krwlock_t *rw)
{
UPRW(rw);
if (uprw->uprw_readers > 0) {
uprw->uprw_readers--;
} else {
KASSERT(uprw->uprw_owner == curlwp);
uprw->uprw_owner = NULL;
}
if (uprw->uprw_wwant) {
rumpuser_cv_signal(uprw->uprw_rucv_writer);
} else if (uprw->uprw_rwant) {
rumpuser_cv_signal(uprw->uprw_rucv_reader);
}
}
int
rw_tryupgrade(krwlock_t *rw)
{
UPRW(rw);
if (uprw->uprw_readers == 1 && uprw->uprw_owner == NULL) {
uprw->uprw_readers = 0;
uprw->uprw_owner = curlwp;
return 1;
} else {
return 0;
}
}
int
rw_write_held(krwlock_t *rw)
{
UPRW(rw);
return uprw->uprw_owner == curlwp;
}
int
rw_read_held(krwlock_t *rw)
{
UPRW(rw);
return uprw->uprw_readers > 0;
}
int
rw_lock_held(krwlock_t *rw)
{
UPRW(rw);
return uprw->uprw_owner || uprw->uprw_readers;
}
krw_t
rw_lock_op(krwlock_t *rw)
{
return rw_write_held(rw) ? RW_WRITER : RW_READER;
}
/*
* Condvars are almost the same as in the MP case except that we
* use the scheduler mutex as the pthread interlock instead of the
* mutex associated with the condvar.
*/
#define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
void
cv_init(kcondvar_t *cv, const char *msg)
{
CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
checkncpu();
rumpuser_cv_init((struct rumpuser_cv **)cv);
}
void
cv_destroy(kcondvar_t *cv)
{
rumpuser_cv_destroy(RUMPCV(cv));
}
void
cv_wait(kcondvar_t *cv, kmutex_t *mtx)
{
#ifdef DIAGNOSTIC
UPMTX(mtx);
KASSERT(upm->upm_owner == curlwp);
if (rump_threads == 0)
panic("cv_wait without threads");
#endif
/*
* NOTE: we must atomically release the *CPU* here, i.e.
* nothing between mutex_exit and entering rumpuser condwait
* may preempt us from the virtual CPU.
*/
mutex_exit(mtx);
rump_schedlock_cv_wait(RUMPCV(cv));
mutex_enter(mtx);
}
int
cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
{
cv_wait(cv, mtx);
return 0;
}
int
cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
{
struct timespec ts;
#ifdef DIAGNOSTIC
UPMTX(mtx);
KASSERT(upm->upm_owner == curlwp);
#endif
ts.tv_sec = ticks / hz;
ts.tv_nsec = (ticks % hz) * (1000000000/hz);
if (ticks == 0) {
cv_wait(cv, mtx);
return 0;
} else {
int rv;
mutex_exit(mtx);
rv = rump_schedlock_cv_timedwait(RUMPCV(cv), &ts);
mutex_enter(mtx);
if (rv)
return EWOULDBLOCK;
else
return 0;
}
}
int
cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int ticks)
{
return cv_timedwait(cv, mtx, ticks);
}
void
cv_signal(kcondvar_t *cv)
{
/* CPU == interlock */
rumpuser_cv_signal(RUMPCV(cv));
}
void
cv_broadcast(kcondvar_t *cv)
{
/* CPU == interlock */
rumpuser_cv_broadcast(RUMPCV(cv));
}
bool
cv_has_waiters(kcondvar_t *cv)
{
int n;
rumpuser_cv_has_waiters(RUMPCV(cv), &n);
return n > 0;
}
/* this is not much of an attempt, but ... */
bool
cv_is_valid(kcondvar_t *cv)
{
return RUMPCV(cv) != NULL;
}