Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/*	$NetBSD: ntp_timer.c,v 1.11 2022/10/09 21:41:03 christos Exp $	*/

/*
 * ntp_timer.c - event timer support routines
 */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

#include "ntp_machine.h"
#include "ntpd.h"
#include "ntp_stdlib.h"
#include "ntp_calendar.h"
#include "ntp_leapsec.h"

#if defined(HAVE_IO_COMPLETION_PORT)
# include "ntp_iocompletionport.h"
# include "ntp_timer.h"
#endif

#include <stdio.h>
#include <signal.h>
#ifdef HAVE_SYS_SIGNAL_H
# include <sys/signal.h>
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif

#ifdef KERNEL_PLL
#include "ntp_syscall.h"
#endif /* KERNEL_PLL */

#ifdef AUTOKEY
#include <openssl/rand.h>
#endif	/* AUTOKEY */


/* TC_ERR represents the timer_create() error return value. */
#ifdef SYS_VXWORKS
#define	TC_ERR	ERROR
#else
#define	TC_ERR	(-1)
#endif


static void check_leapsec(u_int32, const time_t*, int/*BOOL*/);

/*
 * These routines provide support for the event timer.  The timer is
 * implemented by an interrupt routine which sets a flag once every
 * second, and a timer routine which is called when the mainline code
 * gets around to seeing the flag.  The timer routine dispatches the
 * clock adjustment code if its time has come, then searches the timer
 * queue for expiries which are dispatched to the transmit procedure.
 * Finally, we call the hourly procedure to do cleanup and print a
 * message.
 */
volatile int interface_interval;     /* init_io() sets def. 300s */

/*
 * Initializing flag.  All async routines watch this and only do their
 * thing when it is clear.
 */
int initializing;

/*
 * Alarm flag. The mainline code imports this.
 */
volatile int alarm_flag;

/*
 * The counters and timeouts
 */
static  u_long interface_timer;	/* interface update timer */
static	u_long adjust_timer;	/* second timer */
static	u_long stats_timer;	/* stats timer */
static	u_long leapf_timer;	/* Report leapfile problems once/day */
static	u_long huffpuff_timer;	/* huff-n'-puff timer */
static	u_long worker_idle_timer;/* next check for idle intres */
u_long	leapsec;	        /* seconds to next leap (proximity class) */
int     leapdif;                /* TAI difference step at next leap second*/
u_long	orphwait; 		/* orphan wait time */
#ifdef AUTOKEY
static	u_long revoke_timer;	/* keys revoke timer */
static	u_long keys_timer;	/* session key timer */
u_char	sys_revoke = KEY_REVOKE; /* keys revoke timeout (log2 s) */
u_char	sys_automax = NTP_AUTOMAX; /* key list timeout (log2 s) */
#endif	/* AUTOKEY */

/*
 * Statistics counter for the interested.
 */
volatile u_long alarm_overflow;

u_long current_time;		/* seconds since startup */

/*
 * Stats.  Number of overflows and number of calls to transmit().
 */
u_long timer_timereset;
u_long timer_overflows;
u_long timer_xmtcalls;

#if defined(VMS)
static int vmstimer[2]; 	/* time for next timer AST */
static int vmsinc[2];		/* timer increment */
#endif /* VMS */

#ifdef SYS_WINNT
HANDLE WaitableTimerHandle;
#else
static	RETSIGTYPE alarming (int);
#endif /* SYS_WINNT */

#if !defined(VMS)
# if !defined SYS_WINNT || defined(SYS_CYGWIN32)
#  ifdef HAVE_TIMER_CREATE
static timer_t timer_id;
typedef struct itimerspec intervaltimer;
#   define	itv_frac	tv_nsec
#  else
typedef struct itimerval intervaltimer;
#   define	itv_frac	tv_usec
#  endif
intervaltimer itimer;
# endif
#endif

#if !defined(SYS_WINNT) && !defined(VMS)
void	set_timer_or_die(const intervaltimer *);
#endif


#if !defined(SYS_WINNT) && !defined(VMS)
void
set_timer_or_die(
	const intervaltimer *	ptimer
	)
{
	const char *	setfunc;
	int		rc;

# ifdef HAVE_TIMER_CREATE
	setfunc = "timer_settime";
	rc = timer_settime(timer_id, 0, &itimer, NULL);
# else
	setfunc = "setitimer";
	rc = setitimer(ITIMER_REAL, &itimer, NULL);
# endif
	if (-1 == rc) {
		msyslog(LOG_ERR, "interval timer %s failed, %m",
			setfunc);
		exit(1);
	}
}
#endif	/* !SYS_WINNT && !VMS */


/*
 * reinit_timer - reinitialize interval timer after a clock step.
 */
void
reinit_timer(void)
{
#if !defined(SYS_WINNT) && !defined(VMS)
	ZERO(itimer);
# ifdef HAVE_TIMER_CREATE
	timer_gettime(timer_id, &itimer);
# else
	getitimer(ITIMER_REAL, &itimer);
# endif
	if (itimer.it_value.tv_sec < 0 ||
	    itimer.it_value.tv_sec > (1 << EVENT_TIMEOUT))
		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
	if (itimer.it_value.itv_frac < 0)
		itimer.it_value.itv_frac = 0;
	if (0 == itimer.it_value.tv_sec &&
	    0 == itimer.it_value.itv_frac)
		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
	itimer.it_interval.tv_sec = (1 << EVENT_TIMEOUT);
	itimer.it_interval.itv_frac = 0;
	set_timer_or_die(&itimer);
# endif /* VMS */
}


/*
 * init_timer - initialize the timer data structures
 */
void
init_timer(void)
{
	/*
	 * Initialize...
	 */
	alarm_flag = FALSE;
	alarm_overflow = 0;
	adjust_timer = 1;
	stats_timer = SECSPERHR;
	leapf_timer = SECSPERDAY;
	huffpuff_timer = 0;
	interface_timer = 0;
	current_time = 0;
	timer_overflows = 0;
	timer_xmtcalls = 0;
	timer_timereset = 0;

#ifndef SYS_WINNT
	/*
	 * Set up the alarm interrupt.	The first comes 2**EVENT_TIMEOUT
	 * seconds from now and they continue on every 2**EVENT_TIMEOUT
	 * seconds.
	 */
# ifndef VMS
#  ifdef HAVE_TIMER_CREATE
	if (TC_ERR == timer_create(CLOCK_REALTIME, NULL, &timer_id)) {
		msyslog(LOG_ERR, "timer_create failed, %m");
		exit(1);
	}
#  endif
	signal_no_reset(SIGALRM, alarming);
	itimer.it_interval.tv_sec =
		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
	itimer.it_interval.itv_frac = itimer.it_value.itv_frac = 0;
	set_timer_or_die(&itimer);
# else	/* VMS follows */
	vmsinc[0] = 10000000;		/* 1 sec */
	vmsinc[1] = 0;
	lib$emul(&(1<<EVENT_TIMEOUT), &vmsinc, &0, &vmsinc);

	sys$gettim(&vmstimer);	/* that's "now" as abstime */

	lib$addx(&vmsinc, &vmstimer, &vmstimer);
	sys$setimr(0, &vmstimer, alarming, alarming, 0);
# endif	/* VMS */
#else	/* SYS_WINNT follows */
	/*
	 * Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
	 * Under Windows/NT,
	 */

	WaitableTimerHandle = CreateWaitableTimer(NULL, FALSE, NULL);
	if (WaitableTimerHandle == NULL) {
		msyslog(LOG_ERR, "CreateWaitableTimer failed: %m");
		exit(1);
	}
	else {
		DWORD		Period;
		LARGE_INTEGER	DueTime;
		BOOL		rc;

		Period = (1 << EVENT_TIMEOUT) * 1000;
		DueTime.QuadPart = Period * 10000i64;
		rc = SetWaitableTimer(WaitableTimerHandle, &DueTime,
				      Period, NULL, NULL, FALSE);
		if (!rc) {
			msyslog(LOG_ERR, "SetWaitableTimer failed: %m");
			exit(1);
		}
	}

#endif	/* SYS_WINNT */
}


/*
 * intres_timeout_req(s) is invoked in the parent to schedule an idle
 * timeout to fire in s seconds, if not reset earlier by a call to
 * intres_timeout_req(0), which clears any pending timeout.  When the
 * timeout expires, worker_idle_timer_fired() is invoked (again, in the
 * parent).
 *
 * sntp and ntpd each provide implementations adapted to their timers.
 */
void
intres_timeout_req(
	u_int	seconds		/* 0 cancels */
	)
{
#if defined(HAVE_DROPROOT) && defined(NEED_EARLY_FORK)
	if (droproot) {
		worker_idle_timer = 0;
		return;
	}
#endif
	if (0 == seconds) {
		worker_idle_timer = 0;
		return;
	}
	worker_idle_timer = current_time + seconds;
}


/*
 * timer - event timer
 */
void
timer(void)
{
	struct peer *	p;
	struct peer *	next_peer;
	l_fp		now;
	time_t          tnow;

	/*
	 * The basic timerevent is one second.  This is used to adjust the
	 * system clock in time and frequency, implement the kiss-o'-death
	 * function and the association polling function.
	 */
	current_time++;
	if (adjust_timer <= current_time) {
		adjust_timer += 1;
		adj_host_clock();
#ifdef REFCLOCK
		for (p = peer_list; p != NULL; p = next_peer) {
			next_peer = p->p_link;
			if (FLAG_REFCLOCK & p->flags)
				refclock_timer(p);
		}
#endif /* REFCLOCK */
	}

	/*
	 * Now dispatch any peers whose event timer has expired. Be
	 * careful here, since the peer structure might go away as the
	 * result of the call.
	 */
	for (p = peer_list; p != NULL; p = next_peer) {
		next_peer = p->p_link;

		/*
		 * Restrain the non-burst packet rate not more
		 * than one packet every 16 seconds. This is
		 * usually tripped using iburst and minpoll of
		 * 128 s or less.
		 */
		if (p->throttle > 0)
			p->throttle--;
		if (p->nextdate <= current_time) {
#ifdef REFCLOCK
			if (FLAG_REFCLOCK & p->flags)
				refclock_transmit(p);
			else
#endif	/* REFCLOCK */
				transmit(p);
		}
	}

	/*
	 * Orphan mode is active when enabled and when no servers less
	 * than the orphan stratum are available. A server with no other
	 * synchronization source is an orphan. It shows offset zero and
	 * reference ID the loopback address.
	 *
	 * [bug 3644] If the orphan stratum is >= STRATUM_UNSPEC, we
	 * have to do it a bit different. 'clock_select()' simply
	 * tiptoed home, but since we're unsync'd and have no peer, we
	 * should eventually declare we're out of sync. Otherwise we
	 * would persistently claim we're good, and we're everything but
	 * that...
	 *
	 * XXX: do we want to log an event about this?
	 */
	if (sys_peer == NULL && current_time > orphwait) {
		if (sys_orphan < STRATUM_UNSPEC) {
			if (sys_leap == LEAP_NOTINSYNC) {
				set_sys_leap(LEAP_NOWARNING);
#ifdef AUTOKEY
				if (crypto_flags)
					crypto_update();
#endif	/* AUTOKEY */
			}
			sys_stratum = (u_char)sys_orphan;
		} else {
			if (sys_leap != LEAP_NOTINSYNC) {
				set_sys_leap(LEAP_NOTINSYNC);
				msyslog(LOG_WARNING, "%s",
					"no peer for too long, server running free now");
			}
			sys_stratum = STRATUM_UNSPEC;
		}
		if (sys_stratum > 1)
		    sys_refid = htonl(LOOPBACKADR);
		else
		    memcpy(&sys_refid, "LOOP", 4);
		sys_offset = 0;
		sys_rootdelay = 0;
		sys_rootdisp = 0;
	}

	get_systime(&now);
	time(&tnow);

	/*
	 * Leapseconds. Get time and defer to worker if either something
	 * is imminent or every 8th second.
	 */
	if (leapsec > LSPROX_NOWARN || 0 == (current_time & 7))
		check_leapsec(now.l_ui, &tnow,
                                (sys_leap == LEAP_NOTINSYNC));
        if (sys_leap != LEAP_NOTINSYNC) {
                if (leapsec >= LSPROX_ANNOUNCE && leapdif) {
		        if (leapdif > 0)
			        set_sys_leap(LEAP_ADDSECOND);
		        else
			        set_sys_leap(LEAP_DELSECOND);
                } else {
                        set_sys_leap(LEAP_NOWARNING);
                }
	}

	/*
	 * Update huff-n'-puff filter.
	 */
	if (huffpuff_timer <= current_time) {
		huffpuff_timer += HUFFPUFF;
		huffpuff();
	}

#ifdef AUTOKEY
	/*
	 * Garbage collect expired keys.
	 */
	if (keys_timer <= current_time) {
		keys_timer += (1UL << sys_automax);
		auth_agekeys();
	}

	/*
	 * Generate new private value. This causes all associations
	 * to regenerate cookies.
	 */
	if (revoke_timer && revoke_timer <= current_time) {
		revoke_timer += (1UL << sys_revoke);
		RAND_bytes((u_char *)&sys_private, 4);
	}
#endif	/* AUTOKEY */

	/*
	 * Interface update timer
	 */
	if (!disable_dynamic_updates &&
	    interface_timer && interface_timer <= current_time) {
		if (interface_interval)
			timer_interfacetimeout(current_time +
			    interface_interval);
		else
			timer_interfacetimeout(0);
		DPRINTF(2, ("timer: interface update\n"));
		interface_update(NULL, NULL);
	}

	if (worker_idle_timer && worker_idle_timer <= current_time)
		worker_idle_timer_fired();

	/*
	 * Finally, write hourly stats and do the hourly
	 * and daily leapfile checks.
	 */
	if (stats_timer <= current_time) {
		stats_timer += SECSPERHR;
		write_stats();
		if (leapf_timer <= current_time) {
			leapf_timer += SECSPERDAY;
			check_leap_file(TRUE, now.l_ui, &tnow);
		} else {
			check_leap_file(FALSE, now.l_ui, &tnow);
		}
	}
}


#ifndef SYS_WINNT
/*
 * alarming - tell the world we've been alarmed
 */
static RETSIGTYPE
alarming(
	int sig
	)
{
# ifdef DEBUG
	const char *msg = "alarming: initializing TRUE\n";
# endif

	if (!initializing) {
		if (alarm_flag) {
			alarm_overflow++;
# ifdef DEBUG
			msg = "alarming: overflow\n";
# endif
		} else {
# ifndef VMS
			alarm_flag++;
# else
			/* VMS AST routine, increment is no good */
			alarm_flag = 1;
# endif
# ifdef DEBUG
			msg = "alarming: normal\n";
# endif
		}
	}
# ifdef VMS
	lib$addx(&vmsinc, &vmstimer, &vmstimer);
	sys$setimr(0, &vmstimer, alarming, alarming, 0);
# endif
# ifdef DEBUG
	if (debug >= 4)
		(void)(-1 == write(1, msg, strlen(msg)));
# endif
}
#endif /* SYS_WINNT */


void
timer_interfacetimeout(u_long timeout)
{
	interface_timer = timeout;
}


/*
 * timer_clr_stats - clear timer module stat counters
 */
void
timer_clr_stats(void)
{
	timer_overflows = 0;
	timer_xmtcalls = 0;
	timer_timereset = current_time;
}


static void
check_leap_sec_in_progress( const leap_result_t *lsdata ) {
	int prv_leap_sec_in_progress = leap_sec_in_progress;
	leap_sec_in_progress = lsdata->tai_diff && (lsdata->ddist < 3);

	/* if changed we may have to update the leap status sent to clients */
	if (leap_sec_in_progress != prv_leap_sec_in_progress)
		set_sys_leap(sys_leap);
}


static void
check_leapsec(
	u_int32        now  ,
	const time_t * tpiv ,
        int/*BOOL*/    reset)
{
	static const char leapmsg_p_step[] =
	    "Positive leap second, stepped backward.";
	static const char leapmsg_p_slew[] =
	    "Positive leap second, no step correction. "
	    "System clock will be inaccurate for a long time.";

	static const char leapmsg_n_step[] =
	    "Negative leap second, stepped forward.";
	static const char leapmsg_n_slew[] =
	    "Negative leap second, no step correction. "
	    "System clock will be inaccurate for a long time.";

	leap_result_t lsdata;
	u_int32       lsprox;
#ifdef AUTOKEY
	int/*BOOL*/   update_autokey = FALSE;
#endif

#ifndef SYS_WINNT  /* WinNT port has its own leap second handling */
# ifdef KERNEL_PLL
	leapsec_electric(pll_control && kern_enable);
# else
	leapsec_electric(0);
# endif
#endif
#ifdef LEAP_SMEAR
	leap_smear.enabled = leap_smear_intv != 0;
#endif
	if (reset) {
		lsprox = LSPROX_NOWARN;
		leapsec_reset_frame();
		memset(&lsdata, 0, sizeof(lsdata));
	} else {
	  int fired;

	  fired = leapsec_query(&lsdata, now, tpiv);

	  DPRINTF(3, ("*** leapsec_query: fired %i, now %u (0x%08X), tai_diff %i, ddist %u\n",
		  fired, now, now, lsdata.tai_diff, lsdata.ddist));

#ifdef LEAP_SMEAR
	  leap_smear.in_progress = 0;
	  leap_smear.doffset = 0.0;

	  if (leap_smear.enabled) {
		if (lsdata.tai_diff) {
			if (leap_smear.interval == 0) {
				leap_smear.interval = leap_smear_intv;
				leap_smear.intv_end = lsdata.ttime.Q_s;
				leap_smear.intv_start = leap_smear.intv_end - leap_smear.interval;
				DPRINTF(1, ("*** leapsec_query: setting leap_smear interval %li, begin %.0f, end %.0f\n",
					leap_smear.interval, leap_smear.intv_start, leap_smear.intv_end));
			}
		} else {
			if (leap_smear.interval)
				DPRINTF(1, ("*** leapsec_query: clearing leap_smear interval\n"));
			leap_smear.interval = 0;
		}

		if (leap_smear.interval) {
			double dtemp = now;
			if (dtemp >= leap_smear.intv_start && dtemp <= leap_smear.intv_end) {
				double leap_smear_time = dtemp - leap_smear.intv_start;
				/*
				 * For now we just do a linear interpolation over the smear interval
				 */
#if 0
				// linear interpolation
				leap_smear.doffset = -(leap_smear_time * lsdata.tai_diff / leap_smear.interval);
#else
				// Google approach: lie(t) = (1.0 - cos(pi * t / w)) / 2.0
				leap_smear.doffset = -((double) lsdata.tai_diff - cos( M_PI * leap_smear_time / leap_smear.interval)) / 2.0;
#endif
				/*
				 * TODO see if we're inside an inserted leap second, so we need to compute
				 * leap_smear.doffset = 1.0 - leap_smear.doffset
				 */
				leap_smear.in_progress = 1;
#if 0 && defined( DEBUG )
				msyslog(LOG_NOTICE, "*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
					leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
					now, leap_smear_time, leap_smear.doffset);
#else
				DPRINTF(1, ("*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
					leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
					now, leap_smear_time, leap_smear.doffset));
#endif

			}
		}
	  }
	  else
		leap_smear.interval = 0;

	  /*
	   * Update the current leap smear offset, eventually 0.0 if outside smear interval.
	   */
	  DTOLFP(leap_smear.doffset, &leap_smear.offset);

#endif	/* LEAP_SMEAR */

	  if (fired) {
		/* Full hit. Eventually step the clock, but always
		 * announce the leap event has happened.
		 */
		const char *leapmsg = NULL;
		double      lswarp  = lsdata.warped;
		if (lswarp < 0.0) {
			if (clock_max_back > 0.0 &&
			    clock_max_back < -lswarp) {
				step_systime(lswarp);
				leapmsg = leapmsg_p_step;
			} else {
				leapmsg = leapmsg_p_slew;
			}
		} else 	if (lswarp > 0.0) {
			if (clock_max_fwd > 0.0 &&
			    clock_max_fwd < lswarp) {
				step_systime(lswarp);
				leapmsg = leapmsg_n_step;
			} else {
				leapmsg = leapmsg_n_slew;
			}
		}
		if (leapmsg)
			msyslog(LOG_NOTICE, "%s", leapmsg);
		report_event(EVNT_LEAP, NULL, NULL);
#ifdef AUTOKEY
		update_autokey = TRUE;
#endif
		lsprox  = LSPROX_NOWARN;
		leapsec = LSPROX_NOWARN;
		sys_tai = lsdata.tai_offs;
	  } else {
#ifdef AUTOKEY
		  update_autokey = (sys_tai != (u_int)lsdata.tai_offs);
#endif
		  lsprox  = lsdata.proximity;
		  sys_tai = lsdata.tai_offs;
	  }
	}

	/* We guard against panic alarming during the red alert phase.
	 * Strange and evil things might happen if we go from stone cold
	 * to piping hot in one step. If things are already that wobbly,
	 * we let the normal clock correction take over, even if a jump
	 * is involved.
         * Also make sure the alarming events are edge-triggered, that is,
         * ceated only when the threshold is crossed.
         */
	if (  (leapsec > 0 || lsprox < LSPROX_ALERT)
	    && leapsec < lsprox                     ) {
		if (  leapsec < LSPROX_SCHEDULE
                   && lsprox >= LSPROX_SCHEDULE) {
			if (lsdata.dynamic)
				report_event(PEVNT_ARMED, sys_peer, NULL);
			else
				report_event(EVNT_ARMED, NULL, NULL);
		}
		leapsec = lsprox;
	}
	if (leapsec > lsprox) {
		if (  leapsec >= LSPROX_SCHEDULE
                   && lsprox   < LSPROX_SCHEDULE) {
			report_event(EVNT_DISARMED, NULL, NULL);
		}
		leapsec = lsprox;
	}

	if (leapsec >= LSPROX_SCHEDULE)
		leapdif = lsdata.tai_diff;
	else
		leapdif = 0;

	check_leap_sec_in_progress(&lsdata);

#ifdef AUTOKEY
	if (update_autokey)
		crypto_update_taichange();
#endif
}