/* $NetBSD: ntp_timer.c,v 1.11 2022/10/09 21:41:03 christos Exp $ */
/*
* ntp_timer.c - event timer support routines
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "ntp_machine.h"
#include "ntpd.h"
#include "ntp_stdlib.h"
#include "ntp_calendar.h"
#include "ntp_leapsec.h"
#if defined(HAVE_IO_COMPLETION_PORT)
# include "ntp_iocompletionport.h"
# include "ntp_timer.h"
#endif
#include <stdio.h>
#include <signal.h>
#ifdef HAVE_SYS_SIGNAL_H
# include <sys/signal.h>
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef KERNEL_PLL
#include "ntp_syscall.h"
#endif /* KERNEL_PLL */
#ifdef AUTOKEY
#include <openssl/rand.h>
#endif /* AUTOKEY */
/* TC_ERR represents the timer_create() error return value. */
#ifdef SYS_VXWORKS
#define TC_ERR ERROR
#else
#define TC_ERR (-1)
#endif
static void check_leapsec(u_int32, const time_t*, int/*BOOL*/);
/*
* These routines provide support for the event timer. The timer is
* implemented by an interrupt routine which sets a flag once every
* second, and a timer routine which is called when the mainline code
* gets around to seeing the flag. The timer routine dispatches the
* clock adjustment code if its time has come, then searches the timer
* queue for expiries which are dispatched to the transmit procedure.
* Finally, we call the hourly procedure to do cleanup and print a
* message.
*/
volatile int interface_interval; /* init_io() sets def. 300s */
/*
* Initializing flag. All async routines watch this and only do their
* thing when it is clear.
*/
int initializing;
/*
* Alarm flag. The mainline code imports this.
*/
volatile int alarm_flag;
/*
* The counters and timeouts
*/
static u_long interface_timer; /* interface update timer */
static u_long adjust_timer; /* second timer */
static u_long stats_timer; /* stats timer */
static u_long leapf_timer; /* Report leapfile problems once/day */
static u_long huffpuff_timer; /* huff-n'-puff timer */
static u_long worker_idle_timer;/* next check for idle intres */
u_long leapsec; /* seconds to next leap (proximity class) */
int leapdif; /* TAI difference step at next leap second*/
u_long orphwait; /* orphan wait time */
#ifdef AUTOKEY
static u_long revoke_timer; /* keys revoke timer */
static u_long keys_timer; /* session key timer */
u_char sys_revoke = KEY_REVOKE; /* keys revoke timeout (log2 s) */
u_char sys_automax = NTP_AUTOMAX; /* key list timeout (log2 s) */
#endif /* AUTOKEY */
/*
* Statistics counter for the interested.
*/
volatile u_long alarm_overflow;
u_long current_time; /* seconds since startup */
/*
* Stats. Number of overflows and number of calls to transmit().
*/
u_long timer_timereset;
u_long timer_overflows;
u_long timer_xmtcalls;
#if defined(VMS)
static int vmstimer[2]; /* time for next timer AST */
static int vmsinc[2]; /* timer increment */
#endif /* VMS */
#ifdef SYS_WINNT
HANDLE WaitableTimerHandle;
#else
static RETSIGTYPE alarming (int);
#endif /* SYS_WINNT */
#if !defined(VMS)
# if !defined SYS_WINNT || defined(SYS_CYGWIN32)
# ifdef HAVE_TIMER_CREATE
static timer_t timer_id;
typedef struct itimerspec intervaltimer;
# define itv_frac tv_nsec
# else
typedef struct itimerval intervaltimer;
# define itv_frac tv_usec
# endif
intervaltimer itimer;
# endif
#endif
#if !defined(SYS_WINNT) && !defined(VMS)
void set_timer_or_die(const intervaltimer *);
#endif
#if !defined(SYS_WINNT) && !defined(VMS)
void
set_timer_or_die(
const intervaltimer * ptimer
)
{
const char * setfunc;
int rc;
# ifdef HAVE_TIMER_CREATE
setfunc = "timer_settime";
rc = timer_settime(timer_id, 0, &itimer, NULL);
# else
setfunc = "setitimer";
rc = setitimer(ITIMER_REAL, &itimer, NULL);
# endif
if (-1 == rc) {
msyslog(LOG_ERR, "interval timer %s failed, %m",
setfunc);
exit(1);
}
}
#endif /* !SYS_WINNT && !VMS */
/*
* reinit_timer - reinitialize interval timer after a clock step.
*/
void
reinit_timer(void)
{
#if !defined(SYS_WINNT) && !defined(VMS)
ZERO(itimer);
# ifdef HAVE_TIMER_CREATE
timer_gettime(timer_id, &itimer);
# else
getitimer(ITIMER_REAL, &itimer);
# endif
if (itimer.it_value.tv_sec < 0 ||
itimer.it_value.tv_sec > (1 << EVENT_TIMEOUT))
itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
if (itimer.it_value.itv_frac < 0)
itimer.it_value.itv_frac = 0;
if (0 == itimer.it_value.tv_sec &&
0 == itimer.it_value.itv_frac)
itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
itimer.it_interval.tv_sec = (1 << EVENT_TIMEOUT);
itimer.it_interval.itv_frac = 0;
set_timer_or_die(&itimer);
# endif /* VMS */
}
/*
* init_timer - initialize the timer data structures
*/
void
init_timer(void)
{
/*
* Initialize...
*/
alarm_flag = FALSE;
alarm_overflow = 0;
adjust_timer = 1;
stats_timer = SECSPERHR;
leapf_timer = SECSPERDAY;
huffpuff_timer = 0;
interface_timer = 0;
current_time = 0;
timer_overflows = 0;
timer_xmtcalls = 0;
timer_timereset = 0;
#ifndef SYS_WINNT
/*
* Set up the alarm interrupt. The first comes 2**EVENT_TIMEOUT
* seconds from now and they continue on every 2**EVENT_TIMEOUT
* seconds.
*/
# ifndef VMS
# ifdef HAVE_TIMER_CREATE
if (TC_ERR == timer_create(CLOCK_REALTIME, NULL, &timer_id)) {
msyslog(LOG_ERR, "timer_create failed, %m");
exit(1);
}
# endif
signal_no_reset(SIGALRM, alarming);
itimer.it_interval.tv_sec =
itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
itimer.it_interval.itv_frac = itimer.it_value.itv_frac = 0;
set_timer_or_die(&itimer);
# else /* VMS follows */
vmsinc[0] = 10000000; /* 1 sec */
vmsinc[1] = 0;
lib$emul(&(1<<EVENT_TIMEOUT), &vmsinc, &0, &vmsinc);
sys$gettim(&vmstimer); /* that's "now" as abstime */
lib$addx(&vmsinc, &vmstimer, &vmstimer);
sys$setimr(0, &vmstimer, alarming, alarming, 0);
# endif /* VMS */
#else /* SYS_WINNT follows */
/*
* Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
* Under Windows/NT,
*/
WaitableTimerHandle = CreateWaitableTimer(NULL, FALSE, NULL);
if (WaitableTimerHandle == NULL) {
msyslog(LOG_ERR, "CreateWaitableTimer failed: %m");
exit(1);
}
else {
DWORD Period;
LARGE_INTEGER DueTime;
BOOL rc;
Period = (1 << EVENT_TIMEOUT) * 1000;
DueTime.QuadPart = Period * 10000i64;
rc = SetWaitableTimer(WaitableTimerHandle, &DueTime,
Period, NULL, NULL, FALSE);
if (!rc) {
msyslog(LOG_ERR, "SetWaitableTimer failed: %m");
exit(1);
}
}
#endif /* SYS_WINNT */
}
/*
* intres_timeout_req(s) is invoked in the parent to schedule an idle
* timeout to fire in s seconds, if not reset earlier by a call to
* intres_timeout_req(0), which clears any pending timeout. When the
* timeout expires, worker_idle_timer_fired() is invoked (again, in the
* parent).
*
* sntp and ntpd each provide implementations adapted to their timers.
*/
void
intres_timeout_req(
u_int seconds /* 0 cancels */
)
{
#if defined(HAVE_DROPROOT) && defined(NEED_EARLY_FORK)
if (droproot) {
worker_idle_timer = 0;
return;
}
#endif
if (0 == seconds) {
worker_idle_timer = 0;
return;
}
worker_idle_timer = current_time + seconds;
}
/*
* timer - event timer
*/
void
timer(void)
{
struct peer * p;
struct peer * next_peer;
l_fp now;
time_t tnow;
/*
* The basic timerevent is one second. This is used to adjust the
* system clock in time and frequency, implement the kiss-o'-death
* function and the association polling function.
*/
current_time++;
if (adjust_timer <= current_time) {
adjust_timer += 1;
adj_host_clock();
#ifdef REFCLOCK
for (p = peer_list; p != NULL; p = next_peer) {
next_peer = p->p_link;
if (FLAG_REFCLOCK & p->flags)
refclock_timer(p);
}
#endif /* REFCLOCK */
}
/*
* Now dispatch any peers whose event timer has expired. Be
* careful here, since the peer structure might go away as the
* result of the call.
*/
for (p = peer_list; p != NULL; p = next_peer) {
next_peer = p->p_link;
/*
* Restrain the non-burst packet rate not more
* than one packet every 16 seconds. This is
* usually tripped using iburst and minpoll of
* 128 s or less.
*/
if (p->throttle > 0)
p->throttle--;
if (p->nextdate <= current_time) {
#ifdef REFCLOCK
if (FLAG_REFCLOCK & p->flags)
refclock_transmit(p);
else
#endif /* REFCLOCK */
transmit(p);
}
}
/*
* Orphan mode is active when enabled and when no servers less
* than the orphan stratum are available. A server with no other
* synchronization source is an orphan. It shows offset zero and
* reference ID the loopback address.
*
* [bug 3644] If the orphan stratum is >= STRATUM_UNSPEC, we
* have to do it a bit different. 'clock_select()' simply
* tiptoed home, but since we're unsync'd and have no peer, we
* should eventually declare we're out of sync. Otherwise we
* would persistently claim we're good, and we're everything but
* that...
*
* XXX: do we want to log an event about this?
*/
if (sys_peer == NULL && current_time > orphwait) {
if (sys_orphan < STRATUM_UNSPEC) {
if (sys_leap == LEAP_NOTINSYNC) {
set_sys_leap(LEAP_NOWARNING);
#ifdef AUTOKEY
if (crypto_flags)
crypto_update();
#endif /* AUTOKEY */
}
sys_stratum = (u_char)sys_orphan;
} else {
if (sys_leap != LEAP_NOTINSYNC) {
set_sys_leap(LEAP_NOTINSYNC);
msyslog(LOG_WARNING, "%s",
"no peer for too long, server running free now");
}
sys_stratum = STRATUM_UNSPEC;
}
if (sys_stratum > 1)
sys_refid = htonl(LOOPBACKADR);
else
memcpy(&sys_refid, "LOOP", 4);
sys_offset = 0;
sys_rootdelay = 0;
sys_rootdisp = 0;
}
get_systime(&now);
time(&tnow);
/*
* Leapseconds. Get time and defer to worker if either something
* is imminent or every 8th second.
*/
if (leapsec > LSPROX_NOWARN || 0 == (current_time & 7))
check_leapsec(now.l_ui, &tnow,
(sys_leap == LEAP_NOTINSYNC));
if (sys_leap != LEAP_NOTINSYNC) {
if (leapsec >= LSPROX_ANNOUNCE && leapdif) {
if (leapdif > 0)
set_sys_leap(LEAP_ADDSECOND);
else
set_sys_leap(LEAP_DELSECOND);
} else {
set_sys_leap(LEAP_NOWARNING);
}
}
/*
* Update huff-n'-puff filter.
*/
if (huffpuff_timer <= current_time) {
huffpuff_timer += HUFFPUFF;
huffpuff();
}
#ifdef AUTOKEY
/*
* Garbage collect expired keys.
*/
if (keys_timer <= current_time) {
keys_timer += (1UL << sys_automax);
auth_agekeys();
}
/*
* Generate new private value. This causes all associations
* to regenerate cookies.
*/
if (revoke_timer && revoke_timer <= current_time) {
revoke_timer += (1UL << sys_revoke);
RAND_bytes((u_char *)&sys_private, 4);
}
#endif /* AUTOKEY */
/*
* Interface update timer
*/
if (!disable_dynamic_updates &&
interface_timer && interface_timer <= current_time) {
if (interface_interval)
timer_interfacetimeout(current_time +
interface_interval);
else
timer_interfacetimeout(0);
DPRINTF(2, ("timer: interface update\n"));
interface_update(NULL, NULL);
}
if (worker_idle_timer && worker_idle_timer <= current_time)
worker_idle_timer_fired();
/*
* Finally, write hourly stats and do the hourly
* and daily leapfile checks.
*/
if (stats_timer <= current_time) {
stats_timer += SECSPERHR;
write_stats();
if (leapf_timer <= current_time) {
leapf_timer += SECSPERDAY;
check_leap_file(TRUE, now.l_ui, &tnow);
} else {
check_leap_file(FALSE, now.l_ui, &tnow);
}
}
}
#ifndef SYS_WINNT
/*
* alarming - tell the world we've been alarmed
*/
static RETSIGTYPE
alarming(
int sig
)
{
# ifdef DEBUG
const char *msg = "alarming: initializing TRUE\n";
# endif
if (!initializing) {
if (alarm_flag) {
alarm_overflow++;
# ifdef DEBUG
msg = "alarming: overflow\n";
# endif
} else {
# ifndef VMS
alarm_flag++;
# else
/* VMS AST routine, increment is no good */
alarm_flag = 1;
# endif
# ifdef DEBUG
msg = "alarming: normal\n";
# endif
}
}
# ifdef VMS
lib$addx(&vmsinc, &vmstimer, &vmstimer);
sys$setimr(0, &vmstimer, alarming, alarming, 0);
# endif
# ifdef DEBUG
if (debug >= 4)
(void)(-1 == write(1, msg, strlen(msg)));
# endif
}
#endif /* SYS_WINNT */
void
timer_interfacetimeout(u_long timeout)
{
interface_timer = timeout;
}
/*
* timer_clr_stats - clear timer module stat counters
*/
void
timer_clr_stats(void)
{
timer_overflows = 0;
timer_xmtcalls = 0;
timer_timereset = current_time;
}
static void
check_leap_sec_in_progress( const leap_result_t *lsdata ) {
int prv_leap_sec_in_progress = leap_sec_in_progress;
leap_sec_in_progress = lsdata->tai_diff && (lsdata->ddist < 3);
/* if changed we may have to update the leap status sent to clients */
if (leap_sec_in_progress != prv_leap_sec_in_progress)
set_sys_leap(sys_leap);
}
static void
check_leapsec(
u_int32 now ,
const time_t * tpiv ,
int/*BOOL*/ reset)
{
static const char leapmsg_p_step[] =
"Positive leap second, stepped backward.";
static const char leapmsg_p_slew[] =
"Positive leap second, no step correction. "
"System clock will be inaccurate for a long time.";
static const char leapmsg_n_step[] =
"Negative leap second, stepped forward.";
static const char leapmsg_n_slew[] =
"Negative leap second, no step correction. "
"System clock will be inaccurate for a long time.";
leap_result_t lsdata;
u_int32 lsprox;
#ifdef AUTOKEY
int/*BOOL*/ update_autokey = FALSE;
#endif
#ifndef SYS_WINNT /* WinNT port has its own leap second handling */
# ifdef KERNEL_PLL
leapsec_electric(pll_control && kern_enable);
# else
leapsec_electric(0);
# endif
#endif
#ifdef LEAP_SMEAR
leap_smear.enabled = leap_smear_intv != 0;
#endif
if (reset) {
lsprox = LSPROX_NOWARN;
leapsec_reset_frame();
memset(&lsdata, 0, sizeof(lsdata));
} else {
int fired;
fired = leapsec_query(&lsdata, now, tpiv);
DPRINTF(3, ("*** leapsec_query: fired %i, now %u (0x%08X), tai_diff %i, ddist %u\n",
fired, now, now, lsdata.tai_diff, lsdata.ddist));
#ifdef LEAP_SMEAR
leap_smear.in_progress = 0;
leap_smear.doffset = 0.0;
if (leap_smear.enabled) {
if (lsdata.tai_diff) {
if (leap_smear.interval == 0) {
leap_smear.interval = leap_smear_intv;
leap_smear.intv_end = lsdata.ttime.Q_s;
leap_smear.intv_start = leap_smear.intv_end - leap_smear.interval;
DPRINTF(1, ("*** leapsec_query: setting leap_smear interval %li, begin %.0f, end %.0f\n",
leap_smear.interval, leap_smear.intv_start, leap_smear.intv_end));
}
} else {
if (leap_smear.interval)
DPRINTF(1, ("*** leapsec_query: clearing leap_smear interval\n"));
leap_smear.interval = 0;
}
if (leap_smear.interval) {
double dtemp = now;
if (dtemp >= leap_smear.intv_start && dtemp <= leap_smear.intv_end) {
double leap_smear_time = dtemp - leap_smear.intv_start;
/*
* For now we just do a linear interpolation over the smear interval
*/
#if 0
// linear interpolation
leap_smear.doffset = -(leap_smear_time * lsdata.tai_diff / leap_smear.interval);
#else
// Google approach: lie(t) = (1.0 - cos(pi * t / w)) / 2.0
leap_smear.doffset = -((double) lsdata.tai_diff - cos( M_PI * leap_smear_time / leap_smear.interval)) / 2.0;
#endif
/*
* TODO see if we're inside an inserted leap second, so we need to compute
* leap_smear.doffset = 1.0 - leap_smear.doffset
*/
leap_smear.in_progress = 1;
#if 0 && defined( DEBUG )
msyslog(LOG_NOTICE, "*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
now, leap_smear_time, leap_smear.doffset);
#else
DPRINTF(1, ("*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
now, leap_smear_time, leap_smear.doffset));
#endif
}
}
}
else
leap_smear.interval = 0;
/*
* Update the current leap smear offset, eventually 0.0 if outside smear interval.
*/
DTOLFP(leap_smear.doffset, &leap_smear.offset);
#endif /* LEAP_SMEAR */
if (fired) {
/* Full hit. Eventually step the clock, but always
* announce the leap event has happened.
*/
const char *leapmsg = NULL;
double lswarp = lsdata.warped;
if (lswarp < 0.0) {
if (clock_max_back > 0.0 &&
clock_max_back < -lswarp) {
step_systime(lswarp);
leapmsg = leapmsg_p_step;
} else {
leapmsg = leapmsg_p_slew;
}
} else if (lswarp > 0.0) {
if (clock_max_fwd > 0.0 &&
clock_max_fwd < lswarp) {
step_systime(lswarp);
leapmsg = leapmsg_n_step;
} else {
leapmsg = leapmsg_n_slew;
}
}
if (leapmsg)
msyslog(LOG_NOTICE, "%s", leapmsg);
report_event(EVNT_LEAP, NULL, NULL);
#ifdef AUTOKEY
update_autokey = TRUE;
#endif
lsprox = LSPROX_NOWARN;
leapsec = LSPROX_NOWARN;
sys_tai = lsdata.tai_offs;
} else {
#ifdef AUTOKEY
update_autokey = (sys_tai != (u_int)lsdata.tai_offs);
#endif
lsprox = lsdata.proximity;
sys_tai = lsdata.tai_offs;
}
}
/* We guard against panic alarming during the red alert phase.
* Strange and evil things might happen if we go from stone cold
* to piping hot in one step. If things are already that wobbly,
* we let the normal clock correction take over, even if a jump
* is involved.
* Also make sure the alarming events are edge-triggered, that is,
* ceated only when the threshold is crossed.
*/
if ( (leapsec > 0 || lsprox < LSPROX_ALERT)
&& leapsec < lsprox ) {
if ( leapsec < LSPROX_SCHEDULE
&& lsprox >= LSPROX_SCHEDULE) {
if (lsdata.dynamic)
report_event(PEVNT_ARMED, sys_peer, NULL);
else
report_event(EVNT_ARMED, NULL, NULL);
}
leapsec = lsprox;
}
if (leapsec > lsprox) {
if ( leapsec >= LSPROX_SCHEDULE
&& lsprox < LSPROX_SCHEDULE) {
report_event(EVNT_DISARMED, NULL, NULL);
}
leapsec = lsprox;
}
if (leapsec >= LSPROX_SCHEDULE)
leapdif = lsdata.tai_diff;
else
leapdif = 0;
check_leap_sec_in_progress(&lsdata);
#ifdef AUTOKEY
if (update_autokey)
crypto_update_taichange();
#endif
}