Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/bin/sh
#
# dtruss - print process system call time details.
#          Written using DTrace (Solaris 10 3/05).
#
# $Id: dtruss,v 1.1.1.1 2015/09/30 22:01:07 christos Exp $
#
# USAGE: dtruss [-acdeflhoLs] [-t syscall] { -p PID | -n name | command }
#
#		-p PID		# examine this PID
#		-n name		# examine this process name
#		-t syscall	# examine this syscall only
#		-a		# print all details
#		-c		# print system call counts
#		-d		# print relative timestamps (us)
#		-e		# print elapsed times (us)
#		-f		# follow children as they are forked
#		-l		# force printing of pid/lwpid per line
#		-o		# print on cpu times (us)
#		-s		# print stack backtraces
#		-L		# don't print pid/lwpid per line
#		-b bufsize	# dynamic variable buf size (default is "4m")
#  eg,
#		dtruss df -h	# run and examine the "df -h" command
#		dtruss -p 1871	# examine PID 1871
#		dtruss -n tar	# examine all processes called "tar"
#		dtruss -f test.sh	# run test.sh and follow children
#
# See the man page dtruss(1M) for further details.
#
# SEE ALSO: procsystime    # DTraceToolkit
#           dapptrace      # DTraceToolkit
#           truss
#
# COPYRIGHT: Copyright (c) 2005, 2006, 2007 Brendan Gregg.
#
# CDDL HEADER START
#
#  The contents of this file are subject to the terms of the
#  Common Development and Distribution License, Version 1.0 only
#  (the "License").  You may not use this file except in compliance
#  with the License.
#
#  You can obtain a copy of the license at Docs/cddl1.txt
#  or http://www.opensolaris.org/os/licensing.
#  See the License for the specific language governing permissions
#  and limitations under the License.
#
# CDDL HEADER END
#
# TODO: Track signals, more output formatting.
#
# 29-Apr-2005   Brendan Gregg   Created this.
# 09-May-2005      "      " 	Fixed evaltime (thanks Adam L.)
# 16-May-2005	   "      "	Added -t syscall tracing.
# 17-Jun-2005	   "      "	Added -s stack backtraces.
# 17-Jun-2005	   "      "	Last update.
# 29-Jun-2007	   "      "	Used progenyof() (thanks Aaron Gutman).
# 06-Aug-2007	   "      "	Various updates.
#


##############################
# --- Process Arguments ---
#

### Default variables
opt_pid=0; opt_name=0; pid=0; pname="."; opt_elapsed=0; opt_cpu=0
opt_counts=0; opt_relative=0; opt_printid=0; opt_follow=0; opt_command=0
command=""; opt_buf=0; buf="4m"; opt_trace=0; trace="."; opt_stack=0

### Process options
while getopts ab:cdefhln:op:st:L name
do
        case $name in
	b)	opt_buf=1; buf=$OPTARG ;;
        p)      opt_pid=1; pid=$OPTARG ;;
        n)      opt_name=1; pname=$OPTARG ;;
        t)      opt_trace=1; trace=$OPTARG ;;
	a)	opt_counts=1; opt_relative=1; opt_elapsed=1; opt_follow=1
		opt_printid=1; opt_cpu=1 ;;
	c)	opt_counts=1 ;;
	d)	opt_relative=1 ;;
	e)	opt_elapsed=1 ;;
	f)	opt_follow=1 ;;
	l)	opt_printid=1 ;;
	o)	opt_cpu=1 ;;
	L)	opt_printid=-1 ;;
	s)	opt_stack=-1 ;;
        h|?)    cat <<-END >&2
		USAGE: dtruss [-acdefholLs] [-t syscall] { -p PID | -n name | command }

		          -p PID          # examine this PID
		          -n name         # examine this process name
		          -t syscall      # examine this syscall only
		          -a              # print all details
		          -c              # print syscall counts
		          -d              # print relative times (us)
		          -e              # print elapsed times (us)
		          -f              # follow children (-p or cmd only)
		          -l              # force printing pid/lwpid
		          -o              # print on cpu times
		          -s              # print stack backtraces
		          -L              # don't print pid/lwpid
		          -b bufsize      # dynamic variable buf size
		   eg,
		       dtruss df -h       # run and examine "df -h"
		       dtruss -p 1871     # examine PID 1871
		       dtruss -n tar      # examine all processes called "tar"
		       dtruss -f test.sh  # run test.sh and follow children
		END
		exit 1
        esac
done
shift `expr $OPTIND - 1`

### Option logic
if [ $opt_pid -eq 0 -a $opt_name -eq 0 ]; then
	opt_command=1
	if [ "$*" = "" ]; then
		$0 -h
		exit
	fi
	command="$*"	# yes, I meant $*!
fi
if [ $opt_follow -eq 1 -o $opt_name -eq 1 ]; then
	if [ $opt_printid -ne -1 ]; then
		opt_printid=1
	else
		opt_printid=0
	fi
fi
if [ $opt_follow -eq 1 -a $opt_name -eq 1 ]; then
	echo "ERROR: -f option cannot be used with -n (use -p or cmd instead)."
	exit 1
fi

### Option translation
if [ "$trace" = "exec" ]; then trace="exece"; fi
if [ "$trace" = "time" ]; then trace="gtime"; fi
if [ "$trace" = "exit" ]; then trace="rexit"; fi


#################################
# --- Main Program, DTrace ---
#

### Define D Script
dtrace='
#pragma D option quiet
#pragma D option switchrate=10
 
/*
 * Command line arguments
 */
inline int OPT_command   = '$opt_command';
inline int OPT_follow    = '$opt_follow';
inline int OPT_printid   = '$opt_printid';
inline int OPT_relative  = '$opt_relative';
inline int OPT_elapsed   = '$opt_elapsed';
inline int OPT_cpu       = '$opt_cpu';
inline int OPT_counts    = '$opt_counts';
inline int OPT_pid       = '$opt_pid';
inline int OPT_name      = '$opt_name';
inline int OPT_trace     = '$opt_trace';
inline int OPT_stack     = '$opt_stack';
inline string NAME       = "'$pname'";
inline string TRACE      = "'$trace'";

dtrace:::BEGIN 
{
	/* print header */
	OPT_printid  ? printf("%-9s  ", "PID/LWP") : 1;
	OPT_relative ? printf("%8s ", "RELATIVE") : 1;
	OPT_elapsed  ? printf("%7s ", "ELAPSD") : 1;
	OPT_cpu      ? printf("%6s ", "CPU") : 1;
	printf("SYSCALL(args) \t\t = return\n");
}

/*
 * Save syscall entry info
 */
syscall:::entry
/((OPT_command || OPT_pid) && pid == $target) || 
 (OPT_name && execname == NAME) ||
 (OPT_follow && progenyof($target))/
{
	/* set start details */
	self->start = timestamp;
	self->vstart = vtimestamp;
	self->arg0 = arg0;
	self->arg1 = arg1;
	self->arg2 = arg2;

	/* count occurances */
	OPT_counts == 1 ? @Counts[probefunc] = count() : 1;
}

/*
 * Follow children
 */
syscall::fork*:return
/(OPT_follow && progenyof($target)) && (!OPT_trace || (TRACE == probefunc))/
{
	/* print output */
	self->code = errno == 0 ? "" : "Err#";
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d:  ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d:  ", 0) : 1;
	OPT_cpu      ? printf("%6d ", 0) : 1;
	printf("%s(0x%X, 0x%X, 0x%X)\t\t = %d %s%d\n", probefunc,
	    self->arg0, self->arg1, self->arg2, (int)arg0, self->code,
	    (int)errno);
}

/*
 * Check for syscall tracing
 */
syscall:::entry
/OPT_trace && probefunc != TRACE/
{
	/* drop info */
	self->start = 0;
	self->vstart = 0;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/*
 * Print return data
 */

/*
 * The following code is written in an intentionally repetative way.
 * The first versions had no code redundancies, but performed badly during
 * benchmarking. The priority here is speed, not cleverness. I know there
 * are many obvious shortcuts to this code, I have tried them. This style has
 * shown in benchmarks to be the fastest (fewest probes fired, fewest actions).
 */

/* print 3 args, return as hex */
syscall::sigprocmask:return
/self->start/
{
	/* calculate elapsed time */
	this->elapsed = timestamp - self->start;
	self->start = 0;
	this->cpu = vtimestamp - self->vstart;
	self->vstart = 0;
	self->code = errno == 0 ? "" : "Err#";
 
	/* print optional fields */
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d ", this->elapsed/1000) : 1;
	OPT_cpu ? printf("%6d ", this->cpu/1000) : 1;
 
	/* print main data */
	printf("%s(0x%X, 0x%X, 0x%X)\t\t = 0x%X %s%d\n", probefunc,
	    (int)self->arg0, self->arg1, self->arg2, (int)arg0,
	    self->code, (int)errno);
	OPT_stack ? ustack()    : 1;
	OPT_stack ? trace("\n") : 1;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/* print 3 args, arg0 as a string */
syscall::access*:return,
syscall::stat*:return, 
syscall::lstat*:return, 
syscall::readlink*:return,
syscall::open*:return
/self->start/
{
	/* calculate elapsed time */
	this->elapsed = timestamp - self->start;
	self->start = 0;
	this->cpu = vtimestamp - self->vstart;
	self->vstart = 0;
	self->code = errno == 0 ? "" : "Err#";
 
	/* print optional fields */
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d ", this->elapsed/1000) : 1;
	OPT_cpu      ? printf("%6d ", this->cpu/1000) : 1;
 
	/* print main data */
	printf("%s(\"%S\", 0x%X, 0x%X)\t\t = %d %s%d\n", probefunc,
	    copyinstr(self->arg0), self->arg1, self->arg2, (int)arg0,
	    self->code, (int)errno);
	OPT_stack ? ustack()    : 1;
	OPT_stack ? trace("\n") : 1;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/* print 3 args, arg1 as a string */
syscall::write:return,
syscall::pwrite:return,
syscall::*read*:return
/self->start/
{
	/* calculate elapsed time */
	this->elapsed = timestamp - self->start;
	self->start = 0;
	this->cpu = vtimestamp - self->vstart;
	self->vstart = 0;
	self->code = errno == 0 ? "" : "Err#";
 
	/* print optional fields */
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d ", this->elapsed/1000) : 1;
	OPT_cpu      ? printf("%6d ", this->cpu/1000) : 1;
 
	/* print main data */
	printf("%s(0x%X, \"%S\", 0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
	    stringof(copyin(self->arg1, self->arg2)), self->arg2, (int)arg0,
	    self->code, (int)errno);
	OPT_stack ? ustack()    : 1;
	OPT_stack ? trace("\n") : 1;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/* print 0 arg output */
syscall::*fork*:return
/self->start/
{
	/* calculate elapsed time */
	this->elapsed = timestamp - self->start;
	self->start = 0;
	this->cpu = vtimestamp - self->vstart;
	self->vstart = 0;
	self->code = errno == 0 ? "" : "Err#";
 
	/* print optional fields */
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d ", this->elapsed/1000) : 1;
	OPT_cpu      ? printf("%6d ", this->cpu/1000) : 1;
 
	/* print main data */
	printf("%s()\t\t = %d %s%d\n", probefunc,
	    (int)arg0, self->code, (int)errno);
	OPT_stack ? ustack()    : 1;
	OPT_stack ? trace("\n") : 1;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/* print 1 arg output */
syscall::close:return
/self->start/
{
	/* calculate elapsed time */
	this->elapsed = timestamp - self->start;
	self->start = 0;
	this->cpu = vtimestamp - self->vstart;
	self->vstart = 0;
	self->code = errno == 0 ? "" : "Err#";
 
	/* print optional fields */
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d ", this->elapsed/1000) : 1;
	OPT_cpu      ? printf("%6d ", this->cpu/1000) : 1;
 
	/* print main data */
	printf("%s(0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
	    (int)arg0, self->code, (int)errno);
	OPT_stack ? ustack()    : 1;
	OPT_stack ? trace("\n") : 1;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/* print 2 arg output */
syscall::utimes:return,
syscall::munmap:return
/self->start/
{
	/* calculate elapsed time */
	this->elapsed = timestamp - self->start;
	self->start = 0;
	this->cpu = vtimestamp - self->vstart;
	self->vstart = 0;
	self->code = errno == 0 ? "" : "Err#";
 
	/* print optional fields */
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d ", this->elapsed/1000) : 1;
	OPT_cpu      ? printf("%6d ", this->cpu/1000) : 1;
 
	/* print main data */
	printf("%s(0x%X, 0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
	    self->arg1, (int)arg0, self->code, (int)errno);
	OPT_stack ? ustack()    : 1;
	OPT_stack ? trace("\n") : 1;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/* print 3 arg output - default */
syscall:::return
/self->start/
{
	/* calculate elapsed time */
	this->elapsed = timestamp - self->start;
	self->start = 0;
	this->cpu = vtimestamp - self->vstart;
	self->vstart = 0;
	self->code = errno == 0 ? "" : "Err#";
 
	/* print optional fields */
	OPT_printid  ? printf("%6d/%d:  ", pid, tid) : 1;
	OPT_relative ? printf("%8d ", vtimestamp/1000) : 1;
	OPT_elapsed  ? printf("%7d ", this->elapsed/1000) : 1;
	OPT_cpu      ? printf("%6d ", this->cpu/1000) : 1;
 
	/* print main data */
	printf("%s(0x%X, 0x%X, 0x%X)\t\t = %d %s%d\n", probefunc, self->arg0,
	    self->arg1, self->arg2, (int)arg0, self->code, (int)errno);
	OPT_stack ? ustack()    : 1;
	OPT_stack ? trace("\n") : 1;
	self->arg0 = 0;
	self->arg1 = 0;
	self->arg2 = 0;
}

/* program exited */
proc:::exit
/(OPT_command || OPT_pid) && pid == $target/
{
	exit(0);
}

/* print counts */
dtrace:::END
{
	OPT_counts == 1 ? printf("\n%-32s %16s\n", "CALL", "COUNT") : 1;
	OPT_counts == 1 ? printa("%-32s %@16d\n", @Counts) : 1;
}
'

### Run DTrace
if [ $opt_command -eq 1 ]; then
	/usr/sbin/dtrace -x dynvarsize=$buf -x evaltime=exec -n "$dtrace" \
	    -c "$command" >&2
elif [ $opt_pid -eq 1 ]; then
	/usr/sbin/dtrace -x dynvarsize=$buf -n "$dtrace" -p "$pid" >&2
else
	/usr/sbin/dtrace -x dynvarsize=$buf -n "$dtrace" >&2
fi