Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
=========================
Clang Language Extensions
=========================

.. contents::
   :local:
   :depth: 1

.. toctree::
   :hidden:

   ObjectiveCLiterals
   BlockLanguageSpec
   Block-ABI-Apple
   AutomaticReferenceCounting
   MatrixTypes

Introduction
============

This document describes the language extensions provided by Clang.  In addition
to the language extensions listed here, Clang aims to support a broad range of
GCC extensions.  Please see the `GCC manual
<https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
these extensions.

.. _langext-feature_check:

Feature Checking Macros
=======================

Language extensions can be very useful, but only if you know you can depend on
them.  In order to allow fine-grain features checks, we support three builtin
function-like macros.  This allows you to directly test for a feature in your
code without having to resort to something like autoconf or fragile "compiler
version checks".

``__has_builtin``
-----------------

This function-like macro takes a single identifier argument that is the name of
a builtin function, a builtin pseudo-function (taking one or more type
arguments), or a builtin template.
It evaluates to 1 if the builtin is supported or 0 if not.
It can be used like this:

.. code-block:: c++

  #ifndef __has_builtin         // Optional of course.
    #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
  #endif

  ...
  #if __has_builtin(__builtin_trap)
    __builtin_trap();
  #else
    abort();
  #endif
  ...

.. note::

  Prior to Clang 10, ``__has_builtin`` could not be used to detect most builtin
  pseudo-functions.

  ``__has_builtin`` should not be used to detect support for a builtin macro;
  use ``#ifdef`` instead.

.. _langext-__has_feature-__has_extension:

``__has_feature`` and ``__has_extension``
-----------------------------------------

These function-like macros take a single identifier argument that is the name
of a feature.  ``__has_feature`` evaluates to 1 if the feature is both
supported by Clang and standardized in the current language standard or 0 if
not (but see :ref:`below <langext-has-feature-back-compat>`), while
``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
current language (either as a language extension or a standard language
feature) or 0 if not.  They can be used like this:

.. code-block:: c++

  #ifndef __has_feature         // Optional of course.
    #define __has_feature(x) 0  // Compatibility with non-clang compilers.
  #endif
  #ifndef __has_extension
    #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
  #endif

  ...
  #if __has_feature(cxx_rvalue_references)
  // This code will only be compiled with the -std=c++11 and -std=gnu++11
  // options, because rvalue references are only standardized in C++11.
  #endif

  #if __has_extension(cxx_rvalue_references)
  // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
  // and -std=gnu++98 options, because rvalue references are supported as a
  // language extension in C++98.
  #endif

.. _langext-has-feature-back-compat:

For backward compatibility, ``__has_feature`` can also be used to test
for support for non-standardized features, i.e. features not prefixed ``c_``,
``cxx_`` or ``objc_``.

Another use of ``__has_feature`` is to check for compiler features not related
to the language standard, such as e.g. :doc:`AddressSanitizer
<AddressSanitizer>`.

If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
to ``__has_feature``.

The feature tag is described along with the language feature below.

The feature name or extension name can also be specified with a preceding and
following ``__`` (double underscore) to avoid interference from a macro with
the same name.  For instance, ``__cxx_rvalue_references__`` can be used instead
of ``cxx_rvalue_references``.

``__has_cpp_attribute``
-----------------------

This function-like macro is available in C++20 by default, and is provided as an
extension in earlier language standards. It takes a single argument that is the
name of a double-square-bracket-style attribute. The argument can either be a
single identifier or a scoped identifier. If the attribute is supported, a
nonzero value is returned. If the attribute is a standards-based attribute, this
macro returns a nonzero value based on the year and month in which the attribute
was voted into the working draft. See `WG21 SD-6
<https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations>`_
for the list of values returned for standards-based attributes. If the attribute
is not supported by the current compilation target, this macro evaluates to 0.
It can be used like this:

.. code-block:: c++

  #ifndef __has_cpp_attribute         // For backwards compatibility
    #define __has_cpp_attribute(x) 0
  #endif

  ...
  #if __has_cpp_attribute(clang::fallthrough)
  #define FALLTHROUGH [[clang::fallthrough]]
  #else
  #define FALLTHROUGH
  #endif
  ...

The attribute scope tokens ``clang`` and ``_Clang`` are interchangeable, as are
the attribute scope tokens ``gnu`` and ``__gnu__``. Attribute tokens in either
of these namespaces can be specified with a preceding and following ``__``
(double underscore) to avoid interference from a macro with the same name. For
instance, ``gnu::__const__`` can be used instead of ``gnu::const``.

``__has_c_attribute``
---------------------

This function-like macro takes a single argument that is the name of an
attribute exposed with the double square-bracket syntax in C mode. The argument
can either be a single identifier or a scoped identifier. If the attribute is
supported, a nonzero value is returned. If the attribute is not supported by the
current compilation target, this macro evaluates to 0. It can be used like this:

.. code-block:: c

  #ifndef __has_c_attribute         // Optional of course.
    #define __has_c_attribute(x) 0  // Compatibility with non-clang compilers.
  #endif

  ...
  #if __has_c_attribute(fallthrough)
    #define FALLTHROUGH [[fallthrough]]
  #else
    #define FALLTHROUGH
  #endif
  ...

The attribute scope tokens ``clang`` and ``_Clang`` are interchangeable, as are
the attribute scope tokens ``gnu`` and ``__gnu__``. Attribute tokens in either
of these namespaces can be specified with a preceding and following ``__``
(double underscore) to avoid interference from a macro with the same name. For
instance, ``gnu::__const__`` can be used instead of ``gnu::const``.

``__has_attribute``
-------------------

This function-like macro takes a single identifier argument that is the name of
a GNU-style attribute.  It evaluates to 1 if the attribute is supported by the
current compilation target, or 0 if not.  It can be used like this:

.. code-block:: c++

  #ifndef __has_attribute         // Optional of course.
    #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
  #endif

  ...
  #if __has_attribute(always_inline)
  #define ALWAYS_INLINE __attribute__((always_inline))
  #else
  #define ALWAYS_INLINE
  #endif
  ...

The attribute name can also be specified with a preceding and following ``__``
(double underscore) to avoid interference from a macro with the same name.  For
instance, ``__always_inline__`` can be used instead of ``always_inline``.


``__has_declspec_attribute``
----------------------------

This function-like macro takes a single identifier argument that is the name of
an attribute implemented as a Microsoft-style ``__declspec`` attribute.  It
evaluates to 1 if the attribute is supported by the current compilation target,
or 0 if not.  It can be used like this:

.. code-block:: c++

  #ifndef __has_declspec_attribute         // Optional of course.
    #define __has_declspec_attribute(x) 0  // Compatibility with non-clang compilers.
  #endif

  ...
  #if __has_declspec_attribute(dllexport)
  #define DLLEXPORT __declspec(dllexport)
  #else
  #define DLLEXPORT
  #endif
  ...

The attribute name can also be specified with a preceding and following ``__``
(double underscore) to avoid interference from a macro with the same name.  For
instance, ``__dllexport__`` can be used instead of ``dllexport``.

``__is_identifier``
-------------------

This function-like macro takes a single identifier argument that might be either
a reserved word or a regular identifier. It evaluates to 1 if the argument is just
a regular identifier and not a reserved word, in the sense that it can then be
used as the name of a user-defined function or variable. Otherwise it evaluates
to 0.  It can be used like this:

.. code-block:: c++

  ...
  #ifdef __is_identifier          // Compatibility with non-clang compilers.
    #if __is_identifier(__wchar_t)
      typedef wchar_t __wchar_t;
    #endif
  #endif

  __wchar_t WideCharacter;
  ...

Include File Checking Macros
============================

Not all developments systems have the same include files.  The
:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
you to check for the existence of an include file before doing a possibly
failing ``#include`` directive.  Include file checking macros must be used
as expressions in ``#if`` or ``#elif`` preprocessing directives.

.. _langext-__has_include:

``__has_include``
-----------------

This function-like macro takes a single file name string argument that is the
name of an include file.  It evaluates to 1 if the file can be found using the
include paths, or 0 otherwise:

.. code-block:: c++

  // Note the two possible file name string formats.
  #if __has_include("myinclude.h") && __has_include(<stdint.h>)
  # include "myinclude.h"
  #endif

To test for this feature, use ``#if defined(__has_include)``:

.. code-block:: c++

  // To avoid problem with non-clang compilers not having this macro.
  #if defined(__has_include)
  #if __has_include("myinclude.h")
  # include "myinclude.h"
  #endif
  #endif

.. _langext-__has_include_next:

``__has_include_next``
----------------------

This function-like macro takes a single file name string argument that is the
name of an include file.  It is like ``__has_include`` except that it looks for
the second instance of the given file found in the include paths.  It evaluates
to 1 if the second instance of the file can be found using the include paths,
or 0 otherwise:

.. code-block:: c++

  // Note the two possible file name string formats.
  #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
  # include_next "myinclude.h"
  #endif

  // To avoid problem with non-clang compilers not having this macro.
  #if defined(__has_include_next)
  #if __has_include_next("myinclude.h")
  # include_next "myinclude.h"
  #endif
  #endif

Note that ``__has_include_next``, like the GNU extension ``#include_next``
directive, is intended for use in headers only, and will issue a warning if
used in the top-level compilation file.  A warning will also be issued if an
absolute path is used in the file argument.

``__has_warning``
-----------------

This function-like macro takes a string literal that represents a command line
option for a warning and returns true if that is a valid warning option.

.. code-block:: c++

  #if __has_warning("-Wformat")
  ...
  #endif

.. _languageextensions-builtin-macros:

Builtin Macros
==============

``__BASE_FILE__``
  Defined to a string that contains the name of the main input file passed to
  Clang.

``__FILE_NAME__``
  Clang-specific extension that functions similar to ``__FILE__`` but only
  renders the last path component (the filename) instead of an invocation
  dependent full path to that file.

``__COUNTER__``
  Defined to an integer value that starts at zero and is incremented each time
  the ``__COUNTER__`` macro is expanded.

``__INCLUDE_LEVEL__``
  Defined to an integral value that is the include depth of the file currently
  being translated.  For the main file, this value is zero.

``__TIMESTAMP__``
  Defined to the date and time of the last modification of the current source
  file.

``__clang__``
  Defined when compiling with Clang

``__clang_major__``
  Defined to the major marketing version number of Clang (e.g., the 2 in
  2.0.1).  Note that marketing version numbers should not be used to check for
  language features, as different vendors use different numbering schemes.
  Instead, use the :ref:`langext-feature_check`.

``__clang_minor__``
  Defined to the minor version number of Clang (e.g., the 0 in 2.0.1).  Note
  that marketing version numbers should not be used to check for language
  features, as different vendors use different numbering schemes.  Instead, use
  the :ref:`langext-feature_check`.

``__clang_patchlevel__``
  Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).

``__clang_version__``
  Defined to a string that captures the Clang marketing version, including the
  Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".

``__clang_literal_encoding__``
  Defined to a narrow string literal that represents the current encoding of
  narrow string literals, e.g., ``"hello"``. This macro typically expands to
  "UTF-8" (but may change in the future if the
  ``-fexec-charset="Encoding-Name"`` option is implemented.)

``__clang_wide_literal_encoding__``
  Defined to a narrow string literal that represents the current encoding of
  wide string literals, e.g., ``L"hello"``. This macro typically expands to
  "UTF-16" or "UTF-32" (but may change in the future if the
  ``-fwide-exec-charset="Encoding-Name"`` option is implemented.)

.. _langext-vectors:

Vectors and Extended Vectors
============================

Supports the GCC, OpenCL, AltiVec and NEON vector extensions.

OpenCL vector types are created using the ``ext_vector_type`` attribute.  It
supports the ``V.xyzw`` syntax and other tidbits as seen in OpenCL.  An example
is:

.. code-block:: c++

  typedef float float4 __attribute__((ext_vector_type(4)));
  typedef float float2 __attribute__((ext_vector_type(2)));

  float4 foo(float2 a, float2 b) {
    float4 c;
    c.xz = a;
    c.yw = b;
    return c;
  }

Query for this feature with ``__has_attribute(ext_vector_type)``.

Giving ``-maltivec`` option to clang enables support for AltiVec vector syntax
and functions.  For example:

.. code-block:: c++

  vector float foo(vector int a) {
    vector int b;
    b = vec_add(a, a) + a;
    return (vector float)b;
  }

NEON vector types are created using ``neon_vector_type`` and
``neon_polyvector_type`` attributes.  For example:

.. code-block:: c++

  typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
  typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;

  int8x8_t foo(int8x8_t a) {
    int8x8_t v;
    v = a;
    return v;
  }

Vector Literals
---------------

Vector literals can be used to create vectors from a set of scalars, or
vectors.  Either parentheses or braces form can be used.  In the parentheses
form the number of literal values specified must be one, i.e. referring to a
scalar value, or must match the size of the vector type being created.  If a
single scalar literal value is specified, the scalar literal value will be
replicated to all the components of the vector type.  In the brackets form any
number of literals can be specified.  For example:

.. code-block:: c++

  typedef int v4si __attribute__((__vector_size__(16)));
  typedef float float4 __attribute__((ext_vector_type(4)));
  typedef float float2 __attribute__((ext_vector_type(2)));

  v4si vsi = (v4si){1, 2, 3, 4};
  float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
  vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
  vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
  vector int vi3 = (vector int)(1, 2); // error
  vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
  vector int vi5 = (vector int)(1, 2, 3, 4);
  float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));

Vector Operations
-----------------

The table below shows the support for each operation by vector extension.  A
dash indicates that an operation is not accepted according to a corresponding
specification.

============================== ======= ======= ============= =======
         Operator              OpenCL  AltiVec     GCC        NEON
============================== ======= ======= ============= =======
[]                               yes     yes       yes         --
unary operators +, --            yes     yes       yes         --
++, -- --                        yes     yes       yes         --
+,--,*,/,%                       yes     yes       yes         --
bitwise operators &,|,^,~        yes     yes       yes         --
>>,<<                            yes     yes       yes         --
!, &&, ||                        yes     --        yes         --
==, !=, >, <, >=, <=             yes     yes       yes         --
=                                yes     yes       yes         yes
?: [#]_                          yes     --        yes         --
sizeof                           yes     yes       yes         yes
C-style cast                     yes     yes       yes         no
reinterpret_cast                 yes     no        yes         no
static_cast                      yes     no        yes         no
const_cast                       no      no        no          no
============================== ======= ======= ============= =======

See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.

.. [#] ternary operator(?:) has different behaviors depending on condition
  operand's vector type. If the condition is a GNU vector (i.e. __vector_size__),
  it's only available in C++ and uses normal bool conversions (that is, != 0).
  If it's an extension (OpenCL) vector, it's only available in C and OpenCL C.
  And it selects base on signedness of the condition operands (OpenCL v1.1 s6.3.9).

Matrix Types
============

Clang provides an extension for matrix types, which is currently being
implemented. See :ref:`the draft specification <matrixtypes>` for more details.

For example, the code below uses the matrix types extension to multiply two 4x4
float matrices and add the result to a third 4x4 matrix.

.. code-block:: c++

  typedef float m4x4_t __attribute__((matrix_type(4, 4)));

  m4x4_t f(m4x4_t a, m4x4_t b, m4x4_t c) {
    return a + b * c;
  }


Half-Precision Floating Point
=============================

Clang supports three half-precision (16-bit) floating point types: ``__fp16``,
``_Float16`` and ``__bf16``.  These types are supported in all language modes.

``__fp16`` is supported on every target, as it is purely a storage format; see below.
``_Float16`` is currently only supported on the following targets, with further
targets pending ABI standardization:

* 32-bit ARM
* 64-bit ARM (AArch64)
* AMDGPU
* SPIR

``_Float16`` will be supported on more targets as they define ABIs for it.

``__bf16`` is purely a storage format; it is currently only supported on the following targets:
* 32-bit ARM
* 64-bit ARM (AArch64)

The ``__bf16`` type is only available when supported in hardware.

``__fp16`` is a storage and interchange format only.  This means that values of
``__fp16`` are immediately promoted to (at least) ``float`` when used in arithmetic
operations, so that e.g. the result of adding two ``__fp16`` values has type ``float``.
The behavior of ``__fp16`` is specified by the ARM C Language Extensions (`ACLE <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053d/IHI0053D_acle_2_1.pdf>`_).
Clang uses the ``binary16`` format from IEEE 754-2008 for ``__fp16``, not the ARM
alternative format.

``_Float16`` is an interchange floating-point type.  This means that, just like arithmetic on
``float`` or ``double``, arithmetic on ``_Float16`` operands is formally performed in the
``_Float16`` type, so that e.g. the result of adding two ``_Float16`` values has type
``_Float16``.  The behavior of ``_Float16`` is specified by ISO/IEC TS 18661-3:2015
("Floating-point extensions for C").  As with ``__fp16``, Clang uses the ``binary16``
format from IEEE 754-2008 for ``_Float16``.

``_Float16`` arithmetic will be performed using native half-precision support
when available on the target (e.g. on ARMv8.2a); otherwise it will be performed
at a higher precision (currently always ``float``) and then truncated down to
``_Float16``.  Note that C and C++ allow intermediate floating-point operands
of an expression to be computed with greater precision than is expressible in
their type, so Clang may avoid intermediate truncations in certain cases; this may
lead to results that are inconsistent with native arithmetic.

It is recommended that portable code use ``_Float16`` instead of ``__fp16``,
as it has been defined by the C standards committee and has behavior that is
more familiar to most programmers.

Because ``__fp16`` operands are always immediately promoted to ``float``, the
common real type of ``__fp16`` and ``_Float16`` for the purposes of the usual
arithmetic conversions is ``float``.

A literal can be given ``_Float16`` type using the suffix ``f16``. For example,
``3.14f16``.

Because default argument promotion only applies to the standard floating-point
types, ``_Float16`` values are not promoted to ``double`` when passed as variadic
or untyped arguments.  As a consequence, some caution must be taken when using
certain library facilities with ``_Float16``; for example, there is no ``printf`` format
specifier for ``_Float16``, and (unlike ``float``) it will not be implicitly promoted to
``double`` when passed to ``printf``, so the programmer must explicitly cast it to
``double`` before using it with an ``%f`` or similar specifier.

Messages on ``deprecated`` and ``unavailable`` Attributes
=========================================================

An optional string message can be added to the ``deprecated`` and
``unavailable`` attributes.  For example:

.. code-block:: c++

  void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));

If the deprecated or unavailable declaration is used, the message will be
incorporated into the appropriate diagnostic:

.. code-block:: none

  harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
        [-Wdeprecated-declarations]
    explode();
    ^

Query for this feature with
``__has_extension(attribute_deprecated_with_message)`` and
``__has_extension(attribute_unavailable_with_message)``.

Attributes on Enumerators
=========================

Clang allows attributes to be written on individual enumerators.  This allows
enumerators to be deprecated, made unavailable, etc.  The attribute must appear
after the enumerator name and before any initializer, like so:

.. code-block:: c++

  enum OperationMode {
    OM_Invalid,
    OM_Normal,
    OM_Terrified __attribute__((deprecated)),
    OM_AbortOnError __attribute__((deprecated)) = 4
  };

Attributes on the ``enum`` declaration do not apply to individual enumerators.

Query for this feature with ``__has_extension(enumerator_attributes)``.

'User-Specified' System Frameworks
==================================

Clang provides a mechanism by which frameworks can be built in such a way that
they will always be treated as being "system frameworks", even if they are not
present in a system framework directory.  This can be useful to system
framework developers who want to be able to test building other applications
with development builds of their framework, including the manner in which the
compiler changes warning behavior for system headers.

Framework developers can opt-in to this mechanism by creating a
"``.system_framework``" file at the top-level of their framework.  That is, the
framework should have contents like:

.. code-block:: none

  .../TestFramework.framework
  .../TestFramework.framework/.system_framework
  .../TestFramework.framework/Headers
  .../TestFramework.framework/Headers/TestFramework.h
  ...

Clang will treat the presence of this file as an indicator that the framework
should be treated as a system framework, regardless of how it was found in the
framework search path.  For consistency, we recommend that such files never be
included in installed versions of the framework.

Checks for Standard Language Features
=====================================

The ``__has_feature`` macro can be used to query if certain standard language
features are enabled.  The ``__has_extension`` macro can be used to query if
language features are available as an extension when compiling for a standard
which does not provide them.  The features which can be tested are listed here.

Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
These are macros with names of the form ``__cpp_<feature_name>``, and are
intended to be a portable way to query the supported features of the compiler.
See `the C++ status page <https://clang.llvm.org/cxx_status.html#ts>`_ for
information on the version of SD-6 supported by each Clang release, and the
macros provided by that revision of the recommendations.

C++98
-----

The features listed below are part of the C++98 standard.  These features are
enabled by default when compiling C++ code.

C++ exceptions
^^^^^^^^^^^^^^

Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
enabled.  For example, compiling code with ``-fno-exceptions`` disables C++
exceptions.

C++ RTTI
^^^^^^^^

Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled.  For
example, compiling code with ``-fno-rtti`` disables the use of RTTI.

C++11
-----

The features listed below are part of the C++11 standard.  As a result, all
these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
when compiling C++ code.

C++11 SFINAE includes access control
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_access_control_sfinae)`` or
``__has_extension(cxx_access_control_sfinae)`` to determine whether
access-control errors (e.g., calling a private constructor) are considered to
be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.

C++11 alias templates
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_alias_templates)`` or
``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
alias declarations and alias templates is enabled.

C++11 alignment specifiers
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
determine if support for alignment specifiers using ``alignas`` is enabled.

Use ``__has_feature(cxx_alignof)`` or ``__has_extension(cxx_alignof)`` to
determine if support for the ``alignof`` keyword is enabled.

C++11 attributes
^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
determine if support for attribute parsing with C++11's square bracket notation
is enabled.

C++11 generalized constant expressions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
constant expressions (e.g., ``constexpr``) is enabled.

C++11 ``decltype()``
^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
determine if support for the ``decltype()`` specifier is enabled.  C++11's
``decltype`` does not require type-completeness of a function call expression.
Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
support for this feature is enabled.

C++11 default template arguments in function templates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_default_function_template_args)`` or
``__has_extension(cxx_default_function_template_args)`` to determine if support
for default template arguments in function templates is enabled.

C++11 ``default``\ ed functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_defaulted_functions)`` or
``__has_extension(cxx_defaulted_functions)`` to determine if support for
defaulted function definitions (with ``= default``) is enabled.

C++11 delegating constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
delegating constructors is enabled.

C++11 ``deleted`` functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_deleted_functions)`` or
``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
function definitions (with ``= delete``) is enabled.

C++11 explicit conversion functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
``explicit`` conversion functions is enabled.

C++11 generalized initializers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
generalized initializers (using braced lists and ``std::initializer_list``) is
enabled.

C++11 implicit move constructors/assignment operators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
generate move constructors and move assignment operators where needed.

C++11 inheriting constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
inheriting constructors is enabled.

C++11 inline namespaces
^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_inline_namespaces)`` or
``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
namespaces is enabled.

C++11 lambdas
^^^^^^^^^^^^^

Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
determine if support for lambdas is enabled.

C++11 local and unnamed types as template arguments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_local_type_template_args)`` or
``__has_extension(cxx_local_type_template_args)`` to determine if support for
local and unnamed types as template arguments is enabled.

C++11 noexcept
^^^^^^^^^^^^^^

Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
determine if support for noexcept exception specifications is enabled.

C++11 in-class non-static data member initialization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
initialization of non-static data members is enabled.

C++11 ``nullptr``
^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
determine if support for ``nullptr`` is enabled.

C++11 ``override control``
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_override_control)`` or
``__has_extension(cxx_override_control)`` to determine if support for the
override control keywords is enabled.

C++11 reference-qualified functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_reference_qualified_functions)`` or
``__has_extension(cxx_reference_qualified_functions)`` to determine if support
for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
applied to ``*this``) is enabled.

C++11 range-based ``for`` loop
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
determine if support for the range-based for loop is enabled.

C++11 raw string literals
^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
string literals (e.g., ``R"x(foo\bar)x"``) is enabled.

C++11 rvalue references
^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_rvalue_references)`` or
``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
references is enabled.

C++11 ``static_assert()``
^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_static_assert)`` or
``__has_extension(cxx_static_assert)`` to determine if support for compile-time
assertions using ``static_assert`` is enabled.

C++11 ``thread_local``
^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_thread_local)`` to determine if support for
``thread_local`` variables is enabled.

C++11 type inference
^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
determine C++11 type inference is supported using the ``auto`` specifier.  If
this is disabled, ``auto`` will instead be a storage class specifier, as in C
or C++98.

C++11 strongly typed enumerations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_strong_enums)`` or
``__has_extension(cxx_strong_enums)`` to determine if support for strongly
typed, scoped enumerations is enabled.

C++11 trailing return type
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_trailing_return)`` or
``__has_extension(cxx_trailing_return)`` to determine if support for the
alternate function declaration syntax with trailing return type is enabled.

C++11 Unicode string literals
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
string literals is enabled.

C++11 unrestricted unions
^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
unrestricted unions is enabled.

C++11 user-defined literals
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_user_literals)`` to determine if support for
user-defined literals is enabled.

C++11 variadic templates
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_variadic_templates)`` or
``__has_extension(cxx_variadic_templates)`` to determine if support for
variadic templates is enabled.

C++14
-----

The features listed below are part of the C++14 standard.  As a result, all
these features are enabled with the ``-std=C++14`` or ``-std=gnu++14`` option
when compiling C++ code.

C++14 binary literals
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_binary_literals)`` or
``__has_extension(cxx_binary_literals)`` to determine whether
binary literals (for instance, ``0b10010``) are recognized. Clang supports this
feature as an extension in all language modes.

C++14 contextual conversions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_contextual_conversions)`` or
``__has_extension(cxx_contextual_conversions)`` to determine if the C++14 rules
are used when performing an implicit conversion for an array bound in a
*new-expression*, the operand of a *delete-expression*, an integral constant
expression, or a condition in a ``switch`` statement.

C++14 decltype(auto)
^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_decltype_auto)`` or
``__has_extension(cxx_decltype_auto)`` to determine if support
for the ``decltype(auto)`` placeholder type is enabled.

C++14 default initializers for aggregates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_aggregate_nsdmi)`` or
``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
for default initializers in aggregate members is enabled.

C++14 digit separators
^^^^^^^^^^^^^^^^^^^^^^

Use ``__cpp_digit_separators`` to determine if support for digit separators
using single quotes (for instance, ``10'000``) is enabled. At this time, there
is no corresponding ``__has_feature`` name

C++14 generalized lambda capture
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_init_captures)`` or
``__has_extension(cxx_init_captures)`` to determine if support for
lambda captures with explicit initializers is enabled
(for instance, ``[n(0)] { return ++n; }``).

C++14 generic lambdas
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_generic_lambdas)`` or
``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
(polymorphic) lambdas is enabled
(for instance, ``[] (auto x) { return x + 1; }``).

C++14 relaxed constexpr
^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_relaxed_constexpr)`` or
``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
declarations, local variable modification, and control flow constructs
are permitted in ``constexpr`` functions.

C++14 return type deduction
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_return_type_deduction)`` or
``__has_extension(cxx_return_type_deduction)`` to determine if support
for return type deduction for functions (using ``auto`` as a return type)
is enabled.

C++14 runtime-sized arrays
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_runtime_array)`` or
``__has_extension(cxx_runtime_array)`` to determine if support
for arrays of runtime bound (a restricted form of variable-length arrays)
is enabled.
Clang's implementation of this feature is incomplete.

C++14 variable templates
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_variable_templates)`` or
``__has_extension(cxx_variable_templates)`` to determine if support for
templated variable declarations is enabled.

C11
---

The features listed below are part of the C11 standard.  As a result, all these
features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
compiling C code.  Additionally, because these features are all
backward-compatible, they are available as extensions in all language modes.

C11 alignment specifiers
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
if support for alignment specifiers using ``_Alignas`` is enabled.

Use ``__has_feature(c_alignof)`` or ``__has_extension(c_alignof)`` to determine
if support for the ``_Alignof`` keyword is enabled.

C11 atomic operations
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
if support for atomic types using ``_Atomic`` is enabled.  Clang also provides
:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
is available.

Clang will use the system's ``<stdatomic.h>`` header when one is available, and
will otherwise use its own. When using its own, implementations of the atomic
operations are provided as macros. In the cases where C11 also requires a real
function, this header provides only the declaration of that function (along
with a shadowing macro implementation), and you must link to a library which
provides a definition of the function if you use it instead of the macro.

C11 generic selections
^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_generic_selections)`` or
``__has_extension(c_generic_selections)`` to determine if support for generic
selections is enabled.

As an extension, the C11 generic selection expression is available in all
languages supported by Clang.  The syntax is the same as that given in the C11
standard.

In C, type compatibility is decided according to the rules given in the
appropriate standard, but in C++, which lacks the type compatibility rules used
in C, types are considered compatible only if they are equivalent.

C11 ``_Static_assert()``
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
to determine if support for compile-time assertions using ``_Static_assert`` is
enabled.

C11 ``_Thread_local``
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
to determine if support for ``_Thread_local`` variables is enabled.

Modules
-------

Use ``__has_feature(modules)`` to determine if Modules have been enabled.
For example, compiling code with ``-fmodules`` enables the use of Modules.

More information could be found `here <https://clang.llvm.org/docs/Modules.html>`_.

Type Trait Primitives
=====================

Type trait primitives are special builtin constant expressions that can be used
by the standard C++ library to facilitate or simplify the implementation of
user-facing type traits in the <type_traits> header.

They are not intended to be used directly by user code because they are
implementation-defined and subject to change -- as such they're tied closely to
the supported set of system headers, currently:

* LLVM's own libc++
* GNU libstdc++
* The Microsoft standard C++ library

Clang supports the `GNU C++ type traits
<https://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
`Microsoft Visual C++ type traits
<https://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_,
as well as nearly all of the
`Embarcadero C++ type traits
<http://docwiki.embarcadero.com/RADStudio/Rio/en/Type_Trait_Functions_(C%2B%2B11)_Index>`_.

The following type trait primitives are supported by Clang. Those traits marked
(C++) provide implementations for type traits specified by the C++ standard;
``__X(...)`` has the same semantics and constraints as the corresponding
``std::X_t<...>`` or ``std::X_v<...>`` type trait.

* ``__array_rank(type)`` (Embarcadero):
  Returns the number of levels of array in the type ``type``:
  ``0`` if ``type`` is not an array type, and
  ``__array_rank(element) + 1`` if ``type`` is an array of ``element``.
* ``__array_extent(type, dim)`` (Embarcadero):
  The ``dim``'th array bound in the type ``type``, or ``0`` if
  ``dim >= __array_rank(type)``.
* ``__has_nothrow_assign`` (GNU, Microsoft, Embarcadero):
  Deprecated, use ``__is_nothrow_assignable`` instead.
* ``__has_nothrow_move_assign`` (GNU, Microsoft):
  Deprecated, use ``__is_nothrow_assignable`` instead.
* ``__has_nothrow_copy`` (GNU, Microsoft):
  Deprecated, use ``__is_nothrow_constructible`` instead.
* ``__has_nothrow_constructor`` (GNU, Microsoft):
  Deprecated, use ``__is_nothrow_constructible`` instead.
* ``__has_trivial_assign`` (GNU, Microsoft, Embarcadero):
  Deprecated, use ``__is_trivially_assignable`` instead.
* ``__has_trivial_move_assign`` (GNU, Microsoft):
  Deprecated, use ``__is_trivially_assignable`` instead.
* ``__has_trivial_copy`` (GNU, Microsoft):
  Deprecated, use ``__is_trivially_constructible`` instead.
* ``__has_trivial_constructor`` (GNU, Microsoft):
  Deprecated, use ``__is_trivially_constructible`` instead.
* ``__has_trivial_move_constructor`` (GNU, Microsoft):
  Deprecated, use ``__is_trivially_constructible`` instead.
* ``__has_trivial_destructor`` (GNU, Microsoft, Embarcadero):
  Deprecated, use ``__is_trivially_destructible`` instead.
* ``__has_unique_object_representations`` (C++, GNU)
* ``__has_virtual_destructor`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_abstract`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_aggregate`` (C++, GNU, Microsoft)
* ``__is_arithmetic`` (C++, Embarcadero)
* ``__is_array`` (C++, Embarcadero)
* ``__is_assignable`` (C++, MSVC 2015)
* ``__is_base_of`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_class`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_complete_type(type)`` (Embarcadero):
  Return ``true`` if ``type`` is a complete type.
  Warning: this trait is dangerous because it can return different values at
  different points in the same program.
* ``__is_compound`` (C++, Embarcadero)
* ``__is_const`` (C++, Embarcadero)
* ``__is_constructible`` (C++, MSVC 2013)
* ``__is_convertible`` (C++, Embarcadero)
* ``__is_convertible_to`` (Microsoft):
  Synonym for ``__is_convertible``.
* ``__is_destructible`` (C++, MSVC 2013):
  Only available in ``-fms-extensions`` mode.
* ``__is_empty`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_enum`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_final`` (C++, GNU, Microsoft)
* ``__is_floating_point`` (C++, Embarcadero)
* ``__is_function`` (C++, Embarcadero)
* ``__is_fundamental`` (C++, Embarcadero)
* ``__is_integral`` (C++, Embarcadero)
* ``__is_interface_class`` (Microsoft):
  Returns ``false``, even for types defined with ``__interface``.
* ``__is_literal`` (Clang):
  Synonym for ``__is_literal_type``.
* ``__is_literal_type`` (C++, GNU, Microsoft):
  Note, the corresponding standard trait was deprecated in C++17
  and removed in C++20.
* ``__is_lvalue_reference`` (C++, Embarcadero)
* ``__is_member_object_pointer`` (C++, Embarcadero)
* ``__is_member_function_pointer`` (C++, Embarcadero)
* ``__is_member_pointer`` (C++, Embarcadero)
* ``__is_nothrow_assignable`` (C++, MSVC 2013)
* ``__is_nothrow_constructible`` (C++, MSVC 2013)
* ``__is_nothrow_destructible`` (C++, MSVC 2013)
  Only available in ``-fms-extensions`` mode.
* ``__is_object`` (C++, Embarcadero)
* ``__is_pod`` (C++, GNU, Microsoft, Embarcadero):
  Note, the corresponding standard trait was deprecated in C++20.
* ``__is_pointer`` (C++, Embarcadero)
* ``__is_polymorphic`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_reference`` (C++, Embarcadero)
* ``__is_rvalue_reference`` (C++, Embarcadero)
* ``__is_same`` (C++, Embarcadero)
* ``__is_same_as`` (GCC): Synonym for ``__is_same``.
* ``__is_scalar`` (C++, Embarcadero)
* ``__is_sealed`` (Microsoft):
  Synonym for ``__is_final``.
* ``__is_signed`` (C++, Embarcadero):
  Returns false for enumeration types, and returns true for floating-point
  types. Note, before Clang 10, returned true for enumeration types if the
  underlying type was signed, and returned false for floating-point types.
* ``__is_standard_layout`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_trivial`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_trivially_assignable`` (C++, GNU, Microsoft)
* ``__is_trivially_constructible`` (C++, GNU, Microsoft)
* ``__is_trivially_copyable`` (C++, GNU, Microsoft)
* ``__is_trivially_destructible`` (C++, MSVC 2013)
* ``__is_union`` (C++, GNU, Microsoft, Embarcadero)
* ``__is_unsigned`` (C++, Embarcadero):
  Returns false for enumeration types. Note, before Clang 13, returned true for
  enumeration types if the underlying type was unsigned.
* ``__is_void`` (C++, Embarcadero)
* ``__is_volatile`` (C++, Embarcadero)
* ``__reference_binds_to_temporary(T, U)`` (Clang):  Determines whether a
  reference of type ``T`` bound to an expression of type ``U`` would bind to a
  materialized temporary object. If ``T`` is not a reference type the result
  is false. Note this trait will also return false when the initialization of
  ``T`` from ``U`` is ill-formed.
* ``__underlying_type`` (C++, GNU, Microsoft)

In addition, the following expression traits are supported:

* ``__is_lvalue_expr(e)`` (Embarcadero):
  Returns true if ``e`` is an lvalue expression.
  Deprecated, use ``__is_lvalue_reference(decltype((e)))`` instead.
* ``__is_rvalue_expr(e)`` (Embarcadero):
  Returns true if ``e`` is a prvalue expression.
  Deprecated, use ``!__is_reference(decltype((e)))`` instead.

There are multiple ways to detect support for a type trait ``__X`` in the
compiler, depending on the oldest version of Clang you wish to support.

* From Clang 10 onwards, ``__has_builtin(__X)`` can be used.
* From Clang 6 onwards, ``!__is_identifier(__X)`` can be used.
* From Clang 3 onwards, ``__has_feature(X)`` can be used, but only supports
  the following traits:

  * ``__has_nothrow_assign``
  * ``__has_nothrow_copy``
  * ``__has_nothrow_constructor``
  * ``__has_trivial_assign``
  * ``__has_trivial_copy``
  * ``__has_trivial_constructor``
  * ``__has_trivial_destructor``
  * ``__has_virtual_destructor``
  * ``__is_abstract``
  * ``__is_base_of``
  * ``__is_class``
  * ``__is_constructible``
  * ``__is_convertible_to``
  * ``__is_empty``
  * ``__is_enum``
  * ``__is_final``
  * ``__is_literal``
  * ``__is_standard_layout``
  * ``__is_pod``
  * ``__is_polymorphic``
  * ``__is_sealed``
  * ``__is_trivial``
  * ``__is_trivially_assignable``
  * ``__is_trivially_constructible``
  * ``__is_trivially_copyable``
  * ``__is_union``
  * ``__underlying_type``

A simplistic usage example as might be seen in standard C++ headers follows:

.. code-block:: c++

  #if __has_builtin(__is_convertible_to)
  template<typename From, typename To>
  struct is_convertible_to {
    static const bool value = __is_convertible_to(From, To);
  };
  #else
  // Emulate type trait for compatibility with other compilers.
  #endif

Blocks
======

The syntax and high level language feature description is in
:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.

Query for this feature with ``__has_extension(blocks)``.

ASM Goto with Output Constraints
================================

In addition to the functionality provided by `GCC's extended
assembly <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_, clang
supports output constraints with the `goto` form.

The goto form of GCC's extended assembly allows the programmer to branch to a C
label from within an inline assembly block. Clang extends this behavior by
allowing the programmer to use output constraints:

.. code-block:: c++

  int foo(int x) {
      int y;
      asm goto("# %0 %1 %l2" : "=r"(y) : "r"(x) : : err);
      return y;
    err:
      return -1;
  }

It's important to note that outputs are valid only on the "fallthrough" branch.
Using outputs on an indirect branch may result in undefined behavior. For
example, in the function above, use of the value assigned to `y` in the `err`
block is undefined behavior.

Query for this feature with ``__has_extension(gnu_asm_goto_with_outputs)``.

Objective-C Features
====================

Related result types
--------------------

According to Cocoa conventions, Objective-C methods with certain names
("``init``", "``alloc``", etc.) always return objects that are an instance of
the receiving class's type.  Such methods are said to have a "related result
type", meaning that a message send to one of these methods will have the same
static type as an instance of the receiver class.  For example, given the
following classes:

.. code-block:: objc

  @interface NSObject
  + (id)alloc;
  - (id)init;
  @end

  @interface NSArray : NSObject
  @end

and this common initialization pattern

.. code-block:: objc

  NSArray *array = [[NSArray alloc] init];

the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
``alloc`` implicitly has a related result type.  Similarly, the type of the
expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
related result type and its receiver is known to have the type ``NSArray *``.
If neither ``alloc`` nor ``init`` had a related result type, the expressions
would have had type ``id``, as declared in the method signature.

A method with a related result type can be declared by using the type
``instancetype`` as its result type.  ``instancetype`` is a contextual keyword
that is only permitted in the result type of an Objective-C method, e.g.

.. code-block:: objc

  @interface A
  + (instancetype)constructAnA;
  @end

The related result type can also be inferred for some methods.  To determine
whether a method has an inferred related result type, the first word in the
camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
and the method will have a related result type if its return type is compatible
with the type of its class and if:

* the first word is "``alloc``" or "``new``", and the method is a class method,
  or

* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
  and the method is an instance method.

If a method with a related result type is overridden by a subclass method, the
subclass method must also return a type that is compatible with the subclass
type.  For example:

.. code-block:: objc

  @interface NSString : NSObject
  - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
  @end

Related result types only affect the type of a message send or property access
via the given method.  In all other respects, a method with a related result
type is treated the same way as method that returns ``id``.

Use ``__has_feature(objc_instancetype)`` to determine whether the
``instancetype`` contextual keyword is available.

Automatic reference counting
----------------------------

Clang provides support for :doc:`automated reference counting
<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
for manual ``retain``/``release``/``autorelease`` message sends.  There are three
feature macros associated with automatic reference counting:
``__has_feature(objc_arc)`` indicates the availability of automated reference
counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
automated reference counting also includes support for ``__weak`` pointers to
Objective-C objects. ``__has_feature(objc_arc_fields)`` indicates that C structs
are allowed to have fields that are pointers to Objective-C objects managed by
automatic reference counting.

.. _objc-weak:

Weak references
---------------

Clang supports ARC-style weak and unsafe references in Objective-C even
outside of ARC mode.  Weak references must be explicitly enabled with
the ``-fobjc-weak`` option; use ``__has_feature((objc_arc_weak))``
to test whether they are enabled.  Unsafe references are enabled
unconditionally.  ARC-style weak and unsafe references cannot be used
when Objective-C garbage collection is enabled.

Except as noted below, the language rules for the ``__weak`` and
``__unsafe_unretained`` qualifiers (and the ``weak`` and
``unsafe_unretained`` property attributes) are just as laid out
in the :doc:`ARC specification <AutomaticReferenceCounting>`.
In particular, note that some classes do not support forming weak
references to their instances, and note that special care must be
taken when storing weak references in memory where initialization
and deinitialization are outside the responsibility of the compiler
(such as in ``malloc``-ed memory).

Loading from a ``__weak`` variable always implicitly retains the
loaded value.  In non-ARC modes, this retain is normally balanced
by an implicit autorelease.  This autorelease can be suppressed
by performing the load in the receiver position of a ``-retain``
message send (e.g. ``[weakReference retain]``); note that this performs
only a single retain (the retain done when primitively loading from
the weak reference).

For the most part, ``__unsafe_unretained`` in non-ARC modes is just the
default behavior of variables and therefore is not needed.  However,
it does have an effect on the semantics of block captures: normally,
copying a block which captures an Objective-C object or block pointer
causes the captured pointer to be retained or copied, respectively,
but that behavior is suppressed when the captured variable is qualified
with ``__unsafe_unretained``.

Note that the ``__weak`` qualifier formerly meant the GC qualifier in
all non-ARC modes and was silently ignored outside of GC modes.  It now
means the ARC-style qualifier in all non-GC modes and is no longer
allowed if not enabled by either ``-fobjc-arc`` or ``-fobjc-weak``.
It is expected that ``-fobjc-weak`` will eventually be enabled by default
in all non-GC Objective-C modes.

.. _objc-fixed-enum:

Enumerations with a fixed underlying type
-----------------------------------------

Clang provides support for C++11 enumerations with a fixed underlying type
within Objective-C.  For example, one can write an enumeration type as:

.. code-block:: c++

  typedef enum : unsigned char { Red, Green, Blue } Color;

This specifies that the underlying type, which is used to store the enumeration
value, is ``unsigned char``.

Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
underlying types is available in Objective-C.

Interoperability with C++11 lambdas
-----------------------------------

Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
permitting a lambda to be implicitly converted to a block pointer with the
corresponding signature.  For example, consider an API such as ``NSArray``'s
array-sorting method:

.. code-block:: objc

  - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;

``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
(^)(id, id)``, and parameters of this type are generally provided with block
literals as arguments.  However, one can also use a C++11 lambda so long as it
provides the same signature (in this case, accepting two parameters of type
``id`` and returning an ``NSComparisonResult``):

.. code-block:: objc

  NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
                     @"String 02"];
  const NSStringCompareOptions comparisonOptions
    = NSCaseInsensitiveSearch | NSNumericSearch |
      NSWidthInsensitiveSearch | NSForcedOrderingSearch;
  NSLocale *currentLocale = [NSLocale currentLocale];
  NSArray *sorted
    = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
               NSRange string1Range = NSMakeRange(0, [s1 length]);
               return [s1 compare:s2 options:comparisonOptions
               range:string1Range locale:currentLocale];
       }];
  NSLog(@"sorted: %@", sorted);

This code relies on an implicit conversion from the type of the lambda
expression (an unnamed, local class type called the *closure type*) to the
corresponding block pointer type.  The conversion itself is expressed by a
conversion operator in that closure type that produces a block pointer with the
same signature as the lambda itself, e.g.,

.. code-block:: objc

  operator NSComparisonResult (^)(id, id)() const;

This conversion function returns a new block that simply forwards the two
parameters to the lambda object (which it captures by copy), then returns the
result.  The returned block is first copied (with ``Block_copy``) and then
autoreleased.  As an optimization, if a lambda expression is immediately
converted to a block pointer (as in the first example, above), then the block
is not copied and autoreleased: rather, it is given the same lifetime as a
block literal written at that point in the program, which avoids the overhead
of copying a block to the heap in the common case.

The conversion from a lambda to a block pointer is only available in
Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
management (autorelease).

Object Literals and Subscripting
--------------------------------

Clang provides support for :doc:`Object Literals and Subscripting
<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
programming patterns, makes programs more concise, and improves the safety of
container creation.  There are several feature macros associated with object
literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
availability of array literals; ``__has_feature(objc_dictionary_literals)``
tests the availability of dictionary literals;
``__has_feature(objc_subscripting)`` tests the availability of object
subscripting.

Objective-C Autosynthesis of Properties
---------------------------------------

Clang provides support for autosynthesis of declared properties.  Using this
feature, clang provides default synthesis of those properties not declared
@dynamic and not having user provided backing getter and setter methods.
``__has_feature(objc_default_synthesize_properties)`` checks for availability
of this feature in version of clang being used.

.. _langext-objc-retain-release:

Objective-C retaining behavior attributes
-----------------------------------------

In Objective-C, functions and methods are generally assumed to follow the
`Cocoa Memory Management
<https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
conventions for ownership of object arguments and
return values. However, there are exceptions, and so Clang provides attributes
to allow these exceptions to be documented. This are used by ARC and the
`static analyzer <https://clang-analyzer.llvm.org>`_ Some exceptions may be
better described using the ``objc_method_family`` attribute instead.

**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
``ns_returns_autoreleased``, ``cf_returns_retained``, and
``cf_returns_not_retained`` attributes can be placed on methods and functions
that return Objective-C or CoreFoundation objects. They are commonly placed at
the end of a function prototype or method declaration:

.. code-block:: objc

  id foo() __attribute__((ns_returns_retained));

  - (NSString *)bar:(int)x __attribute__((ns_returns_retained));

The ``*_returns_retained`` attributes specify that the returned object has a +1
retain count.  The ``*_returns_not_retained`` attributes specify that the return
object has a +0 retain count, even if the normal convention for its selector
would be +1.  ``ns_returns_autoreleased`` specifies that the returned object is
+0, but is guaranteed to live at least as long as the next flush of an
autorelease pool.

**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
an parameter declaration; they specify that the argument is expected to have a
+1 retain count, which will be balanced in some way by the function or method.
The ``ns_consumes_self`` attribute can only be placed on an Objective-C
method; it specifies that the method expects its ``self`` parameter to have a
+1 retain count, which it will balance in some way.

.. code-block:: objc

  void foo(__attribute__((ns_consumed)) NSString *string);

  - (void) bar __attribute__((ns_consumes_self));
  - (void) baz:(id) __attribute__((ns_consumed)) x;

Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
<https://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.

Query for these features with ``__has_attribute(ns_consumed)``,
``__has_attribute(ns_returns_retained)``, etc.

Objective-C @available
----------------------

It is possible to use the newest SDK but still build a program that can run on
older versions of macOS and iOS by passing ``-mmacosx-version-min=`` /
``-miphoneos-version-min=``.

Before LLVM 5.0, when calling a function that exists only in the OS that's
newer than the target OS (as determined by the minimum deployment version),
programmers had to carefully check if the function exists at runtime, using
null checks for weakly-linked C functions, ``+class`` for Objective-C classes,
and ``-respondsToSelector:`` or ``+instancesRespondToSelector:`` for
Objective-C methods.  If such a check was missed, the program would compile
fine, run fine on newer systems, but crash on older systems.

As of LLVM 5.0, ``-Wunguarded-availability`` uses the `availability attributes
<https://clang.llvm.org/docs/AttributeReference.html#availability>`_ together
with the new ``@available()`` keyword to assist with this issue.
When a method that's introduced in the OS newer than the target OS is called, a
-Wunguarded-availability warning is emitted if that call is not guarded:

.. code-block:: objc

  void my_fun(NSSomeClass* var) {
    // If fancyNewMethod was added in e.g. macOS 10.12, but the code is
    // built with -mmacosx-version-min=10.11, then this unconditional call
    // will emit a -Wunguarded-availability warning:
    [var fancyNewMethod];
  }

To fix the warning and to avoid the crash on macOS 10.11, wrap it in
``if(@available())``:

.. code-block:: objc

  void my_fun(NSSomeClass* var) {
    if (@available(macOS 10.12, *)) {
      [var fancyNewMethod];
    } else {
      // Put fallback behavior for old macOS versions (and for non-mac
      // platforms) here.
    }
  }

The ``*`` is required and means that platforms not explicitly listed will take
the true branch, and the compiler will emit ``-Wunguarded-availability``
warnings for unlisted platforms based on those platform's deployment target.
More than one platform can be listed in ``@available()``:

.. code-block:: objc

  void my_fun(NSSomeClass* var) {
    if (@available(macOS 10.12, iOS 10, *)) {
      [var fancyNewMethod];
    }
  }

If the caller of ``my_fun()`` already checks that ``my_fun()`` is only called
on 10.12, then add an `availability attribute
<https://clang.llvm.org/docs/AttributeReference.html#availability>`_ to it,
which will also suppress the warning and require that calls to my_fun() are
checked:

.. code-block:: objc

  API_AVAILABLE(macos(10.12)) void my_fun(NSSomeClass* var) {
    [var fancyNewMethod];  // Now ok.
  }

``@available()`` is only available in Objective-C code.  To use the feature
in C and C++ code, use the ``__builtin_available()`` spelling instead.

If existing code uses null checks or ``-respondsToSelector:``, it should
be changed to use ``@available()`` (or ``__builtin_available``) instead.

``-Wunguarded-availability`` is disabled by default, but
``-Wunguarded-availability-new``, which only emits this warning for APIs
that have been introduced in macOS >= 10.13, iOS >= 11, watchOS >= 4 and
tvOS >= 11, is enabled by default.

.. _langext-overloading:

Objective-C++ ABI: protocol-qualifier mangling of parameters
------------------------------------------------------------

Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
type is a qualified-``id`` (e.g., ``id<Foo>``).  This mangling allows such
parameters to be differentiated from those with the regular unqualified ``id``
type.

This was a non-backward compatible mangling change to the ABI.  This change
allows proper overloading, and also prevents mangling conflicts with template
parameters of protocol-qualified type.

Query the presence of this new mangling with
``__has_feature(objc_protocol_qualifier_mangling)``.

Initializer lists for complex numbers in C
==========================================

clang supports an extension which allows the following in C:

.. code-block:: c++

  #include <math.h>
  #include <complex.h>
  complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)

This construct is useful because there is no way to separately initialize the
real and imaginary parts of a complex variable in standard C, given that clang
does not support ``_Imaginary``.  (Clang also supports the ``__real__`` and
``__imag__`` extensions from gcc, which help in some cases, but are not usable
in static initializers.)

Note that this extension does not allow eliding the braces; the meaning of the
following two lines is different:

.. code-block:: c++

  complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
  complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)

This extension also works in C++ mode, as far as that goes, but does not apply
to the C++ ``std::complex``.  (In C++11, list initialization allows the same
syntax to be used with ``std::complex`` with the same meaning.)

For GCC compatibility, ``__builtin_complex(re, im)`` can also be used to
construct a complex number from the given real and imaginary components.

OpenCL Features
===============

Clang supports internal OpenCL extensions documented below.

``__cl_clang_function_pointers``
--------------------------------

With this extension it is possible to enable various language features that
are relying on function pointers using regular OpenCL extension pragma
mechanism detailed in `the OpenCL Extension Specification,
section 1.2
<https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#extensions-overview>`_.

In C++ for OpenCL this also enables:

- Use of member function pointers;

- Unrestricted use of references to functions;

- Virtual member functions.

Such functionality is not conformant and does not guarantee to compile
correctly in any circumstances. It can be used if:

- the kernel source does not contain call expressions to (member-) function
  pointers, or virtual functions. For example this extension can be used in
  metaprogramming algorithms to be able to specify/detect types generically.

- the generated kernel binary does not contain indirect calls because they
  are eliminated using compiler optimizations e.g. devirtualization. 

- the selected target supports the function pointer like functionality e.g.
  most CPU targets.

**Example of Use**:

.. code-block:: c++

  #pragma OPENCL EXTENSION __cl_clang_function_pointers : enable
  void foo()
  {
    void (*fp)(); // compiled - no diagnostic generated
  }

  #pragma OPENCL EXTENSION __cl_clang_function_pointers : disable
  void bar()
  {
    void (*fp)(); // error - pointers to function are not allowed
  }

``__cl_clang_variadic_functions``
---------------------------------

With this extension it is possible to enable variadic arguments in functions
using regular OpenCL extension pragma mechanism detailed in `the OpenCL
Extension Specification, section 1.2
<https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#extensions-overview>`_.

This is not conformant behavior and it can only be used portably when the
functions with variadic prototypes do not get generated in binary e.g. the
variadic prototype is used to specify a function type with any number of
arguments in metaprogramming algorithms in C++ for OpenCL.

This extensions can also be used when the kernel code is intended for targets
supporting the variadic arguments e.g. majority of CPU targets.

**Example of Use**:

.. code-block:: c++

  #pragma OPENCL EXTENSION __cl_clang_variadic_functions : enable
  void foo(int a, ...); // compiled - no diagnostic generated

  #pragma OPENCL EXTENSION __cl_clang_variadic_functions : disable
  void bar(int a, ...); // error - variadic prototype is not allowed

``__cl_clang_non_portable_kernel_param_types``
----------------------------------------------

With this extension it is possible to enable the use of some restricted types
in kernel parameters specified in `C++ for OpenCL v1.0 s2.4
<https://www.khronos.org/opencl/assets/CXX_for_OpenCL.html#kernel_function>`_.
The restrictions can be relaxed using regular OpenCL extension pragma mechanism
detailed in `the OpenCL Extension Specification, section 1.2
<https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#extensions-overview>`_.

This is not a conformant behavior and it can only be used when the
kernel arguments are not accessed on the host side or the data layout/size
between the host and device is known to be compatible.

**Example of Use**:

.. code-block:: c++

  // Plain Old Data type.
  struct Pod {
    int a;
    int b;
  };

  // Not POD type because of the constructor.
  // Standard layout type because there is only one access control.
  struct OnlySL {
    int a;
    int b;
    NotPod() : a(0), b(0) {}
  };

  // Not standard layout type because of two different access controls.
  struct NotSL {
    int a;
  private:
    int b;
  }

  kernel void kernel_main(
    Pod a,
  #pragma OPENCL EXTENSION __cl_clang_non_portable_kernel_param_types : enable
    OnlySL b,
    global NotSL *c,
  #pragma OPENCL EXTENSION __cl_clang_non_portable_kernel_param_types : disable
    global OnlySL *d,
  );

Legacy 1.x atomics with generic address space
---------------------------------------------

Clang allows use of atomic functions from the OpenCL 1.x standards
with the generic address space pointer in C++ for OpenCL mode.

This is a non-portable feature and might not be supported by all
targets.

**Example of Use**:

.. code-block:: c++

  void foo(__generic volatile unsigned int* a) {
    atomic_add(a, 1);
  }

Builtin Functions
=================

Clang supports a number of builtin library functions with the same syntax as
GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc.  In addition to
the GCC builtins, Clang supports a number of builtins that GCC does not, which
are listed here.

Please note that Clang does not and will not support all of the GCC builtins
for vector operations.  Instead of using builtins, you should use the functions
defined in target-specific header files like ``<xmmintrin.h>``, which define
portable wrappers for these.  Many of the Clang versions of these functions are
implemented directly in terms of :ref:`extended vector support
<langext-vectors>` instead of builtins, in order to reduce the number of
builtins that we need to implement.

.. _langext-__builtin_assume:

``__builtin_assume``
------------------------------

``__builtin_assume`` is used to provide the optimizer with a boolean
invariant that is defined to be true.

**Syntax**:

.. code-block:: c++

  __builtin_assume(bool)

**Example of Use**:

.. code-block:: c++

  int foo(int x) {
    __builtin_assume(x != 0);

    // The optimizer may short-circuit this check using the invariant.
    if (x == 0)
      return do_something();

    return do_something_else();
  }

**Description**:

The boolean argument to this function is defined to be true. The optimizer may
analyze the form of the expression provided as the argument and deduce from
that information used to optimize the program. If the condition is violated
during execution, the behavior is undefined. The argument itself is never
evaluated, so any side effects of the expression will be discarded.

Query for this feature with ``__has_builtin(__builtin_assume)``.

``__builtin_readcyclecounter``
------------------------------

``__builtin_readcyclecounter`` is used to access the cycle counter register (or
a similar low-latency, high-accuracy clock) on those targets that support it.

**Syntax**:

.. code-block:: c++

  __builtin_readcyclecounter()

**Example of Use**:

.. code-block:: c++

  unsigned long long t0 = __builtin_readcyclecounter();
  do_something();
  unsigned long long t1 = __builtin_readcyclecounter();
  unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow

**Description**:

The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
which may be either global or process/thread-specific depending on the target.
As the backing counters often overflow quickly (on the order of seconds) this
should only be used for timing small intervals.  When not supported by the
target, the return value is always zero.  This builtin takes no arguments and
produces an unsigned long long result.

Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
that even if present, its use may depend on run-time privilege or other OS
controlled state.

``__builtin_dump_struct``
-------------------------

**Syntax**:

.. code-block:: c++

     __builtin_dump_struct(&some_struct, &some_printf_func);

**Examples**:

.. code-block:: c++

     struct S {
       int x, y;
       float f;
       struct T {
         int i;
       } t;
     };

     void func(struct S *s) {
       __builtin_dump_struct(s, &printf);
     }

Example output:

.. code-block:: none

     struct S {
     int i : 100
     int j : 42
     float f : 3.14159
     struct T t : struct T {
         int i : 1997
         }
     }

**Description**:

The '``__builtin_dump_struct``' function is used to print the fields of a simple
structure and their values for debugging purposes. The builtin accepts a pointer
to a structure to dump the fields of, and a pointer to a formatted output
function whose signature must be: ``int (*)(const char *, ...)`` and must
support the format specifiers used by ``printf()``.

.. _langext-__builtin_shufflevector:

``__builtin_shufflevector``
---------------------------

``__builtin_shufflevector`` is used to express generic vector
permutation/shuffle/swizzle operations.  This builtin is also very important
for the implementation of various target-specific header files like
``<xmmintrin.h>``.

**Syntax**:

.. code-block:: c++

  __builtin_shufflevector(vec1, vec2, index1, index2, ...)

**Examples**:

.. code-block:: c++

  // identity operation - return 4-element vector v1.
  __builtin_shufflevector(v1, v1, 0, 1, 2, 3)

  // "Splat" element 0 of V1 into a 4-element result.
  __builtin_shufflevector(V1, V1, 0, 0, 0, 0)

  // Reverse 4-element vector V1.
  __builtin_shufflevector(V1, V1, 3, 2, 1, 0)

  // Concatenate every other element of 4-element vectors V1 and V2.
  __builtin_shufflevector(V1, V2, 0, 2, 4, 6)

  // Concatenate every other element of 8-element vectors V1 and V2.
  __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)

  // Shuffle v1 with some elements being undefined
  __builtin_shufflevector(v1, v1, 3, -1, 1, -1)

**Description**:

The first two arguments to ``__builtin_shufflevector`` are vectors that have
the same element type.  The remaining arguments are a list of integers that
specify the elements indices of the first two vectors that should be extracted
and returned in a new vector.  These element indices are numbered sequentially
starting with the first vector, continuing into the second vector.  Thus, if
``vec1`` is a 4-element vector, index 5 would refer to the second element of
``vec2``. An index of -1 can be used to indicate that the corresponding element
in the returned vector is a don't care and can be optimized by the backend.

The result of ``__builtin_shufflevector`` is a vector with the same element
type as ``vec1``/``vec2`` but that has an element count equal to the number of
indices specified.

Query for this feature with ``__has_builtin(__builtin_shufflevector)``.

.. _langext-__builtin_convertvector:

``__builtin_convertvector``
---------------------------

``__builtin_convertvector`` is used to express generic vector
type-conversion operations. The input vector and the output vector
type must have the same number of elements.

**Syntax**:

.. code-block:: c++

  __builtin_convertvector(src_vec, dst_vec_type)

**Examples**:

.. code-block:: c++

  typedef double vector4double __attribute__((__vector_size__(32)));
  typedef float  vector4float  __attribute__((__vector_size__(16)));
  typedef short  vector4short  __attribute__((__vector_size__(8)));
  vector4float vf; vector4short vs;

  // convert from a vector of 4 floats to a vector of 4 doubles.
  __builtin_convertvector(vf, vector4double)
  // equivalent to:
  (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }

  // convert from a vector of 4 shorts to a vector of 4 floats.
  __builtin_convertvector(vs, vector4float)
  // equivalent to:
  (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }

**Description**:

The first argument to ``__builtin_convertvector`` is a vector, and the second
argument is a vector type with the same number of elements as the first
argument.

The result of ``__builtin_convertvector`` is a vector with the same element
type as the second argument, with a value defined in terms of the action of a
C-style cast applied to each element of the first argument.

Query for this feature with ``__has_builtin(__builtin_convertvector)``.

``__builtin_bitreverse``
------------------------

* ``__builtin_bitreverse8``
* ``__builtin_bitreverse16``
* ``__builtin_bitreverse32``
* ``__builtin_bitreverse64``

**Syntax**:

.. code-block:: c++

     __builtin_bitreverse32(x)

**Examples**:

.. code-block:: c++

      uint8_t rev_x = __builtin_bitreverse8(x);
      uint16_t rev_x = __builtin_bitreverse16(x);
      uint32_t rev_y = __builtin_bitreverse32(y);
      uint64_t rev_z = __builtin_bitreverse64(z);

**Description**:

The '``__builtin_bitreverse``' family of builtins is used to reverse
the bitpattern of an integer value; for example ``0b10110110`` becomes
``0b01101101``. These builtins can be used within constant expressions.

``__builtin_rotateleft``
------------------------

* ``__builtin_rotateleft8``
* ``__builtin_rotateleft16``
* ``__builtin_rotateleft32``
* ``__builtin_rotateleft64``

**Syntax**:

.. code-block:: c++

     __builtin_rotateleft32(x, y)

**Examples**:

.. code-block:: c++

      uint8_t rot_x = __builtin_rotateleft8(x, y);
      uint16_t rot_x = __builtin_rotateleft16(x, y);
      uint32_t rot_x = __builtin_rotateleft32(x, y);
      uint64_t rot_x = __builtin_rotateleft64(x, y);

**Description**:

The '``__builtin_rotateleft``' family of builtins is used to rotate
the bits in the first argument by the amount in the second argument.
For example, ``0b10000110`` rotated left by 11 becomes ``0b00110100``.
The shift value is treated as an unsigned amount modulo the size of
the arguments. Both arguments and the result have the bitwidth specified
by the name of the builtin. These builtins can be used within constant
expressions.

``__builtin_rotateright``
-------------------------

* ``__builtin_rotateright8``
* ``__builtin_rotateright16``
* ``__builtin_rotateright32``
* ``__builtin_rotateright64``

**Syntax**:

.. code-block:: c++

     __builtin_rotateright32(x, y)

**Examples**:

.. code-block:: c++

      uint8_t rot_x = __builtin_rotateright8(x, y);
      uint16_t rot_x = __builtin_rotateright16(x, y);
      uint32_t rot_x = __builtin_rotateright32(x, y);
      uint64_t rot_x = __builtin_rotateright64(x, y);

**Description**:

The '``__builtin_rotateright``' family of builtins is used to rotate
the bits in the first argument by the amount in the second argument.
For example, ``0b10000110`` rotated right by 3 becomes ``0b11010000``.
The shift value is treated as an unsigned amount modulo the size of
the arguments. Both arguments and the result have the bitwidth specified
by the name of the builtin. These builtins can be used within constant
expressions.

``__builtin_unreachable``
-------------------------

``__builtin_unreachable`` is used to indicate that a specific point in the
program cannot be reached, even if the compiler might otherwise think it can.
This is useful to improve optimization and eliminates certain warnings.  For
example, without the ``__builtin_unreachable`` in the example below, the
compiler assumes that the inline asm can fall through and prints a "function
declared '``noreturn``' should not return" warning.

**Syntax**:

.. code-block:: c++

    __builtin_unreachable()

**Example of use**:

.. code-block:: c++

  void myabort(void) __attribute__((noreturn));
  void myabort(void) {
    asm("int3");
    __builtin_unreachable();
  }

**Description**:

The ``__builtin_unreachable()`` builtin has completely undefined behavior.
Since it has undefined behavior, it is a statement that it is never reached and
the optimizer can take advantage of this to produce better code.  This builtin
takes no arguments and produces a void result.

Query for this feature with ``__has_builtin(__builtin_unreachable)``.

``__builtin_unpredictable``
---------------------------

``__builtin_unpredictable`` is used to indicate that a branch condition is
unpredictable by hardware mechanisms such as branch prediction logic.

**Syntax**:

.. code-block:: c++

    __builtin_unpredictable(long long)

**Example of use**:

.. code-block:: c++

  if (__builtin_unpredictable(x > 0)) {
     foo();
  }

**Description**:

The ``__builtin_unpredictable()`` builtin is expected to be used with control
flow conditions such as in ``if`` and ``switch`` statements.

Query for this feature with ``__has_builtin(__builtin_unpredictable)``.

``__sync_swap``
---------------

``__sync_swap`` is used to atomically swap integers or pointers in memory.

**Syntax**:

.. code-block:: c++

  type __sync_swap(type *ptr, type value, ...)

**Example of Use**:

.. code-block:: c++

  int old_value = __sync_swap(&value, new_value);

**Description**:

The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
atomic intrinsics to allow code to atomically swap the current value with the
new value.  More importantly, it helps developers write more efficient and
correct code by avoiding expensive loops around
``__sync_bool_compare_and_swap()`` or relying on the platform specific
implementation details of ``__sync_lock_test_and_set()``.  The
``__sync_swap()`` builtin is a full barrier.

``__builtin_addressof``
-----------------------

``__builtin_addressof`` performs the functionality of the built-in ``&``
operator, ignoring any ``operator&`` overload.  This is useful in constant
expressions in C++11, where there is no other way to take the address of an
object that overloads ``operator&``.

**Example of use**:

.. code-block:: c++

  template<typename T> constexpr T *addressof(T &value) {
    return __builtin_addressof(value);
  }

``__builtin_operator_new`` and ``__builtin_operator_delete``
------------------------------------------------------------

A call to ``__builtin_operator_new(args)`` is exactly the same as a call to
``::operator new(args)``, except that it allows certain optimizations
that the C++ standard does not permit for a direct function call to
``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
merging allocations), and that the call is required to resolve to a
`replaceable global allocation function
<https://en.cppreference.com/w/cpp/memory/new/operator_new>`_.

Likewise, ``__builtin_operator_delete`` is exactly the same as a call to
``::operator delete(args)``, except that it permits optimizations
and that the call is required to resolve to a
`replaceable global deallocation function
<https://en.cppreference.com/w/cpp/memory/new/operator_delete>`_.

These builtins are intended for use in the implementation of ``std::allocator``
and other similar allocation libraries, and are only available in C++.

Query for this feature with ``__has_builtin(__builtin_operator_new)`` or
``__has_builtin(__builtin_operator_delete)``:

  * If the value is at least ``201802L``, the builtins behave as described above.

  * If the value is non-zero, the builtins may not support calling arbitrary
    replaceable global (de)allocation functions, but do support calling at least
    ``::operator new(size_t)`` and ``::operator delete(void*)``.

``__builtin_preserve_access_index``
-----------------------------------

``__builtin_preserve_access_index`` specifies a code section where
array subscript access and structure/union member access are relocatable
under bpf compile-once run-everywhere framework. Debuginfo (typically
with ``-g``) is needed, otherwise, the compiler will exit with an error.
The return type for the intrinsic is the same as the type of the
argument.

**Syntax**:

.. code-block:: c

  type __builtin_preserve_access_index(type arg)

**Example of Use**:

.. code-block:: c

  struct t {
    int i;
    int j;
    union {
      int a;
      int b;
    } c[4];
  };
  struct t *v = ...;
  int *pb =__builtin_preserve_access_index(&v->c[3].b);
  __builtin_preserve_access_index(v->j);

Multiprecision Arithmetic Builtins
----------------------------------

Clang provides a set of builtins which expose multiprecision arithmetic in a
manner amenable to C. They all have the following form:

.. code-block:: c

  unsigned x = ..., y = ..., carryin = ..., carryout;
  unsigned sum = __builtin_addc(x, y, carryin, &carryout);

Thus one can form a multiprecision addition chain in the following manner:

.. code-block:: c

  unsigned *x, *y, *z, carryin=0, carryout;
  z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
  carryin = carryout;
  z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
  carryin = carryout;
  z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
  carryin = carryout;
  z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);

The complete list of builtins are:

.. code-block:: c

  unsigned char      __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
  unsigned short     __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
  unsigned           __builtin_addc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
  unsigned long      __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
  unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
  unsigned char      __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
  unsigned short     __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
  unsigned           __builtin_subc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
  unsigned long      __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
  unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);

Checked Arithmetic Builtins
---------------------------

Clang provides a set of builtins that implement checked arithmetic for security
critical applications in a manner that is fast and easily expressible in C. As
an example of their usage:

.. code-block:: c

  errorcode_t security_critical_application(...) {
    unsigned x, y, result;
    ...
    if (__builtin_mul_overflow(x, y, &result))
      return kErrorCodeHackers;
    ...
    use_multiply(result);
    ...
  }

Clang provides the following checked arithmetic builtins:

.. code-block:: c

  bool __builtin_add_overflow   (type1 x, type2 y, type3 *sum);
  bool __builtin_sub_overflow   (type1 x, type2 y, type3 *diff);
  bool __builtin_mul_overflow   (type1 x, type2 y, type3 *prod);
  bool __builtin_uadd_overflow  (unsigned x, unsigned y, unsigned *sum);
  bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
  bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
  bool __builtin_usub_overflow  (unsigned x, unsigned y, unsigned *diff);
  bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
  bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
  bool __builtin_umul_overflow  (unsigned x, unsigned y, unsigned *prod);
  bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
  bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
  bool __builtin_sadd_overflow  (int x, int y, int *sum);
  bool __builtin_saddl_overflow (long x, long y, long *sum);
  bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
  bool __builtin_ssub_overflow  (int x, int y, int *diff);
  bool __builtin_ssubl_overflow (long x, long y, long *diff);
  bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
  bool __builtin_smul_overflow  (int x, int y, int *prod);
  bool __builtin_smull_overflow (long x, long y, long *prod);
  bool __builtin_smulll_overflow(long long x, long long y, long long *prod);

Each builtin performs the specified mathematical operation on the
first two arguments and stores the result in the third argument.  If
possible, the result will be equal to mathematically-correct result
and the builtin will return 0.  Otherwise, the builtin will return
1 and the result will be equal to the unique value that is equivalent
to the mathematically-correct result modulo two raised to the *k*
power, where *k* is the number of bits in the result type.  The
behavior of these builtins is well-defined for all argument values.

The first three builtins work generically for operands of any integer type,
including boolean types.  The operands need not have the same type as each
other, or as the result.  The other builtins may implicitly promote or
convert their operands before performing the operation.

Query for this feature with ``__has_builtin(__builtin_add_overflow)``, etc.

Floating point builtins
---------------------------------------

``__builtin_canonicalize``
--------------------------

.. code-block:: c

   double __builtin_canonicalize(double);
   float __builtin_canonicalizef(float);
   long double__builtin_canonicalizel(long double);

Returns the platform specific canonical encoding of a floating point
number. This canonicalization is useful for implementing certain
numeric primitives such as frexp. See `LLVM canonicalize intrinsic
<https://llvm.org/docs/LangRef.html#llvm-canonicalize-intrinsic>`_ for
more information on the semantics.

String builtins
---------------

Clang provides constant expression evaluation support for builtins forms of
the following functions from the C standard library headers
``<string.h>`` and ``<wchar.h>``:

* ``memchr``
* ``memcmp`` (and its deprecated BSD / POSIX alias ``bcmp``)
* ``strchr``
* ``strcmp``
* ``strlen``
* ``strncmp``
* ``wcschr``
* ``wcscmp``
* ``wcslen``
* ``wcsncmp``
* ``wmemchr``
* ``wmemcmp``

In each case, the builtin form has the name of the C library function prefixed
by ``__builtin_``. Example:

.. code-block:: c

  void *p = __builtin_memchr("foobar", 'b', 5);

In addition to the above, one further builtin is provided:

.. code-block:: c

  char *__builtin_char_memchr(const char *haystack, int needle, size_t size);

``__builtin_char_memchr(a, b, c)`` is identical to
``(char*)__builtin_memchr(a, b, c)`` except that its use is permitted within
constant expressions in C++11 onwards (where a cast from ``void*`` to ``char*``
is disallowed in general).

Constant evaluation support for the ``__builtin_mem*`` functions is provided
only for arrays of ``char``, ``signed char``, ``unsigned char``, or ``char8_t``,
despite these functions accepting an argument of type ``const void*``.

Support for constant expression evaluation for the above builtins can be detected
with ``__has_feature(cxx_constexpr_string_builtins)``.

Memory builtins
---------------

Clang provides constant expression evaluation support for builtin forms of the
following functions from the C standard library headers
``<string.h>`` and ``<wchar.h>``:

* ``memcpy``
* ``memmove``
* ``wmemcpy``
* ``wmemmove``

In each case, the builtin form has the name of the C library function prefixed
by ``__builtin_``.

Constant evaluation support is only provided when the source and destination
are pointers to arrays with the same trivially copyable element type, and the
given size is an exact multiple of the element size that is no greater than
the number of elements accessible through the source and destination operands.

Guaranteed inlined copy
^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: c

  void __builtin_memcpy_inline(void *dst, const void *src, size_t size);


``__builtin_memcpy_inline`` has been designed as a building block for efficient
``memcpy`` implementations. It is identical to ``__builtin_memcpy`` but also
guarantees not to call any external functions. See LLVM IR `llvm.memcpy.inline
<https://llvm.org/docs/LangRef.html#llvm-memcpy-inline-intrinsic>`_ intrinsic 
for more information.

This is useful to implement a custom version of ``memcpy``, implement a
``libc`` memcpy or work around the absence of a ``libc``.

Note that the `size` argument must be a compile time constant.

Note that this intrinsic cannot yet be called in a ``constexpr`` context.


Atomic Min/Max builtins with memory ordering
--------------------------------------------

There are two atomic builtins with min/max in-memory comparison and swap.
The syntax and semantics are similar to GCC-compatible __atomic_* builtins.

* ``__atomic_fetch_min``
* ``__atomic_fetch_max``

The builtins work with signed and unsigned integers and require to specify memory ordering.
The return value is the original value that was stored in memory before comparison.

Example:

.. code-block:: c

  unsigned int val = __atomic_fetch_min(unsigned int *pi, unsigned int ui, __ATOMIC_RELAXED);

The third argument is one of the memory ordering specifiers ``__ATOMIC_RELAXED``,
``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``, ``__ATOMIC_RELEASE``,
``__ATOMIC_ACQ_REL``, or ``__ATOMIC_SEQ_CST`` following C++11 memory model semantics.

In terms or aquire-release ordering barriers these two operations are always
considered as operations with *load-store* semantics, even when the original value
is not actually modified after comparison.

.. _langext-__c11_atomic:

__c11_atomic builtins
---------------------

Clang provides a set of builtins which are intended to be used to implement
C11's ``<stdatomic.h>`` header.  These builtins provide the semantics of the
``_explicit`` form of the corresponding C11 operation, and are named with a
``__c11_`` prefix.  The supported operations, and the differences from
the corresponding C11 operations, are:

* ``__c11_atomic_init``
* ``__c11_atomic_thread_fence``
* ``__c11_atomic_signal_fence``
* ``__c11_atomic_is_lock_free`` (The argument is the size of the
  ``_Atomic(...)`` object, instead of its address)
* ``__c11_atomic_store``
* ``__c11_atomic_load``
* ``__c11_atomic_exchange``
* ``__c11_atomic_compare_exchange_strong``
* ``__c11_atomic_compare_exchange_weak``
* ``__c11_atomic_fetch_add``
* ``__c11_atomic_fetch_sub``
* ``__c11_atomic_fetch_and``
* ``__c11_atomic_fetch_or``
* ``__c11_atomic_fetch_xor``
* ``__c11_atomic_fetch_max``
* ``__c11_atomic_fetch_min``

The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
provided, with values corresponding to the enumerators of C11's
``memory_order`` enumeration.

(Note that Clang additionally provides GCC-compatible ``__atomic_*``
builtins and OpenCL 2.0 ``__opencl_atomic_*`` builtins. The OpenCL 2.0
atomic builtins are an explicit form of the corresponding OpenCL 2.0
builtin function, and are named with a ``__opencl_`` prefix. The macros
``__OPENCL_MEMORY_SCOPE_WORK_ITEM``, ``__OPENCL_MEMORY_SCOPE_WORK_GROUP``,
``__OPENCL_MEMORY_SCOPE_DEVICE``, ``__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES``,
and ``__OPENCL_MEMORY_SCOPE_SUB_GROUP`` are provided, with values
corresponding to the enumerators of OpenCL's ``memory_scope`` enumeration.)

Low-level ARM exclusive memory builtins
---------------------------------------

Clang provides overloaded builtins giving direct access to the three key ARM
instructions for implementing atomic operations.

.. code-block:: c

  T __builtin_arm_ldrex(const volatile T *addr);
  T __builtin_arm_ldaex(const volatile T *addr);
  int __builtin_arm_strex(T val, volatile T *addr);
  int __builtin_arm_stlex(T val, volatile T *addr);
  void __builtin_arm_clrex(void);

The types ``T`` currently supported are:

* Integer types with width at most 64 bits (or 128 bits on AArch64).
* Floating-point types
* Pointer types.

Note that the compiler does not guarantee it will not insert stores which clear
the exclusive monitor in between an ``ldrex`` type operation and its paired
``strex``. In practice this is only usually a risk when the extra store is on
the same cache line as the variable being modified and Clang will only insert
stack stores on its own, so it is best not to use these operations on variables
with automatic storage duration.

Also, loads and stores may be implicit in code written between the ``ldrex`` and
``strex``. Clang will not necessarily mitigate the effects of these either, so
care should be exercised.

For these reasons the higher level atomic primitives should be preferred where
possible.

Non-temporal load/store builtins
--------------------------------

Clang provides overloaded builtins allowing generation of non-temporal memory
accesses.

.. code-block:: c

  T __builtin_nontemporal_load(T *addr);
  void __builtin_nontemporal_store(T value, T *addr);

The types ``T`` currently supported are:

* Integer types.
* Floating-point types.
* Vector types.

Note that the compiler does not guarantee that non-temporal loads or stores
will be used.

C++ Coroutines support builtins
--------------------------------

.. warning::
  This is a work in progress. Compatibility across Clang/LLVM releases is not
  guaranteed.

Clang provides experimental builtins to support C++ Coroutines as defined by
https://wg21.link/P0057. The following four are intended to be used by the
standard library to implement `std::experimental::coroutine_handle` type.

**Syntax**:

.. code-block:: c

  void  __builtin_coro_resume(void *addr);
  void  __builtin_coro_destroy(void *addr);
  bool  __builtin_coro_done(void *addr);
  void *__builtin_coro_promise(void *addr, int alignment, bool from_promise)

**Example of use**:

.. code-block:: c++

  template <> struct coroutine_handle<void> {
    void resume() const { __builtin_coro_resume(ptr); }
    void destroy() const { __builtin_coro_destroy(ptr); }
    bool done() const { return __builtin_coro_done(ptr); }
    // ...
  protected:
    void *ptr;
  };

  template <typename Promise> struct coroutine_handle : coroutine_handle<> {
    // ...
    Promise &promise() const {
      return *reinterpret_cast<Promise *>(
        __builtin_coro_promise(ptr, alignof(Promise), /*from-promise=*/false));
    }
    static coroutine_handle from_promise(Promise &promise) {
      coroutine_handle p;
      p.ptr = __builtin_coro_promise(&promise, alignof(Promise),
                                                      /*from-promise=*/true);
      return p;
    }
  };


Other coroutine builtins are either for internal clang use or for use during
development of the coroutine feature. See `Coroutines in LLVM
<https://llvm.org/docs/Coroutines.html#intrinsics>`_ for
more information on their semantics. Note that builtins matching the intrinsics
that take token as the first parameter (llvm.coro.begin, llvm.coro.alloc,
llvm.coro.free and llvm.coro.suspend) omit the token parameter and fill it to
an appropriate value during the emission.

**Syntax**:

.. code-block:: c

  size_t __builtin_coro_size()
  void  *__builtin_coro_frame()
  void  *__builtin_coro_free(void *coro_frame)

  void  *__builtin_coro_id(int align, void *promise, void *fnaddr, void *parts)
  bool   __builtin_coro_alloc()
  void  *__builtin_coro_begin(void *memory)
  void   __builtin_coro_end(void *coro_frame, bool unwind)
  char   __builtin_coro_suspend(bool final)
  bool   __builtin_coro_param(void *original, void *copy)

Note that there is no builtin matching the `llvm.coro.save` intrinsic. LLVM
automatically will insert one if the first argument to `llvm.coro.suspend` is
token `none`. If a user calls `__builin_suspend`, clang will insert `token none`
as the first argument to the intrinsic.

Source location builtins
------------------------

Clang provides experimental builtins to support C++ standard library implementation
of ``std::experimental::source_location`` as specified in  http://wg21.link/N4600.
With the exception of ``__builtin_COLUMN``, these builtins are also implemented by
GCC.

**Syntax**:

.. code-block:: c

  const char *__builtin_FILE();
  const char *__builtin_FUNCTION();
  unsigned    __builtin_LINE();
  unsigned    __builtin_COLUMN(); // Clang only

**Example of use**:

.. code-block:: c++

  void my_assert(bool pred, int line = __builtin_LINE(), // Captures line of caller
                 const char* file = __builtin_FILE(),
                 const char* function = __builtin_FUNCTION()) {
    if (pred) return;
    printf("%s:%d assertion failed in function %s\n", file, line, function);
    std::abort();
  }

  struct MyAggregateType {
    int x;
    int line = __builtin_LINE(); // captures line where aggregate initialization occurs
  };
  static_assert(MyAggregateType{42}.line == __LINE__);

  struct MyClassType {
    int line = __builtin_LINE(); // captures line of the constructor used during initialization
    constexpr MyClassType(int) { assert(line == __LINE__); }
  };

**Description**:

The builtins ``__builtin_LINE``, ``__builtin_FUNCTION``, and ``__builtin_FILE`` return
the values, at the "invocation point", for ``__LINE__``, ``__FUNCTION__``, and
``__FILE__`` respectively. These builtins are constant expressions.

When the builtins appear as part of a default function argument the invocation
point is the location of the caller. When the builtins appear as part of a
default member initializer, the invocation point is the location of the
constructor or aggregate initialization used to create the object. Otherwise
the invocation point is the same as the location of the builtin.

When the invocation point of ``__builtin_FUNCTION`` is not a function scope the
empty string is returned.

Alignment builtins
------------------
Clang provides builtins to support checking and adjusting alignment of
pointers and integers.
These builtins can be used to avoid relying on implementation-defined behavior
of arithmetic on integers derived from pointers.
Additionally, these builtins retain type information and, unlike bitwise
arithmetic, they can perform semantic checking on the alignment value.

**Syntax**:

.. code-block:: c

  Type __builtin_align_up(Type value, size_t alignment);
  Type __builtin_align_down(Type value, size_t alignment);
  bool __builtin_is_aligned(Type value, size_t alignment);


**Example of use**:

.. code-block:: c++

  char* global_alloc_buffer;
  void* my_aligned_allocator(size_t alloc_size, size_t alignment) {
    char* result = __builtin_align_up(global_alloc_buffer, alignment);
    // result now contains the value of global_alloc_buffer rounded up to the
    // next multiple of alignment.
    global_alloc_buffer = result + alloc_size;
    return result;
  }

  void* get_start_of_page(void* ptr) {
    return __builtin_align_down(ptr, PAGE_SIZE);
  }

  void example(char* buffer) {
     if (__builtin_is_aligned(buffer, 64)) {
       do_fast_aligned_copy(buffer);
     } else {
       do_unaligned_copy(buffer);
     }
  }

  // In addition to pointers, the builtins can also be used on integer types
  // and are evaluatable inside constant expressions.
  static_assert(__builtin_align_up(123, 64) == 128, "");
  static_assert(__builtin_align_down(123u, 64) == 64u, "");
  static_assert(!__builtin_is_aligned(123, 64), "");


**Description**:

The builtins ``__builtin_align_up``, ``__builtin_align_down``, return their
first argument aligned up/down to the next multiple of the second argument.
If the value is already sufficiently aligned, it is returned unchanged.
The builtin ``__builtin_is_aligned`` returns whether the first argument is
aligned to a multiple of the second argument.
All of these builtins expect the alignment to be expressed as a number of bytes.

These builtins can be used for all integer types as well as (non-function)
pointer types. For pointer types, these builtins operate in terms of the integer
address of the pointer and return a new pointer of the same type (including
qualifiers such as ``const``) with an adjusted address.
When aligning pointers up or down, the resulting value must be within the same
underlying allocation or one past the end (see C17 6.5.6p8, C++ [expr.add]).
This means that arbitrary integer values stored in pointer-type variables must
not be passed to these builtins. For those use cases, the builtins can still be
used, but the operation must be performed on the pointer cast to ``uintptr_t``.

If Clang can determine that the alignment is not a power of two at compile time,
it will result in a compilation failure. If the alignment argument is not a
power of two at run time, the behavior of these builtins is undefined.

Non-standard C++11 Attributes
=============================

Clang's non-standard C++11 attributes live in the ``clang`` attribute
namespace.

Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
are accepted with the ``__attribute__((foo))`` syntax are also accepted as
``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
(see the list of `GCC function attributes
<https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
attributes <https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
`GCC type attributes
<https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
implementation, these attributes must appertain to the *declarator-id* in a
declaration, which means they must go either at the start of the declaration or
immediately after the name being declared.

For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
also applies the GNU ``noreturn`` attribute to ``f``.

.. code-block:: c++

  [[gnu::unused]] int a, f [[gnu::noreturn]] ();

Target-Specific Extensions
==========================

Clang supports some language features conditionally on some targets.

ARM/AArch64 Language Extensions
-------------------------------

Memory Barrier Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^
Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
in the `ARM C Language Extensions Release 2.0
<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
Note that these intrinsics are implemented as motion barriers that block
reordering of memory accesses and side effect instructions. Other instructions
like simple arithmetic may be reordered around the intrinsic. If you expect to
have no reordering at all, use inline assembly instead.

X86/X86-64 Language Extensions
------------------------------

The X86 backend has these language extensions:

Memory references to specified segments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Annotating a pointer with address space #256 causes it to be code generated
relative to the X86 GS segment register, address space #257 causes it to be
relative to the X86 FS segment, and address space #258 causes it to be
relative to the X86 SS segment.  Note that this is a very very low-level
feature that should only be used if you know what you're doing (for example in
an OS kernel).

Here is an example:

.. code-block:: c++

  #define GS_RELATIVE __attribute__((address_space(256)))
  int foo(int GS_RELATIVE *P) {
    return *P;
  }

Which compiles to (on X86-32):

.. code-block:: gas

  _foo:
          movl    4(%esp), %eax
          movl    %gs:(%eax), %eax
          ret

You can also use the GCC compatibility macros ``__seg_fs`` and ``__seg_gs`` for
the same purpose. The preprocessor symbols ``__SEG_FS`` and ``__SEG_GS``
indicate their support.

PowerPC Language Extensions
------------------------------

Set the Floating Point Rounding Mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PowerPC64/PowerPC64le supports the builtin function ``__builtin_setrnd`` to set
the floating point rounding mode. This function will use the least significant
two bits of integer argument to set the floating point rounding mode.

.. code-block:: c++

  double __builtin_setrnd(int mode);

The effective values for mode are:

    - 0 - round to nearest
    - 1 - round to zero
    - 2 - round to +infinity
    - 3 - round to -infinity

Note that the mode argument will modulo 4, so if the integer argument is greater
than 3, it will only use the least significant two bits of the mode.
Namely, ``__builtin_setrnd(102))`` is equal to ``__builtin_setrnd(2)``.

PowerPC cache builtins
^^^^^^^^^^^^^^^^^^^^^^

The PowerPC architecture specifies instructions implementing cache operations.
Clang provides builtins that give direct programmer access to these cache
instructions.

Currently the following builtins are implemented in clang:

``__builtin_dcbf`` copies the contents of a modified block from the data cache
to main memory and flushes the copy from the data cache.

**Syntax**:

.. code-block:: c

  void __dcbf(const void* addr); /* Data Cache Block Flush */

**Example of Use**:

.. code-block:: c

  int a = 1;
  __builtin_dcbf (&a);

Extensions for Static Analysis
==============================

Clang supports additional attributes that are useful for documenting program
invariants and rules for static analysis tools, such as the `Clang Static
Analyzer <https://clang-analyzer.llvm.org/>`_. These attributes are documented
in the analyzer's `list of source-level annotations
<https://clang-analyzer.llvm.org/annotations.html>`_.


Extensions for Dynamic Analysis
===============================

Use ``__has_feature(address_sanitizer)`` to check if the code is being built
with :doc:`AddressSanitizer`.

Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
with :doc:`ThreadSanitizer`.

Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
with :doc:`MemorySanitizer`.

Use ``__has_feature(safe_stack)`` to check if the code is being built
with :doc:`SafeStack`.


Extensions for selectively disabling optimization
=================================================

Clang provides a mechanism for selectively disabling optimizations in functions
and methods.

To disable optimizations in a single function definition, the GNU-style or C++11
non-standard attribute ``optnone`` can be used.

.. code-block:: c++

  // The following functions will not be optimized.
  // GNU-style attribute
  __attribute__((optnone)) int foo() {
    // ... code
  }
  // C++11 attribute
  [[clang::optnone]] int bar() {
    // ... code
  }

To facilitate disabling optimization for a range of function definitions, a
range-based pragma is provided. Its syntax is ``#pragma clang optimize``
followed by ``off`` or ``on``.

All function definitions in the region between an ``off`` and the following
``on`` will be decorated with the ``optnone`` attribute unless doing so would
conflict with explicit attributes already present on the function (e.g. the
ones that control inlining).

.. code-block:: c++

  #pragma clang optimize off
  // This function will be decorated with optnone.
  int foo() {
    // ... code
  }

  // optnone conflicts with always_inline, so bar() will not be decorated.
  __attribute__((always_inline)) int bar() {
    // ... code
  }
  #pragma clang optimize on

If no ``on`` is found to close an ``off`` region, the end of the region is the
end of the compilation unit.

Note that a stray ``#pragma clang optimize on`` does not selectively enable
additional optimizations when compiling at low optimization levels. This feature
can only be used to selectively disable optimizations.

The pragma has an effect on functions only at the point of their definition; for
function templates, this means that the state of the pragma at the point of an
instantiation is not necessarily relevant. Consider the following example:

.. code-block:: c++

  template<typename T> T twice(T t) {
    return 2 * t;
  }

  #pragma clang optimize off
  template<typename T> T thrice(T t) {
    return 3 * t;
  }

  int container(int a, int b) {
    return twice(a) + thrice(b);
  }
  #pragma clang optimize on

In this example, the definition of the template function ``twice`` is outside
the pragma region, whereas the definition of ``thrice`` is inside the region.
The ``container`` function is also in the region and will not be optimized, but
it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
these two instantiations, ``twice`` will be optimized (because its definition
was outside the region) and ``thrice`` will not be optimized.

Extensions for loop hint optimizations
======================================

The ``#pragma clang loop`` directive is used to specify hints for optimizing the
subsequent for, while, do-while, or c++11 range-based for loop. The directive
provides options for vectorization, interleaving, predication, unrolling and
distribution. Loop hints can be specified before any loop and will be ignored if
the optimization is not safe to apply.

There are loop hints that control transformations (e.g. vectorization, loop
unrolling) and there are loop hints that set transformation options (e.g.
``vectorize_width``, ``unroll_count``).  Pragmas setting transformation options
imply the transformation is enabled, as if it was enabled via the corresponding
transformation pragma (e.g. ``vectorize(enable)``). If the transformation is
disabled  (e.g. ``vectorize(disable)``), that takes precedence over
transformations option pragmas implying that transformation.

Vectorization, Interleaving, and Predication
--------------------------------------------

A vectorized loop performs multiple iterations of the original loop
in parallel using vector instructions. The instruction set of the target
processor determines which vector instructions are available and their vector
widths. This restricts the types of loops that can be vectorized. The vectorizer
automatically determines if the loop is safe and profitable to vectorize. A
vector instruction cost model is used to select the vector width.

Interleaving multiple loop iterations allows modern processors to further
improve instruction-level parallelism (ILP) using advanced hardware features,
such as multiple execution units and out-of-order execution. The vectorizer uses
a cost model that depends on the register pressure and generated code size to
select the interleaving count.

Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
manually enable vectorization or interleaving.

.. code-block:: c++

  #pragma clang loop vectorize(enable)
  #pragma clang loop interleave(enable)
  for(...) {
    ...
  }

The vector width is specified by
``vectorize_width(_value_[, fixed|scalable])``, where _value_ is a positive
integer and the type of vectorization can be specified with an optional
second parameter. The default for the second parameter is 'fixed' and
refers to fixed width vectorization, whereas 'scalable' indicates the
compiler should use scalable vectors instead. Another use of vectorize_width
is ``vectorize_width(fixed|scalable)`` where the user can hint at the type
of vectorization to use without specifying the exact width. In both variants
of the pragma the vectorizer may decide to fall back on fixed width
vectorization if the target does not support scalable vectors.

The interleave count is specified by ``interleave_count(_value_)``, where
_value_ is a positive integer. This is useful for specifying the optimal
width/count of the set of target architectures supported by your application.

.. code-block:: c++

  #pragma clang loop vectorize_width(2)
  #pragma clang loop interleave_count(2)
  for(...) {
    ...
  }

Specifying a width/count of 1 disables the optimization, and is equivalent to
``vectorize(disable)`` or ``interleave(disable)``.

Vector predication is enabled by ``vectorize_predicate(enable)``, for example:

.. code-block:: c++

  #pragma clang loop vectorize(enable)
  #pragma clang loop vectorize_predicate(enable)
  for(...) {
    ...
  }

This predicates (masks) all instructions in the loop, which allows the scalar
remainder loop (the tail) to be folded into the main vectorized loop. This
might be more efficient when vector predication is efficiently supported by the
target platform.

Loop Unrolling
--------------

Unrolling a loop reduces the loop control overhead and exposes more
opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
eliminates the loop and replaces it with an enumerated sequence of loop
iterations. Full unrolling is only possible if the loop trip count is known at
compile time. Partial unrolling replicates the loop body within the loop and
reduces the trip count.

If ``unroll(enable)`` is specified the unroller will attempt to fully unroll the
loop if the trip count is known at compile time. If the fully unrolled code size
is greater than an internal limit the loop will be partially unrolled up to this
limit. If the trip count is not known at compile time the loop will be partially
unrolled with a heuristically chosen unroll factor.

.. code-block:: c++

  #pragma clang loop unroll(enable)
  for(...) {
    ...
  }

If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
loop if the trip count is known at compile time identically to
``unroll(enable)``. However, with ``unroll(full)`` the loop will not be unrolled
if the loop count is not known at compile time.

.. code-block:: c++

  #pragma clang loop unroll(full)
  for(...) {
    ...
  }

The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
_value_ is a positive integer. If this value is greater than the trip count the
loop will be fully unrolled. Otherwise the loop is partially unrolled subject
to the same code size limit as with ``unroll(enable)``.

.. code-block:: c++

  #pragma clang loop unroll_count(8)
  for(...) {
    ...
  }

Unrolling of a loop can be prevented by specifying ``unroll(disable)``.

Loop Distribution
-----------------

Loop Distribution allows splitting a loop into multiple loops.  This is
beneficial for example when the entire loop cannot be vectorized but some of the
resulting loops can.

If ``distribute(enable))`` is specified and the loop has memory dependencies
that inhibit vectorization, the compiler will attempt to isolate the offending
operations into a new loop.  This optimization is not enabled by default, only
loops marked with the pragma are considered.

.. code-block:: c++

  #pragma clang loop distribute(enable)
  for (i = 0; i < N; ++i) {
    S1: A[i + 1] = A[i] + B[i];
    S2: C[i] = D[i] * E[i];
  }

This loop will be split into two loops between statements S1 and S2.  The
second loop containing S2 will be vectorized.

Loop Distribution is currently not enabled by default in the optimizer because
it can hurt performance in some cases.  For example, instruction-level
parallelism could be reduced by sequentializing the execution of the
statements S1 and S2 above.

If Loop Distribution is turned on globally with
``-mllvm -enable-loop-distribution``, specifying ``distribute(disable)`` can
be used the disable it on a per-loop basis.

Additional Information
----------------------

For convenience multiple loop hints can be specified on a single line.

.. code-block:: c++

  #pragma clang loop vectorize_width(4) interleave_count(8)
  for(...) {
    ...
  }

If an optimization cannot be applied any hints that apply to it will be ignored.
For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
proven safe to vectorize. To identify and diagnose optimization issues use
`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
user guide for details.

Extensions to specify floating-point flags
====================================================

The ``#pragma clang fp`` pragma allows floating-point options to be specified
for a section of the source code. This pragma can only appear at file scope or
at the start of a compound statement (excluding comments). When using within a
compound statement, the pragma is active within the scope of the compound
statement.

Currently, the following settings can be controlled with this pragma:

``#pragma clang fp reassociate`` allows control over the reassociation
of floating point expressions. When enabled, this pragma allows the expression
``x + (y + z)`` to be reassociated as ``(x + y) + z``.
Reassociation can also occur across multiple statements.
This pragma can be used to disable reassociation when it is otherwise
enabled for the translation unit with the ``-fassociative-math`` flag.
The pragma can take two values: ``on`` and ``off``.

.. code-block:: c++

  float f(float x, float y, float z)
  {
    // Enable floating point reassociation across statements
    #pragma clang fp reassociate(on)
    float t = x + y;
    float v = t + z;
  }


``#pragma clang fp contract`` specifies whether the compiler should
contract a multiply and an addition (or subtraction) into a fused FMA
operation when supported by the target.

The pragma can take three values: ``on``, ``fast`` and ``off``.  The ``on``
option is identical to using ``#pragma STDC FP_CONTRACT(ON)`` and it allows
fusion as specified the language standard.  The ``fast`` option allows fusion
in cases when the language standard does not make this possible (e.g. across
statements in C).

.. code-block:: c++

  for(...) {
    #pragma clang fp contract(fast)
    a = b[i] * c[i];
    d[i] += a;
  }


The pragma can also be used with ``off`` which turns FP contraction off for a
section of the code. This can be useful when fast contraction is otherwise
enabled for the translation unit with the ``-ffp-contract=fast-honor-pragmas`` flag.
Note that ``-ffp-contract=fast`` will override pragmas to fuse multiply and
addition across statements regardless of any controlling pragmas.

``#pragma clang fp exceptions`` specifies floating point exception behavior. It
may take one the the values: ``ignore``, ``maytrap`` or ``strict``. Meaning of
these values is same as for `constrained floating point intrinsics <http://llvm.org/docs/LangRef.html#constrained-floating-point-intrinsics>`_.

.. code-block:: c++

  {
    // Preserve floating point exceptions
    #pragma clang fp exceptions(strict)
    z = x + y;
    if (fetestexcept(FE_OVERFLOW))
	  ...
  }

A ``#pragma clang fp`` pragma may contain any number of options:

.. code-block:: c++

  void func(float *dest, float a, float b) {
    #pragma clang fp exceptions(maytrap) contract(fast) reassociate(on)
    ...
  }


The ``#pragma float_control`` pragma allows precise floating-point
semantics and floating-point exception behavior to be specified
for a section of the source code. This pragma can only appear at file scope or
at the start of a compound statement (excluding comments). When using within a
compound statement, the pragma is active within the scope of the compound
statement.  This pragma is modeled after a Microsoft pragma with the
same spelling and syntax.  For pragmas specified at file scope, a stack
is supported so that the ``pragma float_control`` settings can be pushed or popped.

When ``pragma float_control(precise, on)`` is enabled, the section of code
governed by the pragma uses precise floating point semantics, effectively
``-ffast-math`` is disabled and ``-ffp-contract=on``
(fused multiply add) is enabled.

When ``pragma float_control(except, on)`` is enabled, the section of code governed
by the pragma behaves as though the command-line option
``-ffp-exception-behavior=strict`` is enabled,
when ``pragma float_control(precise, off)`` is enabled, the section of code
governed by the pragma behaves as though the command-line option
``-ffp-exception-behavior=ignore`` is enabled.

The full syntax this pragma supports is
``float_control(except|precise, on|off [, push])`` and
``float_control(push|pop)``.
The ``push`` and ``pop`` forms, including using ``push`` as the optional
third argument, can only occur at file scope.

.. code-block:: c++

  for(...) {
    // This block will be compiled with -fno-fast-math and -ffp-contract=on
    #pragma float_control(precise, on)
    a = b[i] * c[i] + e;
  }

Specifying an attribute for multiple declarations (#pragma clang attribute)
===========================================================================

The ``#pragma clang attribute`` directive can be used to apply an attribute to
multiple declarations. The ``#pragma clang attribute push`` variation of the
directive pushes a new "scope" of ``#pragma clang attribute`` that attributes
can be added to. The ``#pragma clang attribute (...)`` variation adds an
attribute to that scope, and the ``#pragma clang attribute pop`` variation pops
the scope. You can also use ``#pragma clang attribute push (...)``, which is a
shorthand for when you want to add one attribute to a new scope. Multiple push
directives can be nested inside each other.

The attributes that are used in the ``#pragma clang attribute`` directives
can be written using the GNU-style syntax:

.. code-block:: c++

  #pragma clang attribute push (__attribute__((annotate("custom"))), apply_to = function)

  void function(); // The function now has the annotate("custom") attribute

  #pragma clang attribute pop

The attributes can also be written using the C++11 style syntax:

.. code-block:: c++

  #pragma clang attribute push ([[noreturn]], apply_to = function)

  void function(); // The function now has the [[noreturn]] attribute

  #pragma clang attribute pop

The ``__declspec`` style syntax is also supported:

.. code-block:: c++

  #pragma clang attribute push (__declspec(dllexport), apply_to = function)

  void function(); // The function now has the __declspec(dllexport) attribute

  #pragma clang attribute pop

A single push directive accepts only one attribute regardless of the syntax
used.

Because multiple push directives can be nested, if you're writing a macro that
expands to ``_Pragma("clang attribute")`` it's good hygiene (though not
required) to add a namespace to your push/pop directives. A pop directive with a
namespace will pop the innermost push that has that same namespace. This will
ensure that another macro's ``pop`` won't inadvertently pop your attribute. Note
that an ``pop`` without a namespace will pop the innermost ``push`` without a
namespace. ``push``es with a namespace can only be popped by ``pop`` with the
same namespace. For instance:

.. code-block:: c++

   #define ASSUME_NORETURN_BEGIN _Pragma("clang attribute AssumeNoreturn.push ([[noreturn]], apply_to = function)")
   #define ASSUME_NORETURN_END   _Pragma("clang attribute AssumeNoreturn.pop")

   #define ASSUME_UNAVAILABLE_BEGIN _Pragma("clang attribute Unavailable.push (__attribute__((unavailable)), apply_to=function)")
   #define ASSUME_UNAVAILABLE_END   _Pragma("clang attribute Unavailable.pop")


   ASSUME_NORETURN_BEGIN
   ASSUME_UNAVAILABLE_BEGIN
   void function(); // function has [[noreturn]] and __attribute__((unavailable))
   ASSUME_NORETURN_END
   void other_function(); // function has __attribute__((unavailable))
   ASSUME_UNAVAILABLE_END

Without the namespaces on the macros, ``other_function`` will be annotated with
``[[noreturn]]`` instead of ``__attribute__((unavailable))``. This may seem like
a contrived example, but its very possible for this kind of situation to appear
in real code if the pragmas are spread out across a large file. You can test if
your version of clang supports namespaces on ``#pragma clang attribute`` with
``__has_extension(pragma_clang_attribute_namespaces)``.

Subject Match Rules
-------------------

The set of declarations that receive a single attribute from the attribute stack
depends on the subject match rules that were specified in the pragma. Subject
match rules are specified after the attribute. The compiler expects an
identifier that corresponds to the subject set specifier. The ``apply_to``
specifier is currently the only supported subject set specifier. It allows you
to specify match rules that form a subset of the attribute's allowed subject
set, i.e. the compiler doesn't require all of the attribute's subjects. For
example, an attribute like ``[[nodiscard]]`` whose subject set includes
``enum``, ``record`` and ``hasType(functionType)``, requires the presence of at
least one of these rules after ``apply_to``:

.. code-block:: c++

  #pragma clang attribute push([[nodiscard]], apply_to = enum)

  enum Enum1 { A1, B1 }; // The enum will receive [[nodiscard]]

  struct Record1 { }; // The struct will *not* receive [[nodiscard]]

  #pragma clang attribute pop

  #pragma clang attribute push([[nodiscard]], apply_to = any(record, enum))

  enum Enum2 { A2, B2 }; // The enum will receive [[nodiscard]]

  struct Record2 { }; // The struct *will* receive [[nodiscard]]

  #pragma clang attribute pop

  // This is an error, since [[nodiscard]] can't be applied to namespaces:
  #pragma clang attribute push([[nodiscard]], apply_to = any(record, namespace))

  #pragma clang attribute pop

Multiple match rules can be specified using the ``any`` match rule, as shown
in the example above. The ``any`` rule applies attributes to all declarations
that are matched by at least one of the rules in the ``any``. It doesn't nest
and can't be used inside the other match rules. Redundant match rules or rules
that conflict with one another should not be used inside of ``any``.

Clang supports the following match rules:

- ``function``: Can be used to apply attributes to functions. This includes C++
  member functions, static functions, operators, and constructors/destructors.

- ``function(is_member)``: Can be used to apply attributes to C++ member
  functions. This includes members like static functions, operators, and
  constructors/destructors.

- ``hasType(functionType)``: Can be used to apply attributes to functions, C++
  member functions, and variables/fields whose type is a function pointer. It
  does not apply attributes to Objective-C methods or blocks.

- ``type_alias``: Can be used to apply attributes to ``typedef`` declarations
  and C++11 type aliases.

- ``record``: Can be used to apply attributes to ``struct``, ``class``, and
  ``union`` declarations.

- ``record(unless(is_union))``: Can be used to apply attributes only to
  ``struct`` and ``class`` declarations.

- ``enum``: Can be be used to apply attributes to enumeration declarations.

- ``enum_constant``: Can be used to apply attributes to enumerators.

- ``variable``: Can be used to apply attributes to variables, including
  local variables, parameters, global variables, and static member variables.
  It does not apply attributes to instance member variables or Objective-C
  ivars.

- ``variable(is_thread_local)``: Can be used to apply attributes to thread-local
  variables only.

- ``variable(is_global)``: Can be used to apply attributes to global variables
  only.

- ``variable(is_local)``: Can be used to apply attributes to local variables
  only.

- ``variable(is_parameter)``: Can be used to apply attributes to parameters
  only.

- ``variable(unless(is_parameter))``: Can be used to apply attributes to all
  the variables that are not parameters.

- ``field``: Can be used to apply attributes to non-static member variables
  in a record. This includes Objective-C ivars.

- ``namespace``: Can be used to apply attributes to ``namespace`` declarations.

- ``objc_interface``: Can be used to apply attributes to ``@interface``
  declarations.

- ``objc_protocol``: Can be used to apply attributes to ``@protocol``
  declarations.

- ``objc_category``: Can be used to apply attributes to category declarations,
  including class extensions.

- ``objc_method``: Can be used to apply attributes to Objective-C methods,
  including instance and class methods. Implicit methods like implicit property
  getters and setters do not receive the attribute.

- ``objc_method(is_instance)``: Can be used to apply attributes to Objective-C
  instance methods.

- ``objc_property``: Can be used to apply attributes to ``@property``
  declarations.

- ``block``: Can be used to apply attributes to block declarations. This does
  not include variables/fields of block pointer type.

The use of ``unless`` in match rules is currently restricted to a strict set of
sub-rules that are used by the supported attributes. That means that even though
``variable(unless(is_parameter))`` is a valid match rule,
``variable(unless(is_thread_local))`` is not.

Supported Attributes
--------------------

Not all attributes can be used with the ``#pragma clang attribute`` directive.
Notably, statement attributes like ``[[fallthrough]]`` or type attributes
like ``address_space`` aren't supported by this directive. You can determine
whether or not an attribute is supported by the pragma by referring to the
:doc:`individual documentation for that attribute <AttributeReference>`.

The attributes are applied to all matching declarations individually, even when
the attribute is semantically incorrect. The attributes that aren't applied to
any declaration are not verified semantically.

Specifying section names for global objects (#pragma clang section)
===================================================================

The ``#pragma clang section`` directive provides a means to assign section-names
to global variables, functions and static variables.

The section names can be specified as:

.. code-block:: c++

  #pragma clang section bss="myBSS" data="myData" rodata="myRodata" relro="myRelro" text="myText"

The section names can be reverted back to default name by supplying an empty
string to the section kind, for example:

.. code-block:: c++

  #pragma clang section bss="" data="" text="" rodata="" relro=""

The ``#pragma clang section`` directive obeys the following rules:

* The pragma applies to all global variable, statics and function declarations
  from the pragma to the end of the translation unit.

* The pragma clang section is enabled automatically, without need of any flags.

* This feature is only defined to work sensibly for ELF targets.

* If section name is specified through _attribute_((section("myname"))), then
  the attribute name gains precedence.

* Global variables that are initialized to zero will be placed in the named
  bss section, if one is present.

* The ``#pragma clang section`` directive does not does try to infer section-kind
  from the name. For example, naming a section "``.bss.mySec``" does NOT mean
  it will be a bss section name.

* The decision about which section-kind applies to each global is taken in the back-end.
  Once the section-kind is known, appropriate section name, as specified by the user using
  ``#pragma clang section`` directive, is applied to that global.

Specifying Linker Options on ELF Targets
========================================

The ``#pragma comment(lib, ...)`` directive is supported on all ELF targets.
The second parameter is the library name (without the traditional Unix prefix of
``lib``).  This allows you to provide an implicit link of dependent libraries.

Evaluating Object Size Dynamically
==================================

Clang supports the builtin ``__builtin_dynamic_object_size``, the semantics are
the same as GCC's ``__builtin_object_size`` (which Clang also supports), but
``__builtin_dynamic_object_size`` can evaluate the object's size at runtime.
``__builtin_dynamic_object_size`` is meant to be used as a drop-in replacement
for ``__builtin_object_size`` in libraries that support it.

For instance, here is a program that ``__builtin_dynamic_object_size`` will make
safer:

.. code-block:: c

  void copy_into_buffer(size_t size) {
    char* buffer = malloc(size);
    strlcpy(buffer, "some string", strlen("some string"));
    // Previous line preprocesses to:
    // __builtin___strlcpy_chk(buffer, "some string", strlen("some string"), __builtin_object_size(buffer, 0))
  }

Since the size of ``buffer`` can't be known at compile time, Clang will fold
``__builtin_object_size(buffer, 0)`` into ``-1``. However, if this was written
as ``__builtin_dynamic_object_size(buffer, 0)``, Clang will fold it into
``size``, providing some extra runtime safety.

Extended Integer Types
======================

Clang supports a set of extended integer types under the syntax ``_ExtInt(N)``
where ``N`` is an integer that specifies the number of bits that are used to represent
the type, including the sign bit. The keyword ``_ExtInt`` is a type specifier, thus
it can be used in any place a type can, including as a non-type-template-parameter,
as the type of a bitfield, and as the underlying type of an enumeration.

An extended integer can be declared either signed, or unsigned by using the
``signed``/``unsigned`` keywords. If no sign specifier is used or if the ``signed``
keyword is used, the extended integer type is a signed integer and can represent
negative values.

The ``N`` expression is an integer constant expression, which specifies the number
of bits used to represent the type, following normal integer representations for
both signed and unsigned types. Both a signed and unsigned extended integer of the
same ``N`` value will have the same number of bits in its representation. Many
architectures don't have a way of representing non power-of-2 integers, so these
architectures emulate these types using larger integers. In these cases, they are
expected to follow the 'as-if' rule and do math 'as-if' they were done at the
specified number of bits.

In order to be consistent with the C language specification, and make the extended
integer types useful for their intended purpose, extended integers follow the C
standard integer conversion ranks. An extended integer type has a greater rank than
any integer type with less precision.  However, they have lower rank than any
of the built in or other integer types (such as __int128). Usual arithmetic conversions
also work the same, where the smaller ranked integer is converted to the larger.

The one exception to the C rules for integers for these types is Integer Promotion.
Unary +, -, and ~ operators typically will promote operands to ``int``. Doing these
promotions would inflate the size of required hardware on some platforms, so extended
integer types aren't subject to the integer promotion rules in these cases.

In languages (such as OpenCL) that define shift by-out-of-range behavior as a mask,
non-power-of-two versions of these types use an unsigned remainder operation to constrain
the value to the proper range, preventing undefined behavior.

Extended integer types are aligned to the next greatest power-of-2 up to 64 bits.
The size of these types for the purposes of layout and ``sizeof`` are the number of
bits aligned to this calculated alignment. This permits the use of these types in
allocated arrays using common ``sizeof(Array)/sizeof(ElementType)`` pattern.

Extended integer types work with the C _Atomic type modifier, however only precisions
that are powers-of-2 greater than 8 bit are accepted.

Extended integer types align with existing calling conventions. They have the same size
and alignment as the smallest basic type that can contain them. Types that are larger
than 64 bits are handled in the same way as _int128 is handled; they are conceptually
treated as struct of register size chunks. They number of chunks are the smallest
number that can contain the types which does not necessarily mean a power-of-2 size.

Intrinsics Support within Constant Expressions
==============================================

The following builtin intrinsics can be used in constant expressions:

* ``__builtin_bitreverse8``
* ``__builtin_bitreverse16``
* ``__builtin_bitreverse32``
* ``__builtin_bitreverse64``
* ``__builtin_bswap16``
* ``__builtin_bswap32``
* ``__builtin_bswap64``
* ``__builtin_clrsb``
* ``__builtin_clrsbl``
* ``__builtin_clrsbll``
* ``__builtin_clz``
* ``__builtin_clzl``
* ``__builtin_clzll``
* ``__builtin_clzs``
* ``__builtin_ctz``
* ``__builtin_ctzl``
* ``__builtin_ctzll``
* ``__builtin_ctzs``
* ``__builtin_ffs``
* ``__builtin_ffsl``
* ``__builtin_ffsll``
* ``__builtin_fpclassify``
* ``__builtin_inf``
* ``__builtin_isinf``
* ``__builtin_isinf_sign``
* ``__builtin_isfinite``
* ``__builtin_isnan``
* ``__builtin_isnormal``
* ``__builtin_nan``
* ``__builtin_nans``
* ``__builtin_parity``
* ``__builtin_parityl``
* ``__builtin_parityll``
* ``__builtin_popcount``
* ``__builtin_popcountl``
* ``__builtin_popcountll``
* ``__builtin_rotateleft8``
* ``__builtin_rotateleft16``
* ``__builtin_rotateleft32``
* ``__builtin_rotateleft64``
* ``__builtin_rotateright8``
* ``__builtin_rotateright16``
* ``__builtin_rotateright32``
* ``__builtin_rotateright64``

The following x86-specific intrinsics can be used in constant expressions:

* ``_bit_scan_forward``
* ``_bit_scan_reverse``
* ``__bsfd``
* ``__bsfq``
* ``__bsrd``
* ``__bsrq``
* ``__bswap``
* ``__bswapd``
* ``__bswap64``
* ``__bswapq``
* ``_castf32_u32``
* ``_castf64_u64``
* ``_castu32_f32``
* ``_castu64_f64``
* ``_mm_popcnt_u32``
* ``_mm_popcnt_u64``
* ``_popcnt32``
* ``_popcnt64``
* ``__popcntd``
* ``__popcntq``
* ``__rolb``
* ``__rolw``
* ``__rold``
* ``__rolq``
* ``__rorb``
* ``__rorw``
* ``__rord``
* ``__rorq``
* ``_rotl``
* ``_rotr``
* ``_rotwl``
* ``_rotwr``
* ``_lrotl``
* ``_lrotr``