;; Machine description for DEC Alpha for GNU C compiler
;; Copyright (C) 1992-2020 Free Software Foundation, Inc.
;; Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; Uses of UNSPEC in this file:
(define_c_enum "unspec" [
UNSPEC_XFLT_COMPARE
UNSPEC_ARG_HOME
UNSPEC_LDGP1
UNSPEC_INSXH
UNSPEC_MSKXH
UNSPEC_CVTQL
UNSPEC_CVTLQ
UNSPEC_LDGP2
UNSPEC_LITERAL
UNSPEC_LITUSE
UNSPEC_SIBCALL
UNSPEC_SYMBOL
;; TLS Support
UNSPEC_TLSGD_CALL
UNSPEC_TLSLDM_CALL
UNSPEC_TLSGD
UNSPEC_TLSLDM
UNSPEC_DTPREL
UNSPEC_TPREL
UNSPEC_TP
;; Builtins
UNSPEC_CMPBGE
UNSPEC_ZAP
UNSPEC_AMASK
UNSPEC_IMPLVER
UNSPEC_PERR
UNSPEC_COPYSIGN
;; Atomic operations
UNSPEC_MB
UNSPEC_ATOMIC
UNSPEC_CMPXCHG
UNSPEC_XCHG
])
;; UNSPEC_VOLATILE:
(define_c_enum "unspecv" [
UNSPECV_IMB
UNSPECV_BLOCKAGE
UNSPECV_SETJMPR ; builtin_setjmp_receiver
UNSPECV_LONGJMP ; builtin_longjmp
UNSPECV_TRAPB
UNSPECV_PSPL ; prologue_stack_probe_loop
UNSPECV_REALIGN
UNSPECV_EHR ; exception_receiver
UNSPECV_MCOUNT
UNSPECV_FORCE_MOV
UNSPECV_LDGP1
UNSPECV_PLDGP2 ; prologue ldgp
UNSPECV_SET_TP
UNSPECV_RPCC
UNSPECV_SETJMPR_ER ; builtin_setjmp_receiver fragment
UNSPECV_LL ; load-locked
UNSPECV_SC ; store-conditional
UNSPECV_CMPXCHG
])
;; On non-BWX targets, CQImode must be handled the similarly to HImode
;; when generating reloads.
(define_mode_iterator RELOAD12 [QI HI CQI])
(define_mode_attr reloadmode [(QI "qi") (HI "hi") (CQI "hi")])
;; Other mode iterators
(define_mode_iterator IMODE [QI HI SI DI])
(define_mode_iterator I12MODE [QI HI])
(define_mode_iterator I124MODE [QI HI SI])
(define_mode_iterator I24MODE [HI SI])
(define_mode_iterator I248MODE [HI SI DI])
(define_mode_iterator I48MODE [SI DI])
(define_mode_attr DWI [(SI "DI") (DI "TI")])
(define_mode_attr modesuffix [(QI "b") (HI "w") (SI "l") (DI "q")
(V8QI "b8") (V4HI "w4")
(SF "%,") (DF "%-")])
(define_mode_attr vecmodesuffix [(QI "b8") (HI "w4")])
(define_code_iterator any_maxmin [smax smin umax umin])
(define_code_attr maxmin [(smax "maxs") (smin "mins")
(umax "maxu") (umin "minu")])
;; Where necessary, the suffixes _le and _be are used to distinguish between
;; little-endian and big-endian patterns.
;;
;; Note that the Unicos/Mk assembler does not support the following
;; opcodes: mov, fmov, nop, fnop, unop.
;; Processor type -- this attribute must exactly match the processor_type
;; enumeration in alpha.h.
(define_attr "tune" "ev4,ev5,ev6"
(const (symbol_ref "((enum attr_tune) alpha_tune)")))
;; Define an insn type attribute. This is used in function unit delay
;; computations, among other purposes. For the most part, we use the names
;; defined in the EV4 documentation, but add a few that we have to know about
;; separately.
(define_attr "type"
"ild,fld,ldsym,ist,fst,ibr,callpal,fbr,jsr,iadd,ilog,shift,icmov,fcmov,
icmp,imul,fadd,fmul,fcpys,fdiv,fsqrt,misc,mvi,ftoi,itof,mb,ld_l,st_c,
multi,none"
(const_string "iadd"))
;; Describe a user's asm statement.
(define_asm_attributes
[(set_attr "type" "multi")])
;; Define the operand size an insn operates on. Used primarily by mul
;; and div operations that have size dependent timings.
(define_attr "opsize" "si,di,udi"
(const_string "di"))
;; The TRAP attribute marks instructions that may generate traps
;; (which are imprecise and may need a trapb if software completion
;; is desired).
(define_attr "trap" "no,yes"
(const_string "no"))
;; The ROUND_SUFFIX attribute marks which instructions require a
;; rounding-mode suffix. The value NONE indicates no suffix,
;; the value NORMAL indicates a suffix controlled by alpha_fprm.
(define_attr "round_suffix" "none,normal,c"
(const_string "none"))
;; The TRAP_SUFFIX attribute marks instructions requiring a trap-mode suffix:
;; NONE no suffix
;; SU accepts only /su (cmpt et al)
;; SUI accepts only /sui (cvtqt and cvtqs)
;; V_SV accepts /v and /sv (cvtql only)
;; V_SV_SVI accepts /v, /sv and /svi (cvttq only)
;; U_SU_SUI accepts /u, /su and /sui (most fp instructions)
;;
;; The actual suffix emitted is controlled by alpha_fptm.
(define_attr "trap_suffix" "none,su,sui,v_sv,v_sv_svi,u_su_sui"
(const_string "none"))
;; The length of an instruction sequence in bytes.
(define_attr "length" ""
(const_int 4))
;; The USEGP attribute marks instructions that have relocations that use
;; the GP.
(define_attr "usegp" "no,yes"
(cond [(eq_attr "type" "ldsym,jsr")
(const_string "yes")
(eq_attr "type" "ild,fld,ist,fst")
(symbol_ref "((enum attr_usegp) alpha_find_lo_sum_using_gp (insn))")
]
(const_string "no")))
;; The CANNOT_COPY attribute marks instructions with relocations that
;; cannot easily be duplicated. This includes insns with gpdisp relocs
;; since they have to stay in 1-1 correspondence with one another. This
;; also includes jsr insns, since they must stay in correspondence with
;; the immediately following gpdisp instructions.
(define_attr "cannot_copy" "false,true"
(const_string "false"))
;; Used to control the "enabled" attribute on a per-instruction basis.
;; For convenience, conflate ABI issues re loading of addresses with
;; an "isa".
(define_attr "isa" "base,bwx,max,fix,cix,vms,ner,er"
(const_string "base"))
(define_attr "enabled" ""
(cond [(eq_attr "isa" "bwx") (symbol_ref "TARGET_BWX")
(eq_attr "isa" "max") (symbol_ref "TARGET_MAX")
(eq_attr "isa" "fix") (symbol_ref "TARGET_FIX")
(eq_attr "isa" "cix") (symbol_ref "TARGET_CIX")
(eq_attr "isa" "vms") (symbol_ref "TARGET_ABI_OPEN_VMS")
(eq_attr "isa" "ner") (symbol_ref "!TARGET_EXPLICIT_RELOCS")
(eq_attr "isa" "er") (symbol_ref "TARGET_EXPLICIT_RELOCS")
]
(const_int 1)))
;; Include scheduling descriptions.
(include "ev4.md")
(include "ev5.md")
(include "ev6.md")
;; Operand and operator predicates and constraints
(include "predicates.md")
(include "constraints.md")
;; First define the arithmetic insns. Note that the 32-bit forms also
;; sign-extend.
;; Handle 32-64 bit extension from memory to a floating point register
;; specially, since this occurs frequently in int->double conversions.
;;
;; Note that while we must retain the =f case in the insn for reload's
;; benefit, it should be eliminated after reload, so we should never emit
;; code for that case. But we don't reject the possibility.
(define_expand "extendsidi2"
[(set (match_operand:DI 0 "register_operand")
(sign_extend:DI (match_operand:SI 1 "nonimmediate_operand")))])
(define_insn "*cvtlq"
[(set (match_operand:DI 0 "register_operand" "=f")
(unspec:DI [(match_operand:SF 1 "reg_or_0_operand" "fG")]
UNSPEC_CVTLQ))]
""
"cvtlq %1,%0"
[(set_attr "type" "fadd")])
(define_insn "*extendsidi2_1"
[(set (match_operand:DI 0 "register_operand" "=r,r,!*f")
(sign_extend:DI
(match_operand:SI 1 "nonimmediate_operand" "r,m,m")))]
""
"@
addl $31,%1,%0
ldl %0,%1
lds %0,%1\;cvtlq %0,%0"
[(set_attr "type" "iadd,ild,fld")
(set_attr "length" "*,*,8")])
(define_split
[(set (match_operand:DI 0 "hard_fp_register_operand")
(sign_extend:DI (match_operand:SI 1 "memory_operand")))]
"reload_completed"
[(set (match_dup 2) (match_dup 1))
(set (match_dup 0) (unspec:DI [(match_dup 2)] UNSPEC_CVTLQ))]
{
operands[1] = adjust_address (operands[1], SFmode, 0);
operands[2] = gen_rtx_REG (SFmode, REGNO (operands[0]));
})
;; Optimize sign-extension of SImode loads. This shows up in the wake of
;; reload when converting fp->int.
(define_peephole2
[(set (match_operand:SI 0 "hard_int_register_operand")
(match_operand:SI 1 "memory_operand"))
(set (match_operand:DI 2 "hard_int_register_operand")
(sign_extend:DI (match_dup 0)))]
"true_regnum (operands[0]) == true_regnum (operands[2])
|| peep2_reg_dead_p (2, operands[0])"
[(set (match_dup 2)
(sign_extend:DI (match_dup 1)))])
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(plus:SI (match_operand:SI 1 "reg_or_0_operand" "%rJ,rJ,rJ,rJ")
(match_operand:SI 2 "add_operand" "rI,O,K,L")))]
""
"@
addl %r1,%2,%0
subl %r1,%n2,%0
lda %0,%2(%r1)
ldah %0,%h2(%r1)")
(define_split
[(set (match_operand:SI 0 "register_operand")
(plus:SI (match_operand:SI 1 "register_operand")
(match_operand:SI 2 "const_int_operand")))]
"! add_operand (operands[2], SImode)"
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
{
HOST_WIDE_INT val = INTVAL (operands[2]);
HOST_WIDE_INT low = (val & 0xffff) - 2 * (val & 0x8000);
HOST_WIDE_INT rest = val - low;
operands[3] = GEN_INT (rest);
operands[4] = GEN_INT (low);
})
(define_insn "*addsi_se"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(sign_extend:DI
(plus:SI (match_operand:SI 1 "reg_or_0_operand" "%rJ,rJ")
(match_operand:SI 2 "sext_add_operand" "rI,O"))))]
""
"@
addl %r1,%2,%0
subl %r1,%n2,%0")
(define_insn "*addsi_se2"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(sign_extend:DI
(subreg:SI (plus:DI (match_operand:DI 1 "reg_or_0_operand" "%rJ,rJ")
(match_operand:DI 2 "sext_add_operand" "rI,O"))
0)))]
""
"@
addl %r1,%2,%0
subl %r1,%n2,%0")
(define_split
[(set (match_operand:DI 0 "register_operand")
(sign_extend:DI
(plus:SI (match_operand:SI 1 "reg_not_elim_operand")
(match_operand:SI 2 "const_int_operand"))))
(clobber (match_operand:SI 3 "reg_not_elim_operand"))]
"! sext_add_operand (operands[2], SImode) && INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) % 4 == 0"
[(set (match_dup 3) (match_dup 4))
(set (match_dup 0) (sign_extend:DI (plus:SI (ashift:SI (match_dup 3)
(match_dup 5))
(match_dup 1))))]
{
HOST_WIDE_INT val = INTVAL (operands[2]) / 4;
int mult = 4;
if (val % 2 == 0)
val /= 2, mult = 8;
operands[4] = GEN_INT (val);
operands[5] = GEN_INT (exact_log2 (mult));
})
(define_split
[(set (match_operand:DI 0 "register_operand")
(sign_extend:DI
(plus:SI (match_operator:SI 1 "comparison_operator"
[(match_operand 2)
(match_operand 3)])
(match_operand:SI 4 "add_operand"))))
(clobber (match_operand:DI 5 "register_operand"))]
""
[(set (match_dup 5) (match_dup 6))
(set (match_dup 0) (sign_extend:DI (plus:SI (match_dup 7) (match_dup 4))))]
{
operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[1]), DImode,
operands[2], operands[3]);
operands[7] = gen_lowpart (SImode, operands[5]);
})
(define_expand "adddi3"
[(set (match_operand:DI 0 "register_operand")
(plus:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "add_operand")))])
(define_insn "*adddi_er_lo16_dtp"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "dtp16_symbolic_operand")))]
"HAVE_AS_TLS"
"lda %0,%2(%1)\t\t!dtprel")
(define_insn "*adddi_er_hi32_dtp"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "r")
(high:DI (match_operand:DI 2 "dtp32_symbolic_operand"))))]
"HAVE_AS_TLS"
"ldah %0,%2(%1)\t\t!dtprelhi")
(define_insn "*adddi_er_lo32_dtp"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "dtp32_symbolic_operand")))]
"HAVE_AS_TLS"
"lda %0,%2(%1)\t\t!dtprello")
(define_insn "*adddi_er_lo16_tp"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "tp16_symbolic_operand")))]
"HAVE_AS_TLS"
"lda %0,%2(%1)\t\t!tprel")
(define_insn "*adddi_er_hi32_tp"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "r")
(high:DI (match_operand:DI 2 "tp32_symbolic_operand"))))]
"HAVE_AS_TLS"
"ldah %0,%2(%1)\t\t!tprelhi")
(define_insn "*adddi_er_lo32_tp"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "tp32_symbolic_operand")))]
"HAVE_AS_TLS"
"lda %0,%2(%1)\t\t!tprello")
(define_insn "*adddi_er_high_l"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "r")
(high:DI (match_operand:DI 2 "local_symbolic_operand"))))]
"TARGET_EXPLICIT_RELOCS && reload_completed"
"ldah %0,%2(%1)\t\t!gprelhigh"
[(set_attr "usegp" "yes")])
(define_split
[(set (match_operand:DI 0 "register_operand")
(high:DI (match_operand:DI 1 "local_symbolic_operand")))]
"TARGET_EXPLICIT_RELOCS && reload_completed"
[(set (match_dup 0)
(plus:DI (match_dup 2) (high:DI (match_dup 1))))]
"operands[2] = pic_offset_table_rtx;")
;; We used to expend quite a lot of effort choosing addq/subq/lda.
;; With complications like
;;
;; The NT stack unwind code can't handle a subq to adjust the stack
;; (that's a bug, but not one we can do anything about). As of NT4.0 SP3,
;; the exception handling code will loop if a subq is used and an
;; exception occurs.
;;
;; The 19980616 change to emit prologues as RTL also confused some
;; versions of GDB, which also interprets prologues. This has been
;; fixed as of GDB 4.18, but it does not harm to unconditionally
;; use lda here.
;;
;; and the fact that the three insns schedule exactly the same, it's
;; just not worth the effort.
(define_insn "*adddi_internal"
[(set (match_operand:DI 0 "register_operand" "=r,r,r")
(plus:DI (match_operand:DI 1 "register_operand" "%r,r,r")
(match_operand:DI 2 "add_operand" "r,K,L")))]
""
"@
addq %1,%2,%0
lda %0,%2(%1)
ldah %0,%h2(%1)")
;; ??? Allow large constants when basing off the frame pointer or some
;; virtual register that may eliminate to the frame pointer. This is
;; done because register elimination offsets will change the hi/lo split,
;; and if we split before reload, we will require additional instructions.
(define_insn "*adddi_fp_hack"
[(set (match_operand:DI 0 "register_operand" "=r,r,r")
(plus:DI (match_operand:DI 1 "reg_no_subreg_operand" "r,r,r")
(match_operand:DI 2 "const_int_operand" "K,L,n")))]
"NONSTRICT_REG_OK_FP_BASE_P (operands[1])
&& INTVAL (operands[2]) >= 0
/* This is the largest constant an lda+ldah pair can add, minus
an upper bound on the displacement between SP and AP during
register elimination. See INITIAL_ELIMINATION_OFFSET. */
&& INTVAL (operands[2])
< (0x7fff8000
- FIRST_PSEUDO_REGISTER * UNITS_PER_WORD
- ALPHA_ROUND(crtl->outgoing_args_size)
- (ALPHA_ROUND (get_frame_size ()
+ max_reg_num () * UNITS_PER_WORD
+ crtl->args.pretend_args_size)
- crtl->args.pretend_args_size))"
"@
lda %0,%2(%1)
ldah %0,%h2(%1)
#")
;; Don't do this if we are adjusting SP since we don't want to do it
;; in two steps. Don't split FP sources for the reason listed above.
(define_split
[(set (match_operand:DI 0 "register_operand")
(plus:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "const_int_operand")))]
"! add_operand (operands[2], DImode)
&& operands[0] != stack_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& operands[1] != arg_pointer_rtx"
[(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 4)))]
{
HOST_WIDE_INT val = INTVAL (operands[2]);
HOST_WIDE_INT low = (val & 0xffff) - 2 * (val & 0x8000);
HOST_WIDE_INT rest = val - low;
rtx rest_rtx = GEN_INT (rest);
operands[4] = GEN_INT (low);
if (satisfies_constraint_L (rest_rtx))
operands[3] = rest_rtx;
else if (can_create_pseudo_p ())
{
operands[3] = gen_reg_rtx (DImode);
emit_move_insn (operands[3], operands[2]);
emit_insn (gen_adddi3 (operands[0], operands[1], operands[3]));
DONE;
}
else
FAIL;
})
(define_insn "*sadd<modesuffix>"
[(set (match_operand:I48MODE 0 "register_operand" "=r,r")
(plus:I48MODE
(ashift:I48MODE (match_operand:I48MODE 1 "reg_not_elim_operand" "r,r")
(match_operand:I48MODE 2 "const23_operand" "I,I"))
(match_operand:I48MODE 3 "sext_add_operand" "rI,O")))]
""
"@
s%P2add<modesuffix> %1,%3,%0
s%P2sub<modesuffix> %1,%n3,%0")
(define_insn "*saddl_se"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(sign_extend:DI
(plus:SI
(ashift:SI (match_operand:SI 1 "reg_not_elim_operand" "r,r")
(match_operand:SI 2 "const23_operand" "I,I"))
(match_operand:SI 3 "sext_add_operand" "rI,O"))))]
""
"@
s%P2addl %1,%3,%0
s%P2subl %1,%n3,%0")
(define_split
[(set (match_operand:DI 0 "register_operand")
(sign_extend:DI
(plus:SI (ashift:SI (match_operator:SI 1 "comparison_operator"
[(match_operand 2)
(match_operand 3)])
(match_operand:SI 4 "const23_operand"))
(match_operand:SI 5 "sext_add_operand"))))
(clobber (match_operand:DI 6 "reg_not_elim_operand"))]
""
[(set (match_dup 6) (match_dup 7))
(set (match_dup 0)
(sign_extend:DI (plus:SI (ashift:SI (match_dup 8) (match_dup 4))
(match_dup 5))))]
{
operands[7] = gen_rtx_fmt_ee (GET_CODE (operands[1]), DImode,
operands[2], operands[3]);
operands[8] = gen_lowpart (SImode, operands[6]);
})
(define_insn "addv<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r,r")
(plus:I48MODE (match_operand:I48MODE 1 "reg_or_0_operand" "%rJ,rJ")
(match_operand:I48MODE 2 "sext_add_operand" "rI,O")))
(trap_if (ne (plus:<DWI> (sign_extend:<DWI> (match_dup 1))
(sign_extend:<DWI> (match_dup 2)))
(sign_extend:<DWI> (plus:I48MODE (match_dup 1)
(match_dup 2))))
(const_int 0))]
""
"@
add<modesuffix>v %r1,%2,%0
sub<modesuffix>v %r1,%n2,%0")
(define_insn "neg<mode>2"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(neg:I48MODE (match_operand:I48MODE 1 "reg_or_8bit_operand" "rI")))]
""
"sub<modesuffix> $31,%1,%0")
(define_insn "*negsi_se"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (neg:SI
(match_operand:SI 1 "reg_or_8bit_operand" "rI"))))]
""
"subl $31,%1,%0")
(define_insn "negv<mode>2"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(neg:I48MODE (match_operand:I48MODE 1 "register_operand" "r")))
(trap_if (ne (neg:<DWI> (sign_extend:<DWI> (match_dup 1)))
(sign_extend:<DWI> (neg:I48MODE (match_dup 1))))
(const_int 0))]
""
"sub<modesuffix>v $31,%1,%0")
(define_insn "sub<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(minus:I48MODE (match_operand:I48MODE 1 "reg_or_0_operand" "rJ")
(match_operand:I48MODE 2 "reg_or_8bit_operand" "rI")))]
""
"sub<modesuffix> %r1,%2,%0")
(define_insn "*subsi_se"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(minus:SI (match_operand:SI 1 "reg_or_0_operand" "rJ")
(match_operand:SI 2 "reg_or_8bit_operand" "rI"))))]
""
"subl %r1,%2,%0")
(define_insn "*subsi_se2"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(subreg:SI (minus:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(match_operand:DI 2 "reg_or_8bit_operand" "rI"))
0)))]
""
"subl %r1,%2,%0")
(define_insn "*ssub<modesuffix>"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(minus:I48MODE
(ashift:I48MODE (match_operand:I48MODE 1 "reg_not_elim_operand" "r")
(match_operand:I48MODE 2 "const23_operand" "I"))
(match_operand:I48MODE 3 "reg_or_8bit_operand" "rI")))]
""
"s%P2sub<modesuffix> %1,%3,%0")
(define_insn "*ssubl_se"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(minus:SI
(ashift:SI (match_operand:SI 1 "reg_not_elim_operand" "r")
(match_operand:SI 2 "const23_operand" "I"))
(match_operand:SI 3 "reg_or_8bit_operand" "rI"))))]
""
"s%P2subl %1,%3,%0")
(define_insn "subv<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(minus:I48MODE (match_operand:I48MODE 1 "reg_or_0_operand" "rJ")
(match_operand:I48MODE 2 "reg_or_8bit_operand" "rI")))
(trap_if (ne (minus:<DWI> (sign_extend:<DWI> (match_dup 1))
(sign_extend:<DWI> (match_dup 2)))
(sign_extend:<DWI> (minus:I48MODE (match_dup 1)
(match_dup 2))))
(const_int 0))]
""
"sub<modesuffix>v %r1,%2,%0")
(define_insn "mul<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(mult:I48MODE (match_operand:I48MODE 1 "reg_or_0_operand" "%rJ")
(match_operand:I48MODE 2 "reg_or_8bit_operand" "rI")))]
""
"mul<modesuffix> %r1,%2,%0"
[(set_attr "type" "imul")
(set_attr "opsize" "<mode>")])
(define_insn "*mulsi_se"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(mult:SI (match_operand:SI 1 "reg_or_0_operand" "%rJ")
(match_operand:SI 2 "reg_or_8bit_operand" "rI"))))]
""
"mull %r1,%2,%0"
[(set_attr "type" "imul")
(set_attr "opsize" "si")])
(define_insn "mulv<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(mult:I48MODE (match_operand:I48MODE 1 "reg_or_0_operand" "%rJ")
(match_operand:I48MODE 2 "reg_or_8bit_operand" "rI")))
(trap_if (ne (mult:<DWI> (sign_extend:<DWI> (match_dup 1))
(sign_extend:<DWI> (match_dup 2)))
(sign_extend:<DWI> (mult:I48MODE (match_dup 1)
(match_dup 2))))
(const_int 0))]
""
"mul<modesuffix>v %r1,%2,%0"
[(set_attr "type" "imul")
(set_attr "opsize" "<mode>")])
(define_expand "umuldi3_highpart"
[(set (match_operand:DI 0 "register_operand")
(truncate:DI
(lshiftrt:TI
(mult:TI (zero_extend:TI
(match_operand:DI 1 "register_operand"))
(match_operand:DI 2 "reg_or_8bit_operand"))
(const_int 64))))]
""
{
if (REG_P (operands[2]))
operands[2] = gen_rtx_ZERO_EXTEND (TImode, operands[2]);
})
(define_insn "*umuldi3_highpart_reg"
[(set (match_operand:DI 0 "register_operand" "=r")
(truncate:DI
(lshiftrt:TI
(mult:TI (zero_extend:TI
(match_operand:DI 1 "register_operand" "r"))
(zero_extend:TI
(match_operand:DI 2 "register_operand" "r")))
(const_int 64))))]
""
"umulh %1,%2,%0"
[(set_attr "type" "imul")
(set_attr "opsize" "udi")])
(define_insn "*umuldi3_highpart_const"
[(set (match_operand:DI 0 "register_operand" "=r")
(truncate:DI
(lshiftrt:TI
(mult:TI (zero_extend:TI (match_operand:DI 1 "register_operand" "r"))
(match_operand:TI 2 "cint8_operand" "I"))
(const_int 64))))]
""
"umulh %1,%2,%0"
[(set_attr "type" "imul")
(set_attr "opsize" "udi")])
(define_expand "umulditi3"
[(set (match_operand:TI 0 "register_operand")
(mult:TI
(zero_extend:TI (match_operand:DI 1 "reg_no_subreg_operand"))
(zero_extend:TI (match_operand:DI 2 "reg_no_subreg_operand"))))]
""
{
rtx l = gen_reg_rtx (DImode), h = gen_reg_rtx (DImode);
emit_insn (gen_muldi3 (l, operands[1], operands[2]));
emit_insn (gen_umuldi3_highpart (h, operands[1], operands[2]));
emit_move_insn (gen_lowpart (DImode, operands[0]), l);
emit_move_insn (gen_highpart (DImode, operands[0]), h);
DONE;
})
;; The divide and remainder operations take their inputs from r24 and
;; r25, put their output in r27, and clobber r23 and r28 on all systems.
;;
;; ??? Force sign-extension here because some versions of OSF/1 and
;; Interix/NT don't do the right thing if the inputs are not properly
;; sign-extended. But Linux, for instance, does not have this
;; problem. Is it worth the complication here to eliminate the sign
;; extension?
(define_code_iterator any_divmod [div mod udiv umod])
(define_expand "<code>si3"
[(set (match_dup 3)
(sign_extend:DI (match_operand:SI 1 "nonimmediate_operand")))
(set (match_dup 4)
(sign_extend:DI (match_operand:SI 2 "nonimmediate_operand")))
(parallel [(set (match_dup 5)
(sign_extend:DI
(any_divmod:SI (match_dup 3) (match_dup 4))))
(clobber (reg:DI 23))
(clobber (reg:DI 28))])
(set (match_operand:SI 0 "nonimmediate_operand")
(subreg:SI (match_dup 5) 0))]
"TARGET_ABI_OSF"
{
operands[3] = gen_reg_rtx (DImode);
operands[4] = gen_reg_rtx (DImode);
operands[5] = gen_reg_rtx (DImode);
})
(define_expand "<code>di3"
[(parallel [(set (match_operand:DI 0 "register_operand")
(any_divmod:DI
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "register_operand")))
(clobber (reg:DI 23))
(clobber (reg:DI 28))])]
"TARGET_ABI_OSF")
;; Lengths of 8 for ldq $t12,__divq($gp); jsr $t9,($t12),__divq as
;; expanded by the assembler.
(define_insn_and_split "*divmodsi_internal_er"
[(set (match_operand:DI 0 "register_operand" "=c")
(sign_extend:DI (match_operator:SI 3 "divmod_operator"
[(match_operand:DI 1 "register_operand" "a")
(match_operand:DI 2 "register_operand" "b")])))
(clobber (reg:DI 23))
(clobber (reg:DI 28))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"#"
"&& reload_completed"
[(parallel [(set (match_dup 0)
(sign_extend:DI (match_dup 3)))
(use (match_dup 0))
(use (match_dup 4))
(clobber (reg:DI 23))
(clobber (reg:DI 28))])]
{
const char *str;
switch (GET_CODE (operands[3]))
{
case DIV:
str = "__divl";
break;
case UDIV:
str = "__divlu";
break;
case MOD:
str = "__reml";
break;
case UMOD:
str = "__remlu";
break;
default:
gcc_unreachable ();
}
operands[4] = GEN_INT (alpha_next_sequence_number++);
emit_insn (gen_movdi_er_high_g (operands[0], pic_offset_table_rtx,
gen_rtx_SYMBOL_REF (DImode, str),
operands[4]));
}
[(set_attr "type" "jsr")
(set_attr "length" "8")])
(define_insn "*divmodsi_internal_er_1"
[(set (match_operand:DI 0 "register_operand" "=c")
(sign_extend:DI (match_operator:SI 3 "divmod_operator"
[(match_operand:DI 1 "register_operand" "a")
(match_operand:DI 2 "register_operand" "b")])))
(use (match_operand:DI 4 "register_operand" "c"))
(use (match_operand 5 "const_int_operand"))
(clobber (reg:DI 23))
(clobber (reg:DI 28))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"jsr $23,($27),__%E3%j5"
[(set_attr "type" "jsr")
(set_attr "length" "4")])
(define_insn "*divmodsi_internal"
[(set (match_operand:DI 0 "register_operand" "=c")
(sign_extend:DI (match_operator:SI 3 "divmod_operator"
[(match_operand:DI 1 "register_operand" "a")
(match_operand:DI 2 "register_operand" "b")])))
(clobber (reg:DI 23))
(clobber (reg:DI 28))]
"TARGET_ABI_OSF"
"%E3 %1,%2,%0"
[(set_attr "type" "jsr")
(set_attr "length" "8")])
(define_insn_and_split "*divmoddi_internal_er"
[(set (match_operand:DI 0 "register_operand" "=c")
(match_operator:DI 3 "divmod_operator"
[(match_operand:DI 1 "register_operand" "a")
(match_operand:DI 2 "register_operand" "b")]))
(clobber (reg:DI 23))
(clobber (reg:DI 28))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"#"
"&& reload_completed"
[(parallel [(set (match_dup 0) (match_dup 3))
(use (match_dup 0))
(use (match_dup 4))
(clobber (reg:DI 23))
(clobber (reg:DI 28))])]
{
const char *str;
switch (GET_CODE (operands[3]))
{
case DIV:
str = "__divq";
break;
case UDIV:
str = "__divqu";
break;
case MOD:
str = "__remq";
break;
case UMOD:
str = "__remqu";
break;
default:
gcc_unreachable ();
}
operands[4] = GEN_INT (alpha_next_sequence_number++);
emit_insn (gen_movdi_er_high_g (operands[0], pic_offset_table_rtx,
gen_rtx_SYMBOL_REF (DImode, str),
operands[4]));
}
[(set_attr "type" "jsr")
(set_attr "length" "8")])
(define_insn "*divmoddi_internal_er_1"
[(set (match_operand:DI 0 "register_operand" "=c")
(match_operator:DI 3 "divmod_operator"
[(match_operand:DI 1 "register_operand" "a")
(match_operand:DI 2 "register_operand" "b")]))
(use (match_operand:DI 4 "register_operand" "c"))
(use (match_operand 5 "const_int_operand"))
(clobber (reg:DI 23))
(clobber (reg:DI 28))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"jsr $23,($27),__%E3%j5"
[(set_attr "type" "jsr")
(set_attr "length" "4")])
(define_insn "*divmoddi_internal"
[(set (match_operand:DI 0 "register_operand" "=c")
(match_operator:DI 3 "divmod_operator"
[(match_operand:DI 1 "register_operand" "a")
(match_operand:DI 2 "register_operand" "b")]))
(clobber (reg:DI 23))
(clobber (reg:DI 28))]
"TARGET_ABI_OSF"
"%E3 %1,%2,%0"
[(set_attr "type" "jsr")
(set_attr "length" "8")])
;; Next are the basic logical operations. We only expose the DImode operations
;; to the rtl expanders, but SImode versions exist for combine as well as for
;; the atomic operation splitters.
(define_insn "*andsi_internal"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(and:SI (match_operand:SI 1 "reg_or_0_operand" "%rJ,rJ,rJ")
(match_operand:SI 2 "and_operand" "rI,N,M")))]
""
"@
and %r1,%2,%0
bic %r1,%N2,%0
zapnot %r1,%m2,%0"
[(set_attr "type" "ilog,ilog,shift")])
(define_insn "anddi3"
[(set (match_operand:DI 0 "register_operand" "=r,r,r")
(and:DI (match_operand:DI 1 "reg_or_0_operand" "%rJ,rJ,rJ")
(match_operand:DI 2 "and_operand" "rI,N,M")))]
""
"@
and %r1,%2,%0
bic %r1,%N2,%0
zapnot %r1,%m2,%0"
[(set_attr "type" "ilog,ilog,shift")])
;; There are times when we can split an AND into two AND insns. This occurs
;; when we can first clear any bytes and then clear anything else. For
;; example "I & 0xffff07" is "(I & 0xffffff) & 0xffffffffffffff07".
;; Only do this when running on 64-bit host since the computations are
;; too messy otherwise.
(define_split
[(set (match_operand:DI 0 "register_operand")
(and:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "const_int_operand")))]
"! and_operand (operands[2], DImode)"
[(set (match_dup 0) (and:DI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (and:DI (match_dup 0) (match_dup 4)))]
{
unsigned HOST_WIDE_INT mask1 = INTVAL (operands[2]);
unsigned HOST_WIDE_INT mask2 = mask1;
int i;
/* For each byte that isn't all zeros, make it all ones. */
for (i = 0; i < 64; i += 8)
if ((mask1 & ((HOST_WIDE_INT) 0xff << i)) != 0)
mask1 |= (HOST_WIDE_INT) 0xff << i;
/* Now turn on any bits we've just turned off. */
mask2 |= ~ mask1;
operands[3] = GEN_INT (mask1);
operands[4] = GEN_INT (mask2);
})
(define_insn "zero_extendqi<mode>2"
[(set (match_operand:I248MODE 0 "register_operand" "=r,r")
(zero_extend:I248MODE
(match_operand:QI 1 "reg_or_bwx_memory_operand" "r,m")))]
""
"@
and %1,0xff,%0
ldbu %0,%1"
[(set_attr "type" "ilog,ild")
(set_attr "isa" "*,bwx")])
(define_insn "zero_extendhi<mode>2"
[(set (match_operand:I48MODE 0 "register_operand" "=r,r")
(zero_extend:I48MODE
(match_operand:HI 1 "reg_or_bwx_memory_operand" "r,m")))]
""
"@
zapnot %1,3,%0
ldwu %0,%1"
[(set_attr "type" "shift,ild")
(set_attr "isa" "*,bwx")])
(define_insn "zero_extendsidi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (match_operand:SI 1 "register_operand" "r")))]
""
"zapnot %1,15,%0"
[(set_attr "type" "shift")])
(define_insn "andnot<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(and:I48MODE
(not:I48MODE (match_operand:I48MODE 1 "reg_or_8bit_operand" "rI"))
(match_operand:I48MODE 2 "reg_or_0_operand" "rJ")))]
""
"bic %r2,%1,%0"
[(set_attr "type" "ilog")])
(define_insn "*iorsi_internal"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(ior:SI (match_operand:SI 1 "reg_or_0_operand" "%rJ,rJ")
(match_operand:SI 2 "or_operand" "rI,N")))]
""
"@
bis %r1,%2,%0
ornot %r1,%N2,%0"
[(set_attr "type" "ilog")])
(define_insn "iordi3"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(ior:DI (match_operand:DI 1 "reg_or_0_operand" "%rJ,rJ")
(match_operand:DI 2 "or_operand" "rI,N")))]
""
"@
bis %r1,%2,%0
ornot %r1,%N2,%0"
[(set_attr "type" "ilog")])
(define_insn "*one_cmplsi_internal"
[(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_operand:SI 1 "reg_or_8bit_operand" "rI")))]
""
"ornot $31,%1,%0"
[(set_attr "type" "ilog")])
(define_insn "one_cmpldi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(not:DI (match_operand:DI 1 "reg_or_8bit_operand" "rI")))]
""
"ornot $31,%1,%0"
[(set_attr "type" "ilog")])
(define_insn "*iornot<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(ior:I48MODE
(not:I48MODE (match_operand:I48MODE 1 "reg_or_8bit_operand" "rI"))
(match_operand:I48MODE 2 "reg_or_0_operand" "rJ")))]
""
"ornot %r2,%1,%0"
[(set_attr "type" "ilog")])
(define_insn "*xorsi_internal"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(xor:SI (match_operand:SI 1 "reg_or_0_operand" "%rJ,rJ")
(match_operand:SI 2 "or_operand" "rI,N")))]
""
"@
xor %r1,%2,%0
eqv %r1,%N2,%0"
[(set_attr "type" "ilog")])
(define_insn "xordi3"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(xor:DI (match_operand:DI 1 "reg_or_0_operand" "%rJ,rJ")
(match_operand:DI 2 "or_operand" "rI,N")))]
""
"@
xor %r1,%2,%0
eqv %r1,%N2,%0"
[(set_attr "type" "ilog")])
(define_insn "*xornot<mode>3"
[(set (match_operand:I48MODE 0 "register_operand" "=r")
(not:I48MODE (xor:I48MODE
(match_operand:I48MODE 1 "register_operand" "%rJ")
(match_operand:I48MODE 2 "register_operand" "rI"))))]
""
"eqv %r1,%2,%0"
[(set_attr "type" "ilog")])
;; Handle FFS and related insns iff we support CIX.
(define_expand "ffsdi2"
[(set (match_dup 2)
(ctz:DI (match_operand:DI 1 "register_operand")))
(set (match_dup 3)
(plus:DI (match_dup 2) (const_int 1)))
(set (match_operand:DI 0 "register_operand")
(if_then_else:DI (eq (match_dup 1) (const_int 0))
(const_int 0) (match_dup 3)))]
"TARGET_CIX"
{
operands[2] = gen_reg_rtx (DImode);
operands[3] = gen_reg_rtx (DImode);
})
(define_insn "clzdi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(clz:DI (match_operand:DI 1 "register_operand" "r")))]
"TARGET_CIX"
"ctlz %1,%0"
[(set_attr "type" "mvi")])
(define_insn "ctzdi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(ctz:DI (match_operand:DI 1 "register_operand" "r")))]
"TARGET_CIX"
"cttz %1,%0"
[(set_attr "type" "mvi")])
(define_insn "popcountdi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(popcount:DI (match_operand:DI 1 "register_operand" "r")))]
"TARGET_CIX"
"ctpop %1,%0"
[(set_attr "type" "mvi")])
(define_expand "bswapsi2"
[(set (match_operand:SI 0 "register_operand")
(bswap:SI (match_operand:SI 1 "register_operand")))]
"!optimize_size"
{
rtx t0, t1;
t0 = gen_reg_rtx (DImode);
t1 = gen_reg_rtx (DImode);
emit_insn (gen_inslh (t0, gen_lowpart (DImode, operands[1]), GEN_INT (7)));
emit_insn (gen_inswl_const (t1, gen_lowpart (HImode, operands[1]),
GEN_INT (24)));
emit_insn (gen_iordi3 (t1, t0, t1));
emit_insn (gen_lshrdi3 (t0, t1, GEN_INT (16)));
emit_insn (gen_anddi3 (t1, t1, alpha_expand_zap_mask (0x5)));
emit_insn (gen_anddi3 (t0, t0, alpha_expand_zap_mask (0xa)));
emit_insn (gen_addsi3 (operands[0], gen_lowpart (SImode, t0),
gen_lowpart (SImode, t1)));
DONE;
})
(define_expand "bswapdi2"
[(set (match_operand:DI 0 "register_operand")
(bswap:DI (match_operand:DI 1 "register_operand")))]
"!optimize_size"
{
rtx t0, t1;
t0 = gen_reg_rtx (DImode);
t1 = gen_reg_rtx (DImode);
/* This method of shifting and masking is not specific to Alpha, but
is only profitable on Alpha because of our handy byte zap insn. */
emit_insn (gen_lshrdi3 (t0, operands[1], GEN_INT (32)));
emit_insn (gen_ashldi3 (t1, operands[1], GEN_INT (32)));
emit_insn (gen_iordi3 (t1, t0, t1));
emit_insn (gen_lshrdi3 (t0, t1, GEN_INT (16)));
emit_insn (gen_ashldi3 (t1, t1, GEN_INT (16)));
emit_insn (gen_anddi3 (t0, t0, alpha_expand_zap_mask (0xcc)));
emit_insn (gen_anddi3 (t1, t1, alpha_expand_zap_mask (0x33)));
emit_insn (gen_iordi3 (t1, t0, t1));
emit_insn (gen_lshrdi3 (t0, t1, GEN_INT (8)));
emit_insn (gen_ashldi3 (t1, t1, GEN_INT (8)));
emit_insn (gen_anddi3 (t0, t0, alpha_expand_zap_mask (0xaa)));
emit_insn (gen_anddi3 (t1, t1, alpha_expand_zap_mask (0x55)));
emit_insn (gen_iordi3 (operands[0], t0, t1));
DONE;
})
;; Next come the shifts and the various extract and insert operations.
(define_insn "ashldi3"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(ashift:DI (match_operand:DI 1 "reg_or_0_operand" "rJ,rJ")
(match_operand:DI 2 "reg_or_6bit_operand" "P,rS")))]
""
{
switch (which_alternative)
{
case 0:
if (operands[2] == const1_rtx)
return "addq %r1,%r1,%0";
else
return "s%P2addq %r1,0,%0";
case 1:
return "sll %r1,%2,%0";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "iadd,shift")])
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_operand:SI 1 "reg_or_0_operand" "rJ")
(match_operand:SI 2 "const123_operand" "P")))]
""
{
if (operands[2] == const1_rtx)
return "addl %r1,%r1,%0";
else
return "s%P2addl %r1,0,%0";
}
[(set_attr "type" "iadd")])
(define_insn "*ashlsi_se"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(ashift:SI (match_operand:SI 1 "reg_or_0_operand" "rJ")
(match_operand:SI 2 "const123_operand" "P"))))]
""
{
if (operands[2] == const1_rtx)
return "addl %r1,%r1,%0";
else
return "s%P2addl %r1,0,%0";
}
[(set_attr "type" "iadd")])
(define_insn "lshrdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(lshiftrt:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(match_operand:DI 2 "reg_or_6bit_operand" "rS")))]
""
"srl %r1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "ashrdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashiftrt:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(match_operand:DI 2 "reg_or_6bit_operand" "rS")))]
""
"sra %r1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "extendqi<mode>2"
[(set (match_operand:I24MODE 0 "register_operand" "=r")
(sign_extend:I24MODE
(match_operand:QI 1 "register_operand" "r")))]
"TARGET_BWX"
"sextb %1,%0"
[(set_attr "type" "shift")])
(define_expand "extendqidi2"
[(set (match_operand:DI 0 "register_operand")
(sign_extend:DI (match_operand:QI 1 "general_operand")))]
""
{
if (TARGET_BWX)
operands[1] = force_reg (QImode, operands[1]);
else
{
rtx x, t1, t2, i56;
if (unaligned_memory_operand (operands[1], QImode))
{
x = gen_unaligned_extendqidi (operands[0], XEXP (operands[1], 0));
alpha_set_memflags (x, operands[1]);
emit_insn (x);
DONE;
}
t1 = gen_reg_rtx (DImode);
t2 = gen_reg_rtx (DImode);
i56 = GEN_INT (56);
x = gen_lowpart (DImode, force_reg (QImode, operands[1]));
emit_move_insn (t1, x);
emit_insn (gen_ashldi3 (t2, t1, i56));
emit_insn (gen_ashrdi3 (operands[0], t2, i56));
DONE;
}
})
(define_insn "*extendqidi2_bwx"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:QI 1 "register_operand" "r")))]
"TARGET_BWX"
"sextb %1,%0"
[(set_attr "type" "shift")])
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "register_operand" "r")))]
"TARGET_BWX"
"sextw %1,%0"
[(set_attr "type" "shift")])
(define_expand "extendhidi2"
[(set (match_operand:DI 0 "register_operand")
(sign_extend:DI (match_operand:HI 1 "general_operand")))]
""
{
if (TARGET_BWX)
operands[1] = force_reg (HImode, operands[1]);
else
{
rtx x, t1, t2, i48;
if (unaligned_memory_operand (operands[1], HImode))
{
x = gen_unaligned_extendhidi (operands[0], XEXP (operands[1], 0));
alpha_set_memflags (x, operands[1]);
emit_insn (x);
DONE;
}
t1 = gen_reg_rtx (DImode);
t2 = gen_reg_rtx (DImode);
i48 = GEN_INT (48);
x = gen_lowpart (DImode, force_reg (HImode, operands[1]));
emit_move_insn (t1, x);
emit_insn (gen_ashldi3 (t2, t1, i48));
emit_insn (gen_ashrdi3 (operands[0], t2, i48));
DONE;
}
})
(define_insn "*extendhidi2_bwx"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:HI 1 "register_operand" "r")))]
"TARGET_BWX"
"sextw %1,%0"
[(set_attr "type" "shift")])
;; Here's how we sign extend an unaligned byte and halfword. Doing this
;; as a pattern saves one instruction. The code is similar to that for
;; the unaligned loads (see below).
;;
;; Operand 1 is the address, operand 0 is the result.
(define_expand "unaligned_extendqidi"
[(set (match_dup 3)
(mem:DI (and:DI (match_operand:DI 1 "address_operand") (const_int -8))))
(set (match_dup 4)
(ashift:DI (match_dup 3)
(minus:DI (const_int 64)
(ashift:DI
(and:DI (match_dup 2) (const_int 7))
(const_int 3)))))
(set (match_operand:QI 0 "register_operand")
(ashiftrt:DI (match_dup 4) (const_int 56)))]
""
{
operands[0] = gen_lowpart (DImode, operands[0]);
operands[2] = get_unaligned_offset (operands[1], 1);
operands[3] = gen_reg_rtx (DImode);
operands[4] = gen_reg_rtx (DImode);
})
(define_expand "unaligned_extendhidi"
[(set (match_dup 3)
(mem:DI (and:DI (match_operand:DI 1 "address_operand") (const_int -8))))
(set (match_dup 4)
(ashift:DI (match_dup 3)
(minus:DI (const_int 64)
(ashift:DI
(and:DI (match_dup 2) (const_int 7))
(const_int 3)))))
(set (match_operand:HI 0 "register_operand")
(ashiftrt:DI (match_dup 4) (const_int 48)))]
""
{
operands[0] = gen_lowpart (DImode, operands[0]);
operands[2] = get_unaligned_offset (operands[1], 2);
operands[3] = gen_reg_rtx (DImode);
operands[4] = gen_reg_rtx (DImode);
})
(define_insn "*extxl_const"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extract:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(match_operand:DI 2 "mode_width_operand" "n")
(match_operand:DI 3 "mul8_operand" "I")))]
""
"ext%M2l %r1,%s3,%0"
[(set_attr "type" "shift")])
(define_insn "extxl"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extract:DI
(match_operand:DI 1 "reg_or_0_operand" "rJ")
(match_operand:DI 2 "mode_width_operand" "n")
(ashift:DI (match_operand:DI 3 "reg_or_8bit_operand" "rI")
(const_int 3))))]
""
"ext%M2l %r1,%3,%0"
[(set_attr "type" "shift")])
;; Combine has some strange notion of preserving existing undefined behavior
;; in shifts larger than a word size. So capture these patterns that it
;; should have turned into zero_extracts.
(define_insn "*extxl_1"
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (lshiftrt:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(ashift:DI (match_operand:DI 2 "reg_or_8bit_operand" "rI")
(const_int 3)))
(match_operand:DI 3 "mode_mask_operand" "n")))]
""
"ext%U3l %1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "*extql_2"
[(set (match_operand:DI 0 "register_operand" "=r")
(lshiftrt:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(ashift:DI (match_operand:DI 2 "reg_or_8bit_operand" "rI")
(const_int 3))))]
""
"extql %1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "extqh"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI
(match_operand:DI 1 "reg_or_0_operand" "rJ")
(minus:DI (const_int 64)
(ashift:DI
(and:DI
(match_operand:DI 2 "reg_or_8bit_operand" "rI")
(const_int 7))
(const_int 3)))))]
""
"extqh %r1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "extwh"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI
(and:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(const_int 65535))
(minus:DI (const_int 64)
(ashift:DI
(and:DI
(match_operand:DI 2 "reg_or_8bit_operand" "rI")
(const_int 7))
(const_int 3)))))]
""
"extwh %r1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "extlh"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI
(and:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(const_int 2147483647))
(minus:DI (const_int 64)
(ashift:DI
(and:DI
(match_operand:DI 2 "reg_or_8bit_operand" "rI")
(const_int 7))
(const_int 3)))))]
""
"extlh %r1,%2,%0"
[(set_attr "type" "shift")])
;; This converts an extXl into an extXh with an appropriate adjustment
;; to the address calculation.
;;(define_split
;; [(set (match_operand:DI 0 "register_operand")
;; (ashift:DI (zero_extract:DI (match_operand:DI 1 "register_operand")
;; (match_operand:DI 2 "mode_width_operand")
;; (ashift:DI (match_operand:DI 3)
;; (const_int 3)))
;; (match_operand:DI 4 "const_int_operand")))
;; (clobber (match_operand:DI 5 "register_operand"))]
;; "INTVAL (operands[4]) == 64 - INTVAL (operands[2])"
;; [(set (match_dup 5) (match_dup 6))
;; (set (match_dup 0)
;; (ashift:DI (zero_extract:DI (match_dup 1) (match_dup 2)
;; (ashift:DI (plus:DI (match_dup 5)
;; (match_dup 7))
;; (const_int 3)))
;; (match_dup 4)))]
;; "
;;{
;; operands[6] = plus_constant (DImode, operands[3],
;; INTVAL (operands[2]) / BITS_PER_UNIT);
;; operands[7] = GEN_INT (- INTVAL (operands[2]) / BITS_PER_UNIT);
;;}")
(define_insn "ins<modesuffix>l_const"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI (zero_extend:DI
(match_operand:I124MODE 1 "register_operand" "r"))
(match_operand:DI 2 "mul8_operand" "I")))]
""
"ins<modesuffix>l %1,%s2,%0"
[(set_attr "type" "shift")])
(define_insn "ins<modesuffix>l"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI (zero_extend:DI
(match_operand:I124MODE 1 "register_operand" "r"))
(ashift:DI (match_operand:DI 2 "reg_or_8bit_operand" "rI")
(const_int 3))))]
""
"ins<modesuffix>l %1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "insql"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI (match_operand:DI 1 "register_operand" "r")
(ashift:DI (match_operand:DI 2 "reg_or_8bit_operand" "rI")
(const_int 3))))]
""
"insql %1,%2,%0"
[(set_attr "type" "shift")])
;; Combine has this sometimes habit of moving the and outside of the
;; shift, making life more interesting.
(define_insn "*insxl"
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (ashift:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "mul8_operand" "I"))
(match_operand:DI 3 "const_int_operand" "i")))]
"((unsigned HOST_WIDE_INT) 0xff << INTVAL (operands[2])
== (unsigned HOST_WIDE_INT) INTVAL (operands[3]))
|| ((unsigned HOST_WIDE_INT) 0xffff << INTVAL (operands[2])
== (unsigned HOST_WIDE_INT) INTVAL (operands[3]))
|| ((unsigned HOST_WIDE_INT) 0xffffffff << INTVAL (operands[2])
== (unsigned HOST_WIDE_INT) INTVAL (operands[3]))"
{
if ((unsigned HOST_WIDE_INT) 0xff << INTVAL (operands[2])
== (unsigned HOST_WIDE_INT) INTVAL (operands[3]))
return "insbl %1,%s2,%0";
if ((unsigned HOST_WIDE_INT) 0xffff << INTVAL (operands[2])
== (unsigned HOST_WIDE_INT) INTVAL (operands[3]))
return "inswl %1,%s2,%0";
if ((unsigned HOST_WIDE_INT) 0xffffffff << INTVAL (operands[2])
== (unsigned HOST_WIDE_INT) INTVAL (operands[3]))
return "insll %1,%s2,%0";
gcc_unreachable ();
}
[(set_attr "type" "shift")])
;; We do not include the insXh insns because they are complex to express
;; and it does not appear that we would ever want to generate them.
;;
;; Since we need them for block moves, though, cop out and use unspec.
(define_insn "insxh"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "mode_width_operand" "n")
(match_operand:DI 3 "reg_or_8bit_operand" "rI")]
UNSPEC_INSXH))]
""
"ins%M2h %1,%3,%0"
[(set_attr "type" "shift")])
(define_insn "mskxl"
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (not:DI (ashift:DI
(match_operand:DI 2 "mode_mask_operand" "n")
(ashift:DI
(match_operand:DI 3 "reg_or_8bit_operand" "rI")
(const_int 3))))
(match_operand:DI 1 "reg_or_0_operand" "rJ")))]
""
"msk%U2l %r1,%3,%0"
[(set_attr "type" "shift")])
;; We do not include the mskXh insns because it does not appear we would
;; ever generate one.
;;
;; Again, we do for block moves and we use unspec again.
(define_insn "mskxh"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "mode_width_operand" "n")
(match_operand:DI 3 "reg_or_8bit_operand" "rI")]
UNSPEC_MSKXH))]
""
"msk%M2h %1,%3,%0"
[(set_attr "type" "shift")])
;; Prefer AND + NE over LSHIFTRT + AND.
(define_insn_and_split "*ze_and_ne"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extract:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(const_int 1)
(match_operand 2 "const_int_operand" "I")))]
"(unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 8"
"#"
"(unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 8"
[(set (match_dup 0)
(and:DI (match_dup 1) (match_dup 3)))
(set (match_dup 0)
(ne:DI (match_dup 0) (const_int 0)))]
"operands[3] = GEN_INT (1 << INTVAL (operands[2]));")
;; Floating-point operations. All the double-precision insns can extend
;; from single, so indicate that. The exception are the ones that simply
;; play with the sign bits; it's not clear what to do there.
(define_mode_iterator FMODE [SF DF])
(define_mode_attr opmode [(SF "si") (DF "di")])
(define_insn "abs<mode>2"
[(set (match_operand:FMODE 0 "register_operand" "=f")
(abs:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "fG")))]
"TARGET_FP"
"cpys $f31,%R1,%0"
[(set_attr "type" "fcpys")])
(define_insn "*nabs<mode>2"
[(set (match_operand:FMODE 0 "register_operand" "=f")
(neg:FMODE
(abs:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "fG"))))]
"TARGET_FP"
"cpysn $f31,%R1,%0"
[(set_attr "type" "fadd")])
(define_expand "abstf2"
[(parallel [(set (match_operand:TF 0 "register_operand")
(abs:TF (match_operand:TF 1 "reg_or_0_operand")))
(use (match_dup 2))])]
"TARGET_HAS_XFLOATING_LIBS"
"operands[2] = force_reg (DImode, GEN_INT (HOST_WIDE_INT_1U << 63));")
(define_insn_and_split "*abstf_internal"
[(set (match_operand:TF 0 "register_operand" "=r")
(abs:TF (match_operand:TF 1 "reg_or_0_operand" "rG")))
(use (match_operand:DI 2 "register_operand" "r"))]
"TARGET_HAS_XFLOATING_LIBS"
"#"
"&& reload_completed"
[(const_int 0)]
"alpha_split_tfmode_frobsign (operands, gen_andnotdi3); DONE;")
(define_insn "neg<mode>2"
[(set (match_operand:FMODE 0 "register_operand" "=f")
(neg:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "fG")))]
"TARGET_FP"
"cpysn %R1,%R1,%0"
[(set_attr "type" "fadd")])
(define_expand "negtf2"
[(parallel [(set (match_operand:TF 0 "register_operand")
(neg:TF (match_operand:TF 1 "reg_or_0_operand")))
(use (match_dup 2))])]
"TARGET_HAS_XFLOATING_LIBS"
"operands[2] = force_reg (DImode, GEN_INT (HOST_WIDE_INT_1U << 63));")
(define_insn_and_split "*negtf_internal"
[(set (match_operand:TF 0 "register_operand" "=r")
(neg:TF (match_operand:TF 1 "reg_or_0_operand" "rG")))
(use (match_operand:DI 2 "register_operand" "r"))]
"TARGET_HAS_XFLOATING_LIBS"
"#"
"&& reload_completed"
[(const_int 0)]
"alpha_split_tfmode_frobsign (operands, gen_xordi3); DONE;")
(define_insn "copysign<mode>3"
[(set (match_operand:FMODE 0 "register_operand" "=f")
(unspec:FMODE [(match_operand:FMODE 1 "reg_or_0_operand" "fG")
(match_operand:FMODE 2 "reg_or_0_operand" "fG")]
UNSPEC_COPYSIGN))]
"TARGET_FP"
"cpys %R2,%R1,%0"
[(set_attr "type" "fadd")])
(define_insn "*ncopysign<mode>3"
[(set (match_operand:FMODE 0 "register_operand" "=f")
(neg:FMODE
(unspec:FMODE [(match_operand:FMODE 1 "reg_or_0_operand" "fG")
(match_operand:FMODE 2 "reg_or_0_operand" "fG")]
UNSPEC_COPYSIGN)))]
"TARGET_FP"
"cpysn %R2,%R1,%0"
[(set_attr "type" "fadd")])
(define_insn "add<mode>3"
[(set (match_operand:FMODE 0 "register_operand" "=f,&f")
(plus:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "%fG,fG")
(match_operand:FMODE 2 "reg_or_0_operand" "fG,fG")))]
"TARGET_FP"
"add<modesuffix>%/ %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_insn "*adddf_ext1"
[(set (match_operand:DF 0 "register_operand" "=f")
(plus:DF (float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "fG"))
(match_operand:DF 2 "reg_or_0_operand" "fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"add%-%/ %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_insn "*adddf_ext2"
[(set (match_operand:DF 0 "register_operand" "=f")
(plus:DF (float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "%fG"))
(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"add%-%/ %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_expand "addtf3"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))
(use (match_operand:TF 2 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_arith (PLUS, operands); DONE;")
(define_insn "sub<mode>3"
[(set (match_operand:FMODE 0 "register_operand" "=f,&f")
(minus:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "fG,fG")
(match_operand:FMODE 2 "reg_or_0_operand" "fG,fG")))]
"TARGET_FP"
"sub<modesuffix>%/ %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_insn "*subdf_ext1"
[(set (match_operand:DF 0 "register_operand" "=f")
(minus:DF (float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "fG"))
(match_operand:DF 2 "reg_or_0_operand" "fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"sub%-%/ %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_insn "*subdf_ext2"
[(set (match_operand:DF 0 "register_operand" "=f")
(minus:DF (match_operand:DF 1 "reg_or_0_operand" "fG")
(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"sub%-%/ %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_insn "*subdf_ext3"
[(set (match_operand:DF 0 "register_operand" "=f")
(minus:DF (float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "fG"))
(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"sub%-%/ %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_expand "subtf3"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))
(use (match_operand:TF 2 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_arith (MINUS, operands); DONE;")
(define_insn "mul<mode>3"
[(set (match_operand:FMODE 0 "register_operand" "=f,&f")
(mult:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "%fG,fG")
(match_operand:FMODE 2 "reg_or_0_operand" "fG,fG")))]
"TARGET_FP"
"mul<modesuffix>%/ %R1,%R2,%0"
[(set_attr "type" "fmul")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_insn "*muldf_ext1"
[(set (match_operand:DF 0 "register_operand" "=f")
(mult:DF (float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "fG"))
(match_operand:DF 2 "reg_or_0_operand" "fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"mul%-%/ %R1,%R2,%0"
[(set_attr "type" "fmul")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_insn "*muldf_ext2"
[(set (match_operand:DF 0 "register_operand" "=f")
(mult:DF (float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "%fG"))
(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"mul%-%/ %R1,%R2,%0"
[(set_attr "type" "fmul")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_expand "multf3"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))
(use (match_operand:TF 2 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_arith (MULT, operands); DONE;")
(define_insn "div<mode>3"
[(set (match_operand:FMODE 0 "register_operand" "=f,&f")
(div:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "fG,fG")
(match_operand:FMODE 2 "reg_or_0_operand" "fG,fG")))]
"TARGET_FP"
"div<modesuffix>%/ %R1,%R2,%0"
[(set_attr "type" "fdiv")
(set_attr "opsize" "<opmode>")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_insn "*divdf_ext1"
[(set (match_operand:DF 0 "register_operand" "=f")
(div:DF (float_extend:DF (match_operand:SF 1 "reg_or_0_operand" "fG"))
(match_operand:DF 2 "reg_or_0_operand" "fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"div%-%/ %R1,%R2,%0"
[(set_attr "type" "fdiv")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_insn "*divdf_ext2"
[(set (match_operand:DF 0 "register_operand" "=f")
(div:DF (match_operand:DF 1 "reg_or_0_operand" "fG")
(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"div%-%/ %R1,%R2,%0"
[(set_attr "type" "fdiv")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_insn "*divdf_ext3"
[(set (match_operand:DF 0 "register_operand" "=f")
(div:DF (float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "fG"))
(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"div%-%/ %R1,%R2,%0"
[(set_attr "type" "fdiv")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")])
(define_expand "divtf3"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))
(use (match_operand:TF 2 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_arith (DIV, operands); DONE;")
(define_insn "sqrt<mode>2"
[(set (match_operand:FMODE 0 "register_operand" "=f,&f")
(sqrt:FMODE (match_operand:FMODE 1 "reg_or_0_operand" "fG,fG")))]
"TARGET_FP && TARGET_FIX"
"sqrt<modesuffix>%/ %R1,%0"
[(set_attr "type" "fsqrt")
(set_attr "opsize" "<opmode>")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
;; Define conversion operators between DFmode and SImode, using the cvtql
;; instruction. To allow combine et al to do useful things, we keep the
;; operation as a unit until after reload, at which point we split the
;; instructions.
;;
;; Note that we (attempt to) only consider this optimization when the
;; ultimate destination is memory. If we will be doing further integer
;; processing, it is cheaper to do the truncation in the int regs.
(define_insn "*cvtql"
[(set (match_operand:SF 0 "register_operand" "=f")
(unspec:SF [(match_operand:DI 1 "reg_or_0_operand" "fG")]
UNSPEC_CVTQL))]
"TARGET_FP"
"cvtql%/ %R1,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "trap_suffix" "v_sv")])
(define_insn_and_split "*fix_truncdfsi_ieee"
[(set (match_operand:SI 0 "memory_operand" "=m")
(subreg:SI
(match_operator:DI 4 "fix_operator"
[(match_operand:DF 1 "reg_or_0_operand" "fG")]) 0))
(clobber (match_scratch:DI 2 "=&f"))
(clobber (match_scratch:SF 3 "=&f"))]
"TARGET_FP && alpha_fptm >= ALPHA_FPTM_SU"
"#"
"&& reload_completed"
[(set (match_dup 2) (match_op_dup 4 [(match_dup 1)]))
(set (match_dup 3) (unspec:SF [(match_dup 2)] UNSPEC_CVTQL))
(set (match_dup 5) (match_dup 3))]
{
operands[5] = adjust_address (operands[0], SFmode, 0);
}
[(set_attr "type" "fadd")
(set_attr "trap" "yes")])
(define_insn_and_split "*fix_truncdfsi_internal"
[(set (match_operand:SI 0 "memory_operand" "=m")
(subreg:SI
(match_operator:DI 3 "fix_operator"
[(match_operand:DF 1 "reg_or_0_operand" "fG")]) 0))
(clobber (match_scratch:DI 2 "=f"))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"#"
"&& reload_completed"
[(set (match_dup 2) (match_op_dup 3 [(match_dup 1)]))
(set (match_dup 4) (unspec:SF [(match_dup 2)] UNSPEC_CVTQL))
(set (match_dup 5) (match_dup 4))]
{
operands[4] = gen_rtx_REG (SFmode, REGNO (operands[2]));
operands[5] = adjust_address (operands[0], SFmode, 0);
}
[(set_attr "type" "fadd")
(set_attr "trap" "yes")])
(define_insn "*fix_truncdfdi2"
[(set (match_operand:DI 0 "reg_no_subreg_operand" "=f,&f")
(match_operator:DI 2 "fix_operator"
[(match_operand:DF 1 "reg_or_0_operand" "fG,fG")]))]
"TARGET_FP"
"cvt%-q%/ %R1,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "c")
(set_attr "trap_suffix" "v_sv_svi")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_expand "fix_truncdfdi2"
[(set (match_operand:DI 0 "reg_no_subreg_operand")
(fix:DI (match_operand:DF 1 "reg_or_0_operand")))]
"TARGET_FP")
(define_expand "fixuns_truncdfdi2"
[(set (match_operand:DI 0 "reg_no_subreg_operand")
(unsigned_fix:DI (match_operand:DF 1 "reg_or_0_operand")))]
"TARGET_FP")
;; Likewise between SFmode and SImode.
(define_insn_and_split "*fix_truncsfsi_ieee"
[(set (match_operand:SI 0 "memory_operand" "=m")
(subreg:SI
(match_operator:DI 4 "fix_operator"
[(float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "fG"))]) 0))
(clobber (match_scratch:DI 2 "=&f"))
(clobber (match_scratch:SF 3 "=&f"))]
"TARGET_FP && alpha_fptm >= ALPHA_FPTM_SU"
"#"
"&& reload_completed"
[(set (match_dup 2) (match_op_dup 4 [(float_extend:DF (match_dup 1))]))
(set (match_dup 3) (unspec:SF [(match_dup 2)] UNSPEC_CVTQL))
(set (match_dup 5) (match_dup 3))]
"operands[5] = adjust_address (operands[0], SFmode, 0);"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")])
(define_insn_and_split "*fix_truncsfsi_internal"
[(set (match_operand:SI 0 "memory_operand" "=m")
(subreg:SI
(match_operator:DI 3 "fix_operator"
[(float_extend:DF
(match_operand:SF 1 "reg_or_0_operand" "fG"))]) 0))
(clobber (match_scratch:DI 2 "=f"))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"#"
"&& reload_completed"
[(set (match_dup 2) (match_op_dup 3 [(float_extend:DF (match_dup 1))]))
(set (match_dup 4) (unspec:SF [(match_dup 2)] UNSPEC_CVTQL))
(set (match_dup 5) (match_dup 4))]
{
operands[4] = gen_rtx_REG (SFmode, REGNO (operands[2]));
operands[5] = adjust_address (operands[0], SFmode, 0);
}
[(set_attr "type" "fadd")
(set_attr "trap" "yes")])
(define_insn "*fix_truncsfdi2"
[(set (match_operand:DI 0 "reg_no_subreg_operand" "=f,&f")
(match_operator:DI 2 "fix_operator"
[(float_extend:DF (match_operand:SF 1 "reg_or_0_operand" "fG,fG"))]))]
"TARGET_FP"
"cvt%-q%/ %R1,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "c")
(set_attr "trap_suffix" "v_sv_svi")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_expand "fix_truncsfdi2"
[(set (match_operand:DI 0 "reg_no_subreg_operand")
(fix:DI (float_extend:DF (match_operand:SF 1 "reg_or_0_operand"))))]
"TARGET_FP")
(define_expand "fixuns_truncsfdi2"
[(set (match_operand:DI 0 "reg_no_subreg_operand")
(unsigned_fix:DI
(float_extend:DF (match_operand:SF 1 "reg_or_0_operand"))))]
"TARGET_FP")
(define_expand "fix_trunctfdi2"
[(use (match_operand:DI 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_cvt (FIX, operands); DONE;")
(define_expand "fixuns_trunctfdi2"
[(use (match_operand:DI 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_cvt (UNSIGNED_FIX, operands); DONE;")
(define_insn "floatdisf2"
[(set (match_operand:SF 0 "register_operand" "=f,&f")
(float:SF (match_operand:DI 1 "reg_no_subreg_operand" "f,f")))]
"TARGET_FP"
"cvtq%,%/ %1,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_insn_and_split "*floatsisf2_ieee"
[(set (match_operand:SF 0 "register_operand" "=&f")
(float:SF (match_operand:SI 1 "memory_operand" "m")))
(clobber (match_scratch:DI 2 "=&f"))
(clobber (match_scratch:SF 3 "=&f"))]
"TARGET_FP && alpha_fptm >= ALPHA_FPTM_SU"
"#"
"&& reload_completed"
[(set (match_dup 3) (match_dup 1))
(set (match_dup 2) (unspec:DI [(match_dup 3)] UNSPEC_CVTLQ))
(set (match_dup 0) (float:SF (match_dup 2)))]
"operands[1] = adjust_address (operands[1], SFmode, 0);")
(define_insn_and_split "*floatsisf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(float:SF (match_operand:SI 1 "memory_operand" "m")))]
"TARGET_FP"
"#"
"&& reload_completed"
[(set (match_dup 0) (match_dup 1))
(set (match_dup 2) (unspec:DI [(match_dup 0)] UNSPEC_CVTLQ))
(set (match_dup 0) (float:SF (match_dup 2)))]
{
operands[1] = adjust_address (operands[1], SFmode, 0);
operands[2] = gen_rtx_REG (DImode, REGNO (operands[0]));
})
(define_insn "floatdidf2"
[(set (match_operand:DF 0 "register_operand" "=f,&f")
(float:DF (match_operand:DI 1 "reg_no_subreg_operand" "f,f")))]
"TARGET_FP"
"cvtq%-%/ %1,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_insn_and_split "*floatsidf2_ieee"
[(set (match_operand:DF 0 "register_operand" "=&f")
(float:DF (match_operand:SI 1 "memory_operand" "m")))
(clobber (match_scratch:DI 2 "=&f"))
(clobber (match_scratch:SF 3 "=&f"))]
"TARGET_FP && alpha_fptm >= ALPHA_FPTM_SU"
"#"
"&& reload_completed"
[(set (match_dup 3) (match_dup 1))
(set (match_dup 2) (unspec:DI [(match_dup 3)] UNSPEC_CVTLQ))
(set (match_dup 0) (float:DF (match_dup 2)))]
"operands[1] = adjust_address (operands[1], SFmode, 0);")
(define_insn_and_split "*floatsidf2"
[(set (match_operand:DF 0 "register_operand" "=f")
(float:DF (match_operand:SI 1 "memory_operand" "m")))]
"TARGET_FP"
"#"
"&& reload_completed"
[(set (match_dup 3) (match_dup 1))
(set (match_dup 2) (unspec:DI [(match_dup 3)] UNSPEC_CVTLQ))
(set (match_dup 0) (float:DF (match_dup 2)))]
{
operands[1] = adjust_address (operands[1], SFmode, 0);
operands[2] = gen_rtx_REG (DImode, REGNO (operands[0]));
operands[3] = gen_rtx_REG (SFmode, REGNO (operands[0]));
})
(define_expand "floatditf2"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:DI 1 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_cvt (FLOAT, operands); DONE;")
(define_expand "floatunsdisf2"
[(use (match_operand:SF 0 "register_operand"))
(use (match_operand:DI 1 "register_operand"))]
"TARGET_FP"
"alpha_emit_floatuns (operands); DONE;")
(define_expand "floatunsdidf2"
[(use (match_operand:DF 0 "register_operand"))
(use (match_operand:DI 1 "register_operand"))]
"TARGET_FP"
"alpha_emit_floatuns (operands); DONE;")
(define_expand "floatunsditf2"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:DI 1 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_cvt (UNSIGNED_FLOAT, operands); DONE;")
(define_expand "extendsfdf2"
[(set (match_operand:DF 0 "register_operand")
(float_extend:DF (match_operand:SF 1 "nonimmediate_operand")))]
"TARGET_FP"
{
if (alpha_fptm >= ALPHA_FPTM_SU)
operands[1] = force_reg (SFmode, operands[1]);
})
;; The Unicos/Mk assembler doesn't support cvtst, but we've already
;; asserted that alpha_fptm == ALPHA_FPTM_N.
(define_insn "*extendsfdf2_ieee"
[(set (match_operand:DF 0 "register_operand" "=&f")
(float_extend:DF (match_operand:SF 1 "register_operand" "f")))]
"TARGET_FP && alpha_fptm >= ALPHA_FPTM_SU"
"cvtsts %1,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")])
(define_insn "*extendsfdf2_internal"
[(set (match_operand:DF 0 "register_operand" "=f,f,m")
(float_extend:DF (match_operand:SF 1 "nonimmediate_operand" "f,m,f")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"@
cpys %1,%1,%0
ld%, %0,%1
st%- %1,%0"
[(set_attr "type" "fcpys,fld,fst")])
;; Use register_operand for operand 1 to prevent compress_float_constant
;; from doing something silly. When optimizing we'll put things back
;; together anyway.
(define_expand "extendsftf2"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:SF 1 "register_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
{
rtx tmp = gen_reg_rtx (DFmode);
emit_insn (gen_extendsfdf2 (tmp, operands[1]));
emit_insn (gen_extenddftf2 (operands[0], tmp));
DONE;
})
(define_expand "extenddftf2"
[(use (match_operand:TF 0 "register_operand"))
(use (match_operand:DF 1 "register_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_cvt (FLOAT_EXTEND, operands); DONE;")
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "register_operand" "=f,&f")
(float_truncate:SF (match_operand:DF 1 "reg_or_0_operand" "fG,fG")))]
"TARGET_FP"
"cvt%-%,%/ %R1,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "round_suffix" "normal")
(set_attr "trap_suffix" "u_su_sui")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_expand "trunctfdf2"
[(use (match_operand:DF 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_xfloating_cvt (FLOAT_TRUNCATE, operands); DONE;")
(define_expand "trunctfsf2"
[(use (match_operand:SF 0 "register_operand"))
(use (match_operand:TF 1 "general_operand"))]
"TARGET_FP && TARGET_HAS_XFLOATING_LIBS"
{
rtx tmpf, sticky, arg, lo, hi;
tmpf = gen_reg_rtx (DFmode);
sticky = gen_reg_rtx (DImode);
arg = copy_to_mode_reg (TFmode, operands[1]);
lo = gen_lowpart (DImode, arg);
hi = gen_highpart (DImode, arg);
/* Convert the low word of the TFmode value into a sticky rounding bit,
then or it into the low bit of the high word. This leaves the sticky
bit at bit 48 of the fraction, which is representable in DFmode,
which prevents rounding error in the final conversion to SFmode. */
emit_insn (gen_rtx_SET (sticky, gen_rtx_NE (DImode, lo, const0_rtx)));
emit_insn (gen_iordi3 (hi, hi, sticky));
emit_insn (gen_trunctfdf2 (tmpf, arg));
emit_insn (gen_truncdfsf2 (operands[0], tmpf));
DONE;
})
;; Next are all the integer comparisons, and conditional moves and branches
;; and some of the related define_expand's and define_split's.
(define_insn "*setcc_internal"
[(set (match_operand 0 "register_operand" "=r")
(match_operator 1 "alpha_comparison_operator"
[(match_operand:DI 2 "register_operand" "r")
(match_operand:DI 3 "reg_or_8bit_operand" "rI")]))]
"GET_MODE_CLASS (GET_MODE (operands[0])) == MODE_INT
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= 8
&& GET_MODE (operands[0]) == GET_MODE (operands[1])"
"cmp%C1 %2,%3,%0"
[(set_attr "type" "icmp")])
;; Yes, we can technically support reg_or_8bit_operand in operand 2,
;; but that's non-canonical rtl and allowing that causes inefficiencies
;; from cse on.
(define_insn "*setcc_swapped_internal"
[(set (match_operand 0 "register_operand" "=r")
(match_operator 1 "alpha_swapped_comparison_operator"
[(match_operand:DI 2 "register_operand" "r")
(match_operand:DI 3 "reg_or_0_operand" "rJ")]))]
"GET_MODE_CLASS (GET_MODE (operands[0])) == MODE_INT
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= 8
&& GET_MODE (operands[0]) == GET_MODE (operands[1])"
"cmp%c1 %r3,%2,%0"
[(set_attr "type" "icmp")])
;; Use match_operator rather than ne directly so that we can match
;; multiple integer modes.
(define_insn "*setne_internal"
[(set (match_operand 0 "register_operand" "=r")
(match_operator 1 "signed_comparison_operator"
[(match_operand:DI 2 "register_operand" "r")
(const_int 0)]))]
"GET_MODE_CLASS (GET_MODE (operands[0])) == MODE_INT
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= 8
&& GET_CODE (operands[1]) == NE
&& GET_MODE (operands[0]) == GET_MODE (operands[1])"
"cmpult $31,%2,%0"
[(set_attr "type" "icmp")])
;; The mode folding trick can't be used with const_int operands, since
;; reload needs to know the proper mode.
;;
;; Use add_operand instead of the more seemingly natural reg_or_8bit_operand
;; in order to create more pairs of constants. As long as we're allowing
;; two constants at the same time, and will have to reload one of them...
(define_insn "*mov<mode>cc_internal"
[(set (match_operand:IMODE 0 "register_operand" "=r,r,r,r")
(if_then_else:IMODE
(match_operator 2 "signed_comparison_operator"
[(match_operand:DI 3 "reg_or_0_operand" "rJ,rJ,J,J")
(match_operand:DI 4 "reg_or_0_operand" "J,J,rJ,rJ")])
(match_operand:IMODE 1 "add_operand" "rI,0,rI,0")
(match_operand:IMODE 5 "add_operand" "0,rI,0,rI")))]
"(operands[3] == const0_rtx) ^ (operands[4] == const0_rtx)"
"@
cmov%C2 %r3,%1,%0
cmov%D2 %r3,%5,%0
cmov%c2 %r4,%1,%0
cmov%d2 %r4,%5,%0"
[(set_attr "type" "icmov")])
(define_insn "*mov<mode>cc_lbc"
[(set (match_operand:IMODE 0 "register_operand" "=r,r")
(if_then_else:IMODE
(eq (zero_extract:DI (match_operand:DI 2 "reg_or_0_operand" "rJ,rJ")
(const_int 1)
(const_int 0))
(const_int 0))
(match_operand:IMODE 1 "reg_or_8bit_operand" "rI,0")
(match_operand:IMODE 3 "reg_or_8bit_operand" "0,rI")))]
""
"@
cmovlbc %r2,%1,%0
cmovlbs %r2,%3,%0"
[(set_attr "type" "icmov")])
(define_insn "*mov<mode>cc_lbs"
[(set (match_operand:IMODE 0 "register_operand" "=r,r")
(if_then_else:IMODE
(ne (zero_extract:DI (match_operand:DI 2 "reg_or_0_operand" "rJ,rJ")
(const_int 1)
(const_int 0))
(const_int 0))
(match_operand:IMODE 1 "reg_or_8bit_operand" "rI,0")
(match_operand:IMODE 3 "reg_or_8bit_operand" "0,rI")))]
""
"@
cmovlbs %r2,%1,%0
cmovlbc %r2,%3,%0"
[(set_attr "type" "icmov")])
;; For ABS, we have two choices, depending on whether the input and output
;; registers are the same or not.
(define_expand "absdi2"
[(set (match_operand:DI 0 "register_operand")
(abs:DI (match_operand:DI 1 "register_operand")))]
""
{
if (rtx_equal_p (operands[0], operands[1]))
emit_insn (gen_absdi2_same (operands[0], gen_reg_rtx (DImode)));
else
emit_insn (gen_absdi2_diff (operands[0], operands[1]));
DONE;
})
(define_expand "absdi2_same"
[(set (match_operand:DI 1 "register_operand")
(neg:DI (match_operand:DI 0 "register_operand")))
(set (match_dup 0)
(if_then_else:DI (ge (match_dup 0) (const_int 0))
(match_dup 0)
(match_dup 1)))])
(define_expand "absdi2_diff"
[(set (match_operand:DI 0 "register_operand")
(neg:DI (match_operand:DI 1 "register_operand")))
(set (match_dup 0)
(if_then_else:DI (lt (match_dup 1) (const_int 0))
(match_dup 0)
(match_dup 1)))])
(define_split
[(set (match_operand:DI 0 "register_operand")
(abs:DI (match_dup 0)))
(clobber (match_operand:DI 1 "register_operand"))]
""
[(set (match_dup 1) (neg:DI (match_dup 0)))
(set (match_dup 0) (if_then_else:DI (ge (match_dup 0) (const_int 0))
(match_dup 0) (match_dup 1)))])
(define_split
[(set (match_operand:DI 0 "register_operand")
(abs:DI (match_operand:DI 1 "register_operand")))]
"! rtx_equal_p (operands[0], operands[1])"
[(set (match_dup 0) (neg:DI (match_dup 1)))
(set (match_dup 0) (if_then_else:DI (lt (match_dup 1) (const_int 0))
(match_dup 0) (match_dup 1)))])
(define_split
[(set (match_operand:DI 0 "register_operand")
(neg:DI (abs:DI (match_dup 0))))
(clobber (match_operand:DI 1 "register_operand"))]
""
[(set (match_dup 1) (neg:DI (match_dup 0)))
(set (match_dup 0) (if_then_else:DI (le (match_dup 0) (const_int 0))
(match_dup 0) (match_dup 1)))])
(define_split
[(set (match_operand:DI 0 "register_operand")
(neg:DI (abs:DI (match_operand:DI 1 "register_operand"))))]
"! rtx_equal_p (operands[0], operands[1])"
[(set (match_dup 0) (neg:DI (match_dup 1)))
(set (match_dup 0) (if_then_else:DI (gt (match_dup 1) (const_int 0))
(match_dup 0) (match_dup 1)))])
(define_insn "<code><mode>3"
[(set (match_operand:I12MODE 0 "register_operand" "=r")
(any_maxmin:I12MODE
(match_operand:I12MODE 1 "reg_or_0_operand" "%rJ")
(match_operand:I12MODE 2 "reg_or_8bit_operand" "rI")))]
"TARGET_MAX"
"<maxmin><vecmodesuffix> %r1,%2,%0"
[(set_attr "type" "mvi")])
(define_expand "smaxdi3"
[(set (match_dup 3)
(le:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(set (match_operand:DI 0 "register_operand")
(if_then_else:DI (eq (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))]
""
"operands[3] = gen_reg_rtx (DImode);")
(define_split
[(set (match_operand:DI 0 "register_operand")
(smax:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(clobber (match_operand:DI 3 "register_operand"))]
"operands[2] != const0_rtx"
[(set (match_dup 3) (le:DI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (if_then_else:DI (eq (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))])
(define_insn "*smax_const0"
[(set (match_operand:DI 0 "register_operand" "=r")
(smax:DI (match_operand:DI 1 "register_operand" "0")
(const_int 0)))]
""
"cmovlt %0,0,%0"
[(set_attr "type" "icmov")])
(define_expand "smindi3"
[(set (match_dup 3)
(lt:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(set (match_operand:DI 0 "register_operand")
(if_then_else:DI (ne (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))]
""
"operands[3] = gen_reg_rtx (DImode);")
(define_split
[(set (match_operand:DI 0 "register_operand")
(smin:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(clobber (match_operand:DI 3 "register_operand"))]
"operands[2] != const0_rtx"
[(set (match_dup 3) (lt:DI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (if_then_else:DI (ne (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))])
(define_insn "*smin_const0"
[(set (match_operand:DI 0 "register_operand" "=r")
(smin:DI (match_operand:DI 1 "register_operand" "0")
(const_int 0)))]
""
"cmovgt %0,0,%0"
[(set_attr "type" "icmov")])
(define_expand "umaxdi3"
[(set (match_dup 3)
(leu:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(set (match_operand:DI 0 "register_operand")
(if_then_else:DI (eq (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))]
""
"operands[3] = gen_reg_rtx (DImode);")
(define_split
[(set (match_operand:DI 0 "register_operand")
(umax:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(clobber (match_operand:DI 3 "register_operand"))]
"operands[2] != const0_rtx"
[(set (match_dup 3) (leu:DI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (if_then_else:DI (eq (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))])
(define_expand "umindi3"
[(set (match_dup 3)
(ltu:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(set (match_operand:DI 0 "register_operand")
(if_then_else:DI (ne (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))]
""
"operands[3] = gen_reg_rtx (DImode);")
(define_split
[(set (match_operand:DI 0 "register_operand")
(umin:DI (match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")))
(clobber (match_operand:DI 3 "register_operand"))]
"operands[2] != const0_rtx"
[(set (match_dup 3) (ltu:DI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (if_then_else:DI (ne (match_dup 3) (const_int 0))
(match_dup 1) (match_dup 2)))])
(define_insn "*bcc_normal"
[(set (pc)
(if_then_else
(match_operator 1 "signed_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand" "rJ")
(const_int 0)])
(label_ref (match_operand 0))
(pc)))]
""
"b%C1 %r2,%0"
[(set_attr "type" "ibr")])
(define_insn "*bcc_reverse"
[(set (pc)
(if_then_else
(match_operator 1 "signed_comparison_operator"
[(match_operand:DI 2 "register_operand" "r")
(const_int 0)])
(pc)
(label_ref (match_operand 0))))]
""
"b%c1 %2,%0"
[(set_attr "type" "ibr")])
(define_insn "*blbs_normal"
[(set (pc)
(if_then_else
(ne (zero_extract:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(const_int 1)
(const_int 0))
(const_int 0))
(label_ref (match_operand 0))
(pc)))]
""
"blbs %r1,%0"
[(set_attr "type" "ibr")])
(define_insn "*blbc_normal"
[(set (pc)
(if_then_else
(eq (zero_extract:DI (match_operand:DI 1 "reg_or_0_operand" "rJ")
(const_int 1)
(const_int 0))
(const_int 0))
(label_ref (match_operand 0))
(pc)))]
""
"blbc %r1,%0"
[(set_attr "type" "ibr")])
(define_split
[(parallel
[(set (pc)
(if_then_else
(match_operator 1 "comparison_operator"
[(zero_extract:DI (match_operand:DI 2 "register_operand")
(const_int 1)
(match_operand:DI 3 "const_int_operand"))
(const_int 0)])
(label_ref (match_operand 0))
(pc)))
(clobber (match_operand:DI 4 "register_operand"))])]
"INTVAL (operands[3]) != 0"
[(set (match_dup 4)
(lshiftrt:DI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (match_op_dup 1
[(zero_extract:DI (match_dup 4)
(const_int 1)
(const_int 0))
(const_int 0)])
(label_ref (match_dup 0))
(pc)))]
)
;; The following are the corresponding floating-point insns. Recall
;; we need to have variants that expand the arguments from SFmode
;; to DFmode.
(define_insn "*cmpdf_internal"
[(set (match_operand:DF 0 "register_operand" "=f,&f")
(match_operator:DF 1 "alpha_fp_comparison_operator"
[(match_operand:DF 2 "reg_or_0_operand" "fG,fG")
(match_operand:DF 3 "reg_or_0_operand" "fG,fG")]))]
"TARGET_FP"
"cmp%-%C1%/ %R2,%R3,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "trap_suffix" "su")
(set (attr "enabled")
(cond [(eq_attr "alternative" "0")
(symbol_ref "alpha_fptm < ALPHA_FPTM_SU")
]
(symbol_ref "true")))])
(define_insn "*cmpdf_ext1"
[(set (match_operand:DF 0 "register_operand" "=f")
(match_operator:DF 1 "alpha_fp_comparison_operator"
[(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))
(match_operand:DF 3 "reg_or_0_operand" "fG")]))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"cmp%-%C1%/ %R2,%R3,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "trap_suffix" "su")])
(define_insn "*cmpdf_ext2"
[(set (match_operand:DF 0 "register_operand" "=f")
(match_operator:DF 1 "alpha_fp_comparison_operator"
[(match_operand:DF 2 "reg_or_0_operand" "fG")
(float_extend:DF
(match_operand:SF 3 "reg_or_0_operand" "fG"))]))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"cmp%-%C1%/ %R2,%R3,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "trap_suffix" "su")])
(define_insn "*cmpdf_ext3"
[(set (match_operand:DF 0 "register_operand" "=f")
(match_operator:DF 1 "alpha_fp_comparison_operator"
[(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))
(float_extend:DF
(match_operand:SF 3 "reg_or_0_operand" "fG"))]))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"cmp%-%C1%/ %R2,%R3,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")
(set_attr "trap_suffix" "su")])
(define_insn "*mov<mode>cc_internal"
[(set (match_operand:FMODE 0 "register_operand" "=f,f")
(if_then_else:FMODE
(match_operator 3 "signed_comparison_operator"
[(match_operand:DF 4 "reg_or_0_operand" "fG,fG")
(match_operand:DF 2 "const0_operand" "G,G")])
(match_operand:FMODE 1 "reg_or_0_operand" "fG,0")
(match_operand:FMODE 5 "reg_or_0_operand" "0,fG")))]
"TARGET_FP"
"@
fcmov%C3 %R4,%R1,%0
fcmov%D3 %R4,%R5,%0"
[(set_attr "type" "fcmov")])
(define_insn "*movdfcc_ext1"
[(set (match_operand:DF 0 "register_operand" "=f,f")
(if_then_else:DF
(match_operator 3 "signed_comparison_operator"
[(match_operand:DF 4 "reg_or_0_operand" "fG,fG")
(match_operand:DF 2 "const0_operand" "G,G")])
(float_extend:DF (match_operand:SF 1 "reg_or_0_operand" "fG,0"))
(match_operand:DF 5 "reg_or_0_operand" "0,fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"@
fcmov%C3 %R4,%R1,%0
fcmov%D3 %R4,%R5,%0"
[(set_attr "type" "fcmov")])
(define_insn "*movdfcc_ext2"
[(set (match_operand:DF 0 "register_operand" "=f,f")
(if_then_else:DF
(match_operator 3 "signed_comparison_operator"
[(float_extend:DF
(match_operand:SF 4 "reg_or_0_operand" "fG,fG"))
(match_operand:DF 2 "const0_operand" "G,G")])
(match_operand:DF 1 "reg_or_0_operand" "fG,0")
(match_operand:DF 5 "reg_or_0_operand" "0,fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"@
fcmov%C3 %R4,%R1,%0
fcmov%D3 %R4,%R5,%0"
[(set_attr "type" "fcmov")])
(define_insn "*movdfcc_ext3"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(if_then_else:SF
(match_operator 3 "signed_comparison_operator"
[(float_extend:DF
(match_operand:SF 4 "reg_or_0_operand" "fG,fG"))
(match_operand:DF 2 "const0_operand" "G,G")])
(match_operand:SF 1 "reg_or_0_operand" "fG,0")
(match_operand:SF 5 "reg_or_0_operand" "0,fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"@
fcmov%C3 %R4,%R1,%0
fcmov%D3 %R4,%R5,%0"
[(set_attr "type" "fcmov")])
(define_insn "*movdfcc_ext4"
[(set (match_operand:DF 0 "register_operand" "=f,f")
(if_then_else:DF
(match_operator 3 "signed_comparison_operator"
[(float_extend:DF
(match_operand:SF 4 "reg_or_0_operand" "fG,fG"))
(match_operand:DF 2 "const0_operand" "G,G")])
(float_extend:DF (match_operand:SF 1 "reg_or_0_operand" "fG,0"))
(match_operand:DF 5 "reg_or_0_operand" "0,fG")))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
"@
fcmov%C3 %R4,%R1,%0
fcmov%D3 %R4,%R5,%0"
[(set_attr "type" "fcmov")])
(define_expand "smaxdf3"
[(set (match_dup 3)
(le:DF (match_operand:DF 1 "reg_or_0_operand")
(match_operand:DF 2 "reg_or_0_operand")))
(set (match_operand:DF 0 "register_operand")
(if_then_else:DF (eq (match_dup 3) (match_dup 4))
(match_dup 1) (match_dup 2)))]
"TARGET_FP"
{
operands[3] = gen_reg_rtx (DFmode);
operands[4] = CONST0_RTX (DFmode);
})
(define_expand "smindf3"
[(set (match_dup 3)
(lt:DF (match_operand:DF 1 "reg_or_0_operand")
(match_operand:DF 2 "reg_or_0_operand")))
(set (match_operand:DF 0 "register_operand")
(if_then_else:DF (ne (match_dup 3) (match_dup 4))
(match_dup 1) (match_dup 2)))]
"TARGET_FP"
{
operands[3] = gen_reg_rtx (DFmode);
operands[4] = CONST0_RTX (DFmode);
})
(define_expand "smaxsf3"
[(set (match_dup 3)
(le:DF (float_extend:DF (match_operand:SF 1 "reg_or_0_operand"))
(float_extend:DF (match_operand:SF 2 "reg_or_0_operand"))))
(set (match_operand:SF 0 "register_operand")
(if_then_else:SF (eq (match_dup 3) (match_dup 4))
(match_dup 1) (match_dup 2)))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
{
operands[3] = gen_reg_rtx (DFmode);
operands[4] = CONST0_RTX (DFmode);
})
(define_expand "sminsf3"
[(set (match_dup 3)
(lt:DF (float_extend:DF (match_operand:SF 1 "reg_or_0_operand"))
(float_extend:DF (match_operand:SF 2 "reg_or_0_operand"))))
(set (match_operand:SF 0 "register_operand")
(if_then_else:SF (ne (match_dup 3) (match_dup 4))
(match_dup 1) (match_dup 2)))]
"TARGET_FP && alpha_fptm < ALPHA_FPTM_SU"
{
operands[3] = gen_reg_rtx (DFmode);
operands[4] = CONST0_RTX (DFmode);
})
(define_insn "*fbcc_normal"
[(set (pc)
(if_then_else
(match_operator 1 "signed_comparison_operator"
[(match_operand:DF 2 "reg_or_0_operand" "fG")
(match_operand:DF 3 "const0_operand" "G")])
(label_ref (match_operand 0))
(pc)))]
"TARGET_FP"
"fb%C1 %R2,%0"
[(set_attr "type" "fbr")])
(define_insn "*fbcc_ext_normal"
[(set (pc)
(if_then_else
(match_operator 1 "signed_comparison_operator"
[(float_extend:DF
(match_operand:SF 2 "reg_or_0_operand" "fG"))
(match_operand:DF 3 "const0_operand" "G")])
(label_ref (match_operand 0))
(pc)))]
"TARGET_FP"
"fb%C1 %R2,%0"
[(set_attr "type" "fbr")])
;; These are the main define_expand's used to make conditional branches
;; and compares.
(define_expand "cbranchdf4"
[(use (match_operator 0 "alpha_cbranch_operator"
[(match_operand:DF 1 "reg_or_0_operand")
(match_operand:DF 2 "reg_or_0_operand")]))
(use (match_operand 3))]
"TARGET_FP"
"alpha_emit_conditional_branch (operands, DFmode); DONE;")
(define_expand "cbranchtf4"
[(use (match_operator 0 "alpha_cbranch_operator"
[(match_operand:TF 1 "general_operand")
(match_operand:TF 2 "general_operand")]))
(use (match_operand 3))]
"TARGET_HAS_XFLOATING_LIBS"
"alpha_emit_conditional_branch (operands, TFmode); DONE;")
(define_expand "cbranchdi4"
[(use (match_operator 0 "alpha_cbranch_operator"
[(match_operand:DI 1 "general_operand")
(match_operand:DI 2 "general_operand")]))
(use (match_operand 3))]
""
"alpha_emit_conditional_branch (operands, DImode); DONE;")
(define_expand "cstoredf4"
[(use (match_operator:DI 1 "alpha_cbranch_operator"
[(match_operand:DF 2 "reg_or_0_operand")
(match_operand:DF 3 "reg_or_0_operand")]))
(clobber (match_operand:DI 0 "register_operand"))]
"TARGET_FP"
{
if (alpha_emit_setcc (operands, DFmode))
DONE;
else
FAIL;
})
(define_expand "cstoretf4"
[(use (match_operator:DI 1 "alpha_cbranch_operator"
[(match_operand:TF 2 "general_operand")
(match_operand:TF 3 "general_operand")]))
(clobber (match_operand:DI 0 "register_operand"))]
"TARGET_HAS_XFLOATING_LIBS"
{
if (alpha_emit_setcc (operands, TFmode))
DONE;
else
FAIL;
})
(define_expand "cstoredi4"
[(use (match_operator:DI 1 "alpha_cbranch_operator"
[(match_operand:DI 2 "general_operand")
(match_operand:DI 3 "general_operand")]))
(clobber (match_operand:DI 0 "register_operand"))]
""
{
if (alpha_emit_setcc (operands, DImode))
DONE;
else
FAIL;
})
;; These are the main define_expand's used to make conditional moves.
(define_expand "mov<mode>cc"
[(set (match_operand:I48MODE 0 "register_operand")
(if_then_else:I48MODE
(match_operand 1 "comparison_operator")
(match_operand:I48MODE 2 "reg_or_8bit_operand")
(match_operand:I48MODE 3 "reg_or_8bit_operand")))]
""
{
operands[1] = alpha_emit_conditional_move (operands[1], <MODE>mode);
if (operands[1] == 0)
FAIL;
})
(define_expand "mov<mode>cc"
[(set (match_operand:FMODE 0 "register_operand")
(if_then_else:FMODE
(match_operand 1 "comparison_operator")
(match_operand:FMODE 2 "reg_or_8bit_operand")
(match_operand:FMODE 3 "reg_or_8bit_operand")))]
""
{
operands[1] = alpha_emit_conditional_move (operands[1], <MODE>mode);
if (operands[1] == 0)
FAIL;
})
;; These define_split definitions are used in cases when comparisons have
;; not be stated in the correct way and we need to reverse the second
;; comparison. For example, x >= 7 has to be done as x < 6 with the
;; comparison that tests the result being reversed. We have one define_split
;; for each use of a comparison. They do not match valid insns and need
;; not generate valid insns.
;;
;; We can also handle equality comparisons (and inequality comparisons in
;; cases where the resulting add cannot overflow) by doing an add followed by
;; a comparison with zero. This is faster since the addition takes one
;; less cycle than a compare when feeding into a conditional move.
;; For this case, we also have an SImode pattern since we can merge the add
;; and sign extend and the order doesn't matter.
;;
;; We do not do this for floating-point, since it isn't clear how the "wrong"
;; operation could have been generated.
(define_split
[(set (match_operand:DI 0 "register_operand")
(if_then_else:DI
(match_operator 1 "comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand")
(match_operand:DI 3 "reg_or_cint_operand")])
(match_operand:DI 4 "reg_or_cint_operand")
(match_operand:DI 5 "reg_or_cint_operand")))
(clobber (match_operand:DI 6 "register_operand"))]
"operands[3] != const0_rtx"
[(set (match_dup 6) (match_dup 7))
(set (match_dup 0)
(if_then_else:DI (match_dup 8) (match_dup 4) (match_dup 5)))]
{
enum rtx_code code = GET_CODE (operands[1]);
int unsignedp = (code == GEU || code == LEU || code == GTU || code == LTU);
/* If we are comparing for equality with a constant and that constant
appears in the arm when the register equals the constant, use the
register since that is more likely to match (and to produce better code
if both would). */
if (code == EQ && CONST_INT_P (operands[3])
&& rtx_equal_p (operands[4], operands[3]))
operands[4] = operands[2];
else if (code == NE && CONST_INT_P (operands[3])
&& rtx_equal_p (operands[5], operands[3]))
operands[5] = operands[2];
if (code == NE || code == EQ
|| (extended_count (operands[2], DImode, unsignedp) >= 1
&& extended_count (operands[3], DImode, unsignedp) >= 1))
{
if (CONST_INT_P (operands[3]))
operands[7] = gen_rtx_PLUS (DImode, operands[2],
GEN_INT (- INTVAL (operands[3])));
else
operands[7] = gen_rtx_MINUS (DImode, operands[2], operands[3]);
operands[8] = gen_rtx_fmt_ee (code, VOIDmode, operands[6], const0_rtx);
}
else if (code == EQ || code == LE || code == LT
|| code == LEU || code == LTU)
{
operands[7] = gen_rtx_fmt_ee (code, DImode, operands[2], operands[3]);
operands[8] = gen_rtx_NE (VOIDmode, operands[6], const0_rtx);
}
else
{
operands[7] = gen_rtx_fmt_ee (reverse_condition (code), DImode,
operands[2], operands[3]);
operands[8] = gen_rtx_EQ (VOIDmode, operands[6], const0_rtx);
}
})
(define_split
[(set (match_operand:DI 0 "register_operand")
(if_then_else:DI
(match_operator 1 "comparison_operator"
[(match_operand:SI 2 "reg_or_0_operand")
(match_operand:SI 3 "reg_or_cint_operand")])
(match_operand:DI 4 "reg_or_8bit_operand")
(match_operand:DI 5 "reg_or_8bit_operand")))
(clobber (match_operand:DI 6 "register_operand"))]
"operands[3] != const0_rtx
&& (GET_CODE (operands[1]) == EQ || GET_CODE (operands[1]) == NE)"
[(set (match_dup 6) (match_dup 7))
(set (match_dup 0)
(if_then_else:DI (match_dup 8) (match_dup 4) (match_dup 5)))]
{
enum rtx_code code = GET_CODE (operands[1]);
int unsignedp = (code == GEU || code == LEU || code == GTU || code == LTU);
rtx tem;
if ((code != NE && code != EQ
&& ! (extended_count (operands[2], DImode, unsignedp) >= 1
&& extended_count (operands[3], DImode, unsignedp) >= 1)))
FAIL;
if (CONST_INT_P (operands[3]))
tem = gen_rtx_PLUS (SImode, operands[2],
GEN_INT (- INTVAL (operands[3])));
else
tem = gen_rtx_MINUS (SImode, operands[2], operands[3]);
operands[7] = gen_rtx_SIGN_EXTEND (DImode, tem);
operands[8] = gen_rtx_fmt_ee (GET_CODE (operands[1]), VOIDmode,
operands[6], const0_rtx);
})
;; Prefer to use cmp and arithmetic when possible instead of a cmove.
(define_split
[(set (match_operand 0 "register_operand")
(if_then_else (match_operator 1 "signed_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand")
(const_int 0)])
(match_operand 3 "const_int_operand")
(match_operand 4 "const_int_operand")))]
""
[(const_int 0)]
{
if (alpha_split_conditional_move (GET_CODE (operands[1]), operands[0],
operands[2], operands[3], operands[4]))
DONE;
else
FAIL;
})
;; ??? Why combine is allowed to create such non-canonical rtl, I don't know.
;; Oh well, we match it in movcc, so it must be partially our fault.
(define_split
[(set (match_operand 0 "register_operand")
(if_then_else (match_operator 1 "signed_comparison_operator"
[(const_int 0)
(match_operand:DI 2 "reg_or_0_operand")])
(match_operand 3 "const_int_operand")
(match_operand 4 "const_int_operand")))]
""
[(const_int 0)]
{
if (alpha_split_conditional_move (swap_condition (GET_CODE (operands[1])),
operands[0], operands[2], operands[3],
operands[4]))
DONE;
else
FAIL;
})
(define_insn_and_split "*cmp_sadd_di"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (if_then_else:DI
(match_operator 1 "alpha_zero_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand" "rJ")
(const_int 0)])
(match_operand:DI 3 "const48_operand" "I")
(const_int 0))
(match_operand:DI 4 "sext_add_operand" "rIO")))
(clobber (match_scratch:DI 5 "=r"))]
""
"#"
""
[(set (match_dup 5)
(match_op_dup:DI 1 [(match_dup 2) (const_int 0)]))
(set (match_dup 0)
(plus:DI (ashift:DI (match_dup 5) (match_dup 3))
(match_dup 4)))]
{
operands[3] = GEN_INT (exact_log2 (INTVAL (operands [3])));
if (can_create_pseudo_p ())
operands[5] = gen_reg_rtx (DImode);
else if (reg_overlap_mentioned_p (operands[5], operands[4]))
operands[5] = operands[0];
})
(define_insn_and_split "*cmp_sadd_si"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (if_then_else:SI
(match_operator 1 "alpha_zero_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand" "rJ")
(const_int 0)])
(match_operand:SI 3 "const48_operand" "I")
(const_int 0))
(match_operand:SI 4 "sext_add_operand" "rIO")))
(clobber (match_scratch:DI 5 "=r"))]
""
"#"
""
[(set (match_dup 5)
(match_op_dup:DI 1 [(match_dup 2) (const_int 0)]))
(set (match_dup 0)
(plus:SI (ashift:SI (match_dup 6) (match_dup 3))
(match_dup 4)))]
{
operands[3] = GEN_INT (exact_log2 (INTVAL (operands [3])));
if (can_create_pseudo_p ())
operands[5] = gen_reg_rtx (DImode);
else if (reg_overlap_mentioned_p (operands[5], operands[4]))
operands[5] = gen_lowpart (DImode, operands[0]);
operands[6] = gen_lowpart (SImode, operands[5]);
})
(define_insn_and_split "*cmp_sadd_sidi"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(plus:SI (if_then_else:SI
(match_operator 1 "alpha_zero_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand" "rJ")
(const_int 0)])
(match_operand:SI 3 "const48_operand" "I")
(const_int 0))
(match_operand:SI 4 "sext_add_operand" "rIO"))))
(clobber (match_scratch:DI 5 "=r"))]
""
"#"
""
[(set (match_dup 5)
(match_op_dup:DI 1 [(match_dup 2) (const_int 0)]))
(set (match_dup 0)
(sign_extend:DI (plus:SI (ashift:SI (match_dup 6) (match_dup 3))
(match_dup 4))))]
{
operands[3] = GEN_INT (exact_log2 (INTVAL (operands [3])));
if (can_create_pseudo_p ())
operands[5] = gen_reg_rtx (DImode);
else if (reg_overlap_mentioned_p (operands[5], operands[4]))
operands[5] = operands[0];
operands[6] = gen_lowpart (SImode, operands[5]);
})
(define_insn_and_split "*cmp_ssub_di"
[(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (if_then_else:DI
(match_operator 1 "alpha_zero_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand" "rJ")
(const_int 0)])
(match_operand:DI 3 "const48_operand" "I")
(const_int 0))
(match_operand:DI 4 "reg_or_8bit_operand" "rI")))
(clobber (match_scratch:DI 5 "=r"))]
""
"#"
""
[(set (match_dup 5)
(match_op_dup:DI 1 [(match_dup 2) (const_int 0)]))
(set (match_dup 0)
(minus:DI (ashift:DI (match_dup 5) (match_dup 3))
(match_dup 4)))]
{
operands[3] = GEN_INT (exact_log2 (INTVAL (operands [3])));
if (can_create_pseudo_p ())
operands[5] = gen_reg_rtx (DImode);
else if (reg_overlap_mentioned_p (operands[5], operands[4]))
operands[5] = operands[0];
})
(define_insn_and_split "*cmp_ssub_si"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (if_then_else:SI
(match_operator 1 "alpha_zero_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand" "rJ")
(const_int 0)])
(match_operand:SI 3 "const48_operand" "I")
(const_int 0))
(match_operand:SI 4 "reg_or_8bit_operand" "rI")))
(clobber (match_scratch:DI 5 "=r"))]
""
"#"
""
[(set (match_dup 5)
(match_op_dup:DI 1 [(match_dup 2) (const_int 0)]))
(set (match_dup 0)
(minus:SI (ashift:SI (match_dup 6) (match_dup 3))
(match_dup 4)))]
{
operands[3] = GEN_INT (exact_log2 (INTVAL (operands [3])));
if (can_create_pseudo_p ())
operands[5] = gen_reg_rtx (DImode);
else if (reg_overlap_mentioned_p (operands[5], operands[4]))
operands[5] = gen_lowpart (DImode, operands[0]);
operands[6] = gen_lowpart (SImode, operands[5]);
})
(define_insn_and_split "*cmp_ssub_sidi"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(minus:SI (if_then_else:SI
(match_operator 1 "alpha_zero_comparison_operator"
[(match_operand:DI 2 "reg_or_0_operand" "rJ")
(const_int 0)])
(match_operand:SI 3 "const48_operand" "I")
(const_int 0))
(match_operand:SI 4 "reg_or_8bit_operand" "rI"))))
(clobber (match_scratch:DI 5 "=r"))]
""
"#"
""
[(set (match_dup 5)
(match_op_dup:DI 1 [(match_dup 2) (const_int 0)]))
(set (match_dup 0)
(sign_extend:DI (minus:SI (ashift:SI (match_dup 6) (match_dup 3))
(match_dup 4))))]
{
operands[3] = GEN_INT (exact_log2 (INTVAL (operands [3])));
if (can_create_pseudo_p ())
operands[5] = gen_reg_rtx (DImode);
else if (reg_overlap_mentioned_p (operands[5], operands[4]))
operands[5] = operands[0];
operands[6] = gen_lowpart (SImode, operands[5]);
})
;; Here are the CALL and unconditional branch insns. Calls on NT and OSF
;; work differently, so we have different patterns for each.
(define_expand "call"
[(use (match_operand:DI 0))
(use (match_operand 1))
(use (match_operand 2))
(use (match_operand 3))]
""
{
if (TARGET_ABI_OPEN_VMS)
emit_call_insn (gen_call_vms (operands[0], operands[2]));
else
emit_call_insn (gen_call_osf (operands[0], operands[1]));
DONE;
})
(define_expand "sibcall"
[(parallel [(call (mem:DI (match_operand 0))
(match_operand 1))
(unspec [(reg:DI 29)] UNSPEC_SIBCALL)])]
"TARGET_ABI_OSF"
{
gcc_assert (MEM_P (operands[0]));
operands[0] = XEXP (operands[0], 0);
})
(define_expand "call_osf"
[(parallel [(call (mem:DI (match_operand 0))
(match_operand 1))
(use (reg:DI 29))
(clobber (reg:DI 26))])]
""
{
gcc_assert (MEM_P (operands[0]));
operands[0] = XEXP (operands[0], 0);
if (! call_operand (operands[0], Pmode))
operands[0] = copy_to_mode_reg (Pmode, operands[0]);
})
;;
;; call openvms/alpha
;; op 0: symbol ref for called function
;; op 1: next_arg_reg (argument information value for R25)
;;
(define_expand "call_vms"
[(parallel [(call (mem:DI (match_operand 0))
(match_operand 1))
(use (match_dup 2))
(use (reg:DI 25))
(use (reg:DI 26))
(clobber (reg:DI 27))])]
""
{
gcc_assert (MEM_P (operands[0]));
operands[0] = XEXP (operands[0], 0);
/* Always load AI with argument information, then handle symbolic and
indirect call differently. Load RA and set operands[2] to PV in
both cases. */
emit_move_insn (gen_rtx_REG (DImode, 25), operands[1]);
if (GET_CODE (operands[0]) == SYMBOL_REF)
{
operands[2] = const0_rtx;
}
else
{
emit_move_insn (gen_rtx_REG (Pmode, 26),
gen_rtx_MEM (Pmode, plus_constant (Pmode,
operands[0], 8)));
operands[2] = operands[0];
}
})
(define_expand "call_value"
[(use (match_operand 0))
(use (match_operand:DI 1))
(use (match_operand 2))
(use (match_operand 3))
(use (match_operand 4))]
""
{
if (TARGET_ABI_OPEN_VMS)
emit_call_insn (gen_call_value_vms (operands[0], operands[1],
operands[3]));
else
emit_call_insn (gen_call_value_osf (operands[0], operands[1],
operands[2]));
DONE;
})
(define_expand "sibcall_value"
[(parallel [(set (match_operand 0)
(call (mem:DI (match_operand 1))
(match_operand 2)))
(unspec [(reg:DI 29)] UNSPEC_SIBCALL)])]
"TARGET_ABI_OSF"
{
gcc_assert (MEM_P (operands[1]));
operands[1] = XEXP (operands[1], 0);
})
(define_expand "call_value_osf"
[(parallel [(set (match_operand 0)
(call (mem:DI (match_operand 1))
(match_operand 2)))
(use (reg:DI 29))
(clobber (reg:DI 26))])]
""
{
gcc_assert (MEM_P (operands[1]));
operands[1] = XEXP (operands[1], 0);
if (! call_operand (operands[1], Pmode))
operands[1] = copy_to_mode_reg (Pmode, operands[1]);
})
(define_expand "call_value_vms"
[(parallel [(set (match_operand 0)
(call (mem:DI (match_operand:DI 1))
(match_operand 2)))
(use (match_dup 3))
(use (reg:DI 25))
(use (reg:DI 26))
(clobber (reg:DI 27))])]
""
{
gcc_assert (MEM_P (operands[1]));
operands[1] = XEXP (operands[1], 0);
/* Always load AI with argument information, then handle symbolic and
indirect call differently. Load RA and set operands[3] to PV in
both cases. */
emit_move_insn (gen_rtx_REG (DImode, 25), operands[2]);
if (GET_CODE (operands[1]) == SYMBOL_REF)
{
operands[3] = const0_rtx;
}
else
{
emit_move_insn (gen_rtx_REG (Pmode, 26),
gen_rtx_MEM (Pmode, plus_constant (Pmode,
operands[1], 8)));
operands[3] = operands[1];
}
})
(define_insn "*call_osf_1_er_noreturn"
[(call (mem:DI (match_operand:DI 0 "call_operand" "c,R,s"))
(match_operand 1))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF
&& find_reg_note (insn, REG_NORETURN, NULL_RTX)"
"@
jsr $26,($27),0
bsr $26,%0\t\t!samegp
ldq $27,%0($29)\t\t!literal!%#\;jsr $26,($27),%0\t\t!lituse_jsr!%#"
[(set_attr "type" "jsr")
(set_attr "length" "*,*,8")])
(define_insn "*call_osf_1_er"
[(call (mem:DI (match_operand:DI 0 "call_operand" "c,R,s"))
(match_operand 1))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
jsr $26,(%0),0\;ldah $29,0($26)\t\t!gpdisp!%*\;lda $29,0($29)\t\t!gpdisp!%*
bsr $26,%0\t\t!samegp
ldq $27,%0($29)\t\t!literal!%#\;jsr $26,($27),%0\t\t!lituse_jsr!%#\;ldah $29,0($26)\t\t!gpdisp!%*\;lda $29,0($29)\t\t!gpdisp!%*"
[(set_attr "type" "jsr")
(set_attr "length" "12,*,16")])
;; We must use peep2 instead of a split because we need accurate life
;; information for $gp. Consider the case of { bar(); while (1); }.
(define_peephole2
[(parallel [(call (mem:DI (match_operand:DI 0 "call_operand"))
(match_operand 1))
(use (reg:DI 29))
(clobber (reg:DI 26))])]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF && reload_completed
&& ! samegp_function_operand (operands[0], Pmode)
&& (peep2_regno_dead_p (1, 29)
|| find_reg_note (insn, REG_NORETURN, NULL_RTX))"
[(parallel [(call (mem:DI (match_dup 2))
(match_dup 1))
(use (reg:DI 29))
(use (match_dup 0))
(use (match_dup 3))
(clobber (reg:DI 26))])]
{
if (CONSTANT_P (operands[0]))
{
operands[2] = gen_rtx_REG (Pmode, 27);
operands[3] = GEN_INT (alpha_next_sequence_number++);
emit_insn (gen_movdi_er_high_g (operands[2], pic_offset_table_rtx,
operands[0], operands[3]));
}
else
{
operands[2] = operands[0];
operands[0] = const0_rtx;
operands[3] = const0_rtx;
}
})
(define_peephole2
[(parallel [(call (mem:DI (match_operand:DI 0 "call_operand"))
(match_operand 1))
(use (reg:DI 29))
(clobber (reg:DI 26))])]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF && reload_completed
&& ! samegp_function_operand (operands[0], Pmode)
&& ! (peep2_regno_dead_p (1, 29)
|| find_reg_note (insn, REG_NORETURN, NULL_RTX))"
[(parallel [(call (mem:DI (match_dup 2))
(match_dup 1))
(set (match_dup 5)
(unspec:DI [(match_dup 5) (match_dup 3)] UNSPEC_LDGP1))
(use (match_dup 0))
(use (match_dup 4))
(clobber (reg:DI 26))])
(set (match_dup 5)
(unspec:DI [(match_dup 5) (match_dup 3)] UNSPEC_LDGP2))]
{
if (CONSTANT_P (operands[0]))
{
operands[2] = gen_rtx_REG (Pmode, 27);
operands[4] = GEN_INT (alpha_next_sequence_number++);
emit_insn (gen_movdi_er_high_g (operands[2], pic_offset_table_rtx,
operands[0], operands[4]));
}
else
{
operands[2] = operands[0];
operands[0] = const0_rtx;
operands[4] = const0_rtx;
}
operands[3] = GEN_INT (alpha_next_sequence_number++);
operands[5] = pic_offset_table_rtx;
})
(define_insn "*call_osf_2_er_nogp"
[(call (mem:DI (match_operand:DI 0 "register_operand" "c"))
(match_operand 1))
(use (reg:DI 29))
(use (match_operand 2))
(use (match_operand 3 "const_int_operand"))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"jsr $26,(%0),%2%J3"
[(set_attr "type" "jsr")])
(define_insn "*call_osf_2_er"
[(call (mem:DI (match_operand:DI 0 "register_operand" "c"))
(match_operand 1))
(set (reg:DI 29)
(unspec:DI [(reg:DI 29) (match_operand 4 "const_int_operand")]
UNSPEC_LDGP1))
(use (match_operand 2))
(use (match_operand 3 "const_int_operand"))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"jsr $26,(%0),%2%J3\;ldah $29,0($26)\t\t!gpdisp!%4"
[(set_attr "type" "jsr")
(set_attr "cannot_copy" "true")
(set_attr "length" "8")])
(define_insn "*call_osf_1_noreturn"
[(call (mem:DI (match_operand:DI 0 "call_operand" "c,R,s"))
(match_operand 1))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"! TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF
&& find_reg_note (insn, REG_NORETURN, NULL_RTX)"
"@
jsr $26,($27),0
bsr $26,$%0..ng
jsr $26,%0"
[(set_attr "type" "jsr")
(set_attr "length" "*,*,8")])
(define_insn "*call_osf_1"
[(call (mem:DI (match_operand:DI 0 "call_operand" "c,R,s"))
(match_operand 1))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"! TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
jsr $26,($27),0\;ldgp $29,0($26)
bsr $26,$%0..ng
jsr $26,%0\;ldgp $29,0($26)"
[(set_attr "type" "jsr")
(set_attr "length" "12,*,16")])
(define_insn "*sibcall_osf_1_er"
[(call (mem:DI (match_operand:DI 0 "symbolic_operand" "R,s"))
(match_operand 1))
(unspec [(reg:DI 29)] UNSPEC_SIBCALL)]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
br $31,%0\t\t!samegp
ldq $27,%0($29)\t\t!literal!%#\;jmp $31,($27),%0\t\t!lituse_jsr!%#"
[(set_attr "type" "jsr")
(set_attr "length" "*,8")])
;; Note that the DEC assembler expands "jmp foo" with $at, which
;; doesn't do what we want.
(define_insn "*sibcall_osf_1"
[(call (mem:DI (match_operand:DI 0 "symbolic_operand" "R,s"))
(match_operand 1))
(unspec [(reg:DI 29)] UNSPEC_SIBCALL)]
"! TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
br $31,$%0..ng
lda $27,%0\;jmp $31,($27),%0"
[(set_attr "type" "jsr")
(set_attr "length" "*,8")])
; GAS relies on the order and position of instructions output below in order
; to generate relocs for VMS link to potentially optimize the call.
; Please do not molest.
(define_insn "*call_vms_1"
[(call (mem:DI (match_operand:DI 0 "call_operand" "r,s"))
(match_operand 1))
(use (match_operand:DI 2 "nonmemory_operand" "r,n"))
(use (reg:DI 25))
(use (reg:DI 26))
(clobber (reg:DI 27))]
"TARGET_ABI_OPEN_VMS"
{
switch (which_alternative)
{
case 0:
return "mov %2,$27\;jsr $26,0\;ldq $27,0($29)";
case 1:
operands [2] = alpha_use_linkage (operands [0], true, false);
operands [3] = alpha_use_linkage (operands [0], false, false);
return "ldq $26,%3\;ldq $27,%2\;jsr $26,%0\;ldq $27,0($29)";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "jsr")
(set_attr "length" "12,16")])
;; Call subroutine returning any type.
(define_expand "untyped_call"
[(parallel [(call (match_operand 0)
(const_int 0))
(match_operand 1)
(match_operand 2)])]
""
{
int i;
emit_call_insn (gen_call (operands[0], const0_rtx, NULL, const0_rtx));
for (i = 0; i < XVECLEN (operands[2], 0); i++)
{
rtx set = XVECEXP (operands[2], 0, i);
emit_move_insn (SET_DEST (set), SET_SRC (set));
}
/* The optimizer does not know that the call sets the function value
registers we stored in the result block. We avoid problems by
claiming that all hard registers are used and clobbered at this
point. */
emit_insn (gen_blockage ());
DONE;
})
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
;; all of memory. This blocks insns from being moved across this point.
(define_insn "blockage"
[(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)]
""
""
[(set_attr "length" "0")
(set_attr "type" "none")])
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0)))]
""
"br $31,%l0"
[(set_attr "type" "ibr")])
(define_expand "return"
[(return)]
"direct_return ()")
(define_insn "*return_internal"
[(return)]
"reload_completed"
"ret $31,($26),1"
[(set_attr "type" "ibr")])
(define_insn "indirect_jump"
[(set (pc) (match_operand:DI 0 "register_operand" "r"))]
""
"jmp $31,(%0),0"
[(set_attr "type" "ibr")])
(define_expand "tablejump"
[(parallel [(set (pc)
(match_operand 0 "register_operand"))
(use (label_ref:DI (match_operand 1)))])]
""
{
if (TARGET_ABI_OSF)
{
rtx dest = gen_reg_rtx (DImode);
emit_insn (gen_extendsidi2 (dest, operands[0]));
emit_insn (gen_adddi3 (dest, pic_offset_table_rtx, dest));
operands[0] = dest;
}
})
(define_insn "*tablejump_internal"
[(set (pc)
(match_operand:DI 0 "register_operand" "r"))
(use (label_ref (match_operand 1)))]
""
"jmp $31,(%0),0"
[(set_attr "type" "ibr")])
;; Cache flush. Used by alpha_trampoline_init. 0x86 is PAL_imb, but we don't
;; want to have to include pal.h in our .s file.
(define_insn "imb"
[(unspec_volatile [(const_int 0)] UNSPECV_IMB)]
""
"call_pal 0x86"
[(set_attr "type" "callpal")])
(define_expand "clear_cache"
[(match_operand:DI 0) ; region start
(match_operand:DI 1)] ; region end
""
{
emit_insn (gen_imb ());
DONE;
})
;; BUGCHK is documented common to OSF/1 and VMS PALcode.
(define_insn "trap"
[(trap_if (const_int 1) (const_int 0))
(use (reg:DI 29))]
""
"call_pal 0x81"
[(set_attr "type" "callpal")])
;; For userland, we load the thread pointer from the TCB.
;; For the kernel, we load the per-cpu private value.
(define_insn "get_thread_pointerdi"
[(set (match_operand:DI 0 "register_operand" "=v")
(unspec:DI [(const_int 0)] UNSPEC_TP))]
"TARGET_ABI_OSF"
{
if (TARGET_TLS_KERNEL)
return "call_pal 0x32";
else
return "call_pal 0x9e";
}
[(set_attr "type" "callpal")])
;; For completeness, and possibly a __builtin function, here's how to
;; set the thread pointer. Since we don't describe enough of this
;; quantity for CSE, we have to use a volatile unspec, and then there's
;; not much point in creating an R16_REG register class.
(define_expand "set_thread_pointerdi"
[(set (reg:DI 16) (match_operand:DI 0 "input_operand"))
(unspec_volatile [(reg:DI 16)] UNSPECV_SET_TP)]
"TARGET_ABI_OSF")
(define_insn "*set_tp"
[(unspec_volatile [(reg:DI 16)] UNSPECV_SET_TP)]
"TARGET_ABI_OSF"
{
if (TARGET_TLS_KERNEL)
return "call_pal 0x31";
else
return "call_pal 0x9f";
}
[(set_attr "type" "callpal")])
;; Special builtins for establishing and reverting VMS condition handlers.
(define_expand "builtin_establish_vms_condition_handler"
[(set (reg:DI 0) (match_operand:DI 0 "register_operand"))
(use (match_operand:DI 1 "address_operand"))]
"TARGET_ABI_OPEN_VMS"
{
alpha_expand_builtin_establish_vms_condition_handler (operands[0],
operands[1]);
})
(define_expand "builtin_revert_vms_condition_handler"
[(set (reg:DI 0) (match_operand:DI 0 "register_operand"))]
"TARGET_ABI_OPEN_VMS"
"alpha_expand_builtin_revert_vms_condition_handler (operands[0]);")
;; Finally, we have the basic data motion insns. The byte and word insns
;; are done via define_expand. Start with the floating-point insns, since
;; they are simpler.
(define_expand "movsf"
[(set (match_operand:SF 0 "nonimmediate_operand")
(match_operand:SF 1 "general_operand"))]
""
{
if (MEM_P (operands[0])
&& ! reg_or_0_operand (operands[1], SFmode))
operands[1] = force_reg (SFmode, operands[1]);
})
(define_insn "*movsf"
[(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,*r,*r,m,m,f,*r")
(match_operand:SF 1 "input_operand" "fG,m,*rG,m,fG,*r,*r,f"))]
"register_operand (operands[0], SFmode)
|| reg_or_0_operand (operands[1], SFmode)"
"@
cpys %R1,%R1,%0
ld%, %0,%1
bis $31,%r1,%0
ldl %0,%1
st%, %R1,%0
stl %r1,%0
itofs %1,%0
ftois %1,%0"
[(set_attr "type" "fcpys,fld,ilog,ild,fst,ist,itof,ftoi")
(set_attr "isa" "*,*,*,*,*,*,fix,fix")])
(define_expand "movdf"
[(set (match_operand:DF 0 "nonimmediate_operand")
(match_operand:DF 1 "general_operand"))]
""
{
if (MEM_P (operands[0])
&& ! reg_or_0_operand (operands[1], DFmode))
operands[1] = force_reg (DFmode, operands[1]);
})
(define_insn "*movdf"
[(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,*r,*r,m,m,f,*r")
(match_operand:DF 1 "input_operand" "fG,m,*rG,m,fG,*r,*r,f"))]
"register_operand (operands[0], DFmode)
|| reg_or_0_operand (operands[1], DFmode)"
"@
cpys %R1,%R1,%0
ld%- %0,%1
bis $31,%r1,%0
ldq %0,%1
st%- %R1,%0
stq %r1,%0
itoft %1,%0
ftoit %1,%0"
[(set_attr "type" "fcpys,fld,ilog,ild,fst,ist,itof,ftoi")
(set_attr "isa" "*,*,*,*,*,*,fix,fix")])
;; Subregs suck for register allocation. Pretend we can move TFmode
;; data between general registers until after reload.
;; ??? Is this still true now that we have the lower-subreg pass?
(define_expand "movtf"
[(set (match_operand:TF 0 "nonimmediate_operand")
(match_operand:TF 1 "general_operand"))]
""
{
if (MEM_P (operands[0])
&& ! reg_or_0_operand (operands[1], TFmode))
operands[1] = force_reg (TFmode, operands[1]);
})
(define_insn_and_split "*movtf_internal"
[(set (match_operand:TF 0 "nonimmediate_operand" "=r,o")
(match_operand:TF 1 "input_operand" "roG,rG"))]
"register_operand (operands[0], TFmode)
|| reg_or_0_operand (operands[1], TFmode)"
"#"
"reload_completed"
[(set (match_dup 0) (match_dup 2))
(set (match_dup 1) (match_dup 3))]
"alpha_split_tmode_pair (operands, TFmode, true);")
;; We do two major things here: handle mem->mem and construct long
;; constants.
(define_expand "movsi"
[(set (match_operand:SI 0 "nonimmediate_operand")
(match_operand:SI 1 "general_operand"))]
""
{
if (alpha_expand_mov (SImode, operands))
DONE;
})
(define_insn "*movsi"
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,r,m,r")
(match_operand:SI 1 "input_operand" "rJ,K,L,n,m,rJ,s"))]
"register_operand (operands[0], SImode)
|| reg_or_0_operand (operands[1], SImode)"
"@
bis $31,%r1,%0
lda %0,%1($31)
ldah %0,%h1($31)
#
ldl %0,%1
stl %r1,%0
lda %0,%1"
[(set_attr "type" "ilog,iadd,iadd,multi,ild,ist,ldsym")
(set_attr "isa" "*,*,*,*,*,*,vms")])
;; Split a load of a large constant into the appropriate two-insn
;; sequence.
(define_split
[(set (match_operand:SI 0 "register_operand")
(match_operand:SI 1 "non_add_const_operand"))]
""
[(const_int 0)]
{
if (alpha_split_const_mov (SImode, operands))
DONE;
else
FAIL;
})
(define_insn "*movdi_er_low_l"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "local_symbolic_operand")))]
"TARGET_EXPLICIT_RELOCS"
{
if (true_regnum (operands[1]) == 29)
return "lda %0,%2(%1)\t\t!gprel";
else
return "lda %0,%2(%1)\t\t!gprellow";
}
[(set_attr "usegp" "yes")])
(define_split
[(set (match_operand:DI 0 "register_operand")
(match_operand:DI 1 "small_symbolic_operand"))]
"TARGET_EXPLICIT_RELOCS && reload_completed"
[(set (match_dup 0)
(lo_sum:DI (match_dup 2) (match_dup 1)))]
"operands[2] = pic_offset_table_rtx;")
(define_split
[(set (match_operand:DI 0 "register_operand")
(match_operand:DI 1 "local_symbolic_operand"))]
"TARGET_EXPLICIT_RELOCS && reload_completed"
[(set (match_dup 0)
(plus:DI (match_dup 2) (high:DI (match_dup 1))))
(set (match_dup 0)
(lo_sum:DI (match_dup 0) (match_dup 1)))]
"operands[2] = pic_offset_table_rtx;")
(define_split
[(match_operand 0 "some_small_symbolic_operand")]
""
[(match_dup 0)]
"operands[0] = split_small_symbolic_operand (operands[0]);")
;; Accepts any symbolic, not just global, since function calls that
;; don't go via bsr still use !literal in hopes of linker relaxation.
(define_insn "movdi_er_high_g"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "symbolic_operand")
(match_operand 3 "const_int_operand")]
UNSPEC_LITERAL))]
"TARGET_EXPLICIT_RELOCS"
{
if (INTVAL (operands[3]) == 0)
return "ldq %0,%2(%1)\t\t!literal";
else
return "ldq %0,%2(%1)\t\t!literal!%3";
}
[(set_attr "type" "ldsym")])
(define_split
[(set (match_operand:DI 0 "register_operand")
(match_operand:DI 1 "global_symbolic_operand"))]
"TARGET_EXPLICIT_RELOCS && reload_completed"
[(set (match_dup 0)
(unspec:DI [(match_dup 2)
(match_dup 1)
(const_int 0)] UNSPEC_LITERAL))]
"operands[2] = pic_offset_table_rtx;")
(define_insn "movdi_er_tlsgd"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "symbolic_operand")
(match_operand 3 "const_int_operand")]
UNSPEC_TLSGD))]
"HAVE_AS_TLS"
{
if (INTVAL (operands[3]) == 0)
return "lda %0,%2(%1)\t\t!tlsgd";
else
return "lda %0,%2(%1)\t\t!tlsgd!%3";
})
(define_insn "movdi_er_tlsldm"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand 2 "const_int_operand")]
UNSPEC_TLSLDM))]
"HAVE_AS_TLS"
{
if (INTVAL (operands[2]) == 0)
return "lda %0,%&(%1)\t\t!tlsldm";
else
return "lda %0,%&(%1)\t\t!tlsldm!%2";
})
(define_insn "*movdi_er_gotdtp"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "symbolic_operand")]
UNSPEC_DTPREL))]
"HAVE_AS_TLS"
"ldq %0,%2(%1)\t\t!gotdtprel"
[(set_attr "type" "ild")
(set_attr "usegp" "yes")])
(define_split
[(set (match_operand:DI 0 "register_operand")
(match_operand:DI 1 "gotdtp_symbolic_operand"))]
"HAVE_AS_TLS && reload_completed"
[(set (match_dup 0)
(unspec:DI [(match_dup 2)
(match_dup 1)] UNSPEC_DTPREL))]
{
operands[1] = XVECEXP (XEXP (operands[1], 0), 0, 0);
operands[2] = pic_offset_table_rtx;
})
(define_insn "*movdi_er_gottp"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "symbolic_operand")]
UNSPEC_TPREL))]
"HAVE_AS_TLS"
"ldq %0,%2(%1)\t\t!gottprel"
[(set_attr "type" "ild")
(set_attr "usegp" "yes")])
(define_split
[(set (match_operand:DI 0 "register_operand")
(match_operand:DI 1 "gottp_symbolic_operand"))]
"HAVE_AS_TLS && reload_completed"
[(set (match_dup 0)
(unspec:DI [(match_dup 2)
(match_dup 1)] UNSPEC_TPREL))]
{
operands[1] = XVECEXP (XEXP (operands[1], 0), 0, 0);
operands[2] = pic_offset_table_rtx;
})
(define_insn "*movdi"
[(set (match_operand:DI 0 "nonimmediate_operand"
"=r,r,r,r,r,r,r,r, m, *f,*f, Q, r,*f")
(match_operand:DI 1 "input_operand"
"rJ,K,L,T,s,n,s,m,rJ,*fJ, Q,*f,*f, r"))]
"register_operand (operands[0], DImode)
|| reg_or_0_operand (operands[1], DImode)"
"@
mov %r1,%0
lda %0,%1($31)
ldah %0,%h1($31)
#
#
#
lda %0,%1
ldq%A1 %0,%1
stq%A0 %r1,%0
fmov %R1,%0
ldt %0,%1
stt %R1,%0
ftoit %1,%0
itoft %1,%0"
[(set_attr "type" "ilog,iadd,iadd,iadd,ldsym,multi,ldsym,ild,ist,fcpys,fld,fst,ftoi,itof")
(set_attr "isa" "*,*,*,er,er,*,ner,*,*,*,*,*,fix,fix")
(set_attr "usegp" "*,*,*,yes,*,*,*,*,*,*,*,*,*,*")])
;; VMS needs to set up "vms_base_regno" for unwinding. This move
;; often appears dead to the life analysis code, at which point we
;; die for emitting dead prologue instructions. Force this live.
(define_insn "force_movdi"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec_volatile:DI [(match_operand:DI 1 "register_operand" "r")]
UNSPECV_FORCE_MOV))]
""
"mov %1,%0"
[(set_attr "type" "ilog")])
;; We do three major things here: handle mem->mem, put 64-bit constants in
;; memory, and construct long 32-bit constants.
(define_expand "movdi"
[(set (match_operand:DI 0 "nonimmediate_operand")
(match_operand:DI 1 "general_operand"))]
""
{
if (alpha_expand_mov (DImode, operands))
DONE;
})
;; Split a load of a large constant into the appropriate two-insn
;; sequence.
(define_split
[(set (match_operand:DI 0 "register_operand")
(match_operand:DI 1 "non_add_const_operand"))]
""
[(const_int 0)]
{
if (alpha_split_const_mov (DImode, operands))
DONE;
else
FAIL;
})
;; We need to prevent reload from splitting TImode moves, because it
;; might decide to overwrite a pointer with the value it points to.
;; In that case we have to do the loads in the appropriate order so
;; that the pointer is not destroyed too early.
(define_insn_and_split "*movti_internal"
[(set (match_operand:TI 0 "nonimmediate_operand" "=r,o")
(match_operand:TI 1 "input_operand" "roJ,rJ"))]
"(register_operand (operands[0], TImode)
/* Prevent rematerialization of constants. */
&& ! CONSTANT_P (operands[1]))
|| reg_or_0_operand (operands[1], TImode)"
"#"
"reload_completed"
[(set (match_dup 0) (match_dup 2))
(set (match_dup 1) (match_dup 3))]
"alpha_split_tmode_pair (operands, TImode, true);")
(define_expand "movti"
[(set (match_operand:TI 0 "nonimmediate_operand")
(match_operand:TI 1 "general_operand"))]
""
{
if (MEM_P (operands[0])
&& ! reg_or_0_operand (operands[1], TImode))
operands[1] = force_reg (TImode, operands[1]);
if (operands[1] == const0_rtx)
;
/* We must put 64-bit constants in memory. We could keep the
32-bit constants in TImode and rely on the splitter, but
this doesn't seem to be worth the pain. */
else if (CONST_SCALAR_INT_P (operands[1]))
{
rtx in[2], out[2], target;
gcc_assert (can_create_pseudo_p ());
split_double (operands[1], &in[0], &in[1]);
if (in[0] == const0_rtx)
out[0] = const0_rtx;
else
{
out[0] = gen_reg_rtx (DImode);
emit_insn (gen_movdi (out[0], in[0]));
}
if (in[1] == const0_rtx)
out[1] = const0_rtx;
else
{
out[1] = gen_reg_rtx (DImode);
emit_insn (gen_movdi (out[1], in[1]));
}
if (!REG_P (operands[0]))
target = gen_reg_rtx (TImode);
else
target = operands[0];
emit_insn (gen_movdi (operand_subword (target, 0, 0, TImode), out[0]));
emit_insn (gen_movdi (operand_subword (target, 1, 0, TImode), out[1]));
if (target != operands[0])
emit_insn (gen_rtx_SET (operands[0], target));
DONE;
}
})
;; These are the partial-word cases.
;;
;; First we have the code to load an aligned word. Operand 0 is the register
;; in which to place the result. It's mode is QImode or HImode. Operand 1
;; is an SImode MEM at the low-order byte of the proper word. Operand 2 is the
;; number of bits within the word that the value is. Operand 3 is an SImode
;; scratch register. If operand 0 is a hard register, operand 3 may be the
;; same register. It is allowed to conflict with operand 1 as well.
(define_expand "aligned_loadqi"
[(set (match_operand:SI 3 "register_operand")
(match_operand:SI 1 "memory_operand"))
(set (match_operand:DI 0 "register_operand")
(zero_extract:DI (subreg:DI (match_dup 3) 0)
(const_int 8)
(match_operand:DI 2 "const_int_operand")))])
(define_expand "aligned_loadhi"
[(set (match_operand:SI 3 "register_operand")
(match_operand:SI 1 "memory_operand"))
(set (match_operand:DI 0 "register_operand")
(zero_extract:DI (subreg:DI (match_dup 3) 0)
(const_int 16)
(match_operand:DI 2 "const_int_operand")))])
;; Similar for unaligned loads, where we use the sequence from the
;; Alpha Architecture manual. We have to distinguish between little-endian
;; and big-endian systems as the sequences are different.
;;
;; Operand 1 is the address. Operands 2 and 3 are temporaries, where
;; operand 3 can overlap the input and output registers.
(define_expand "unaligned_loadqi"
[(set (match_operand:DI 2 "register_operand")
(mem:DI (and:DI (match_operand:DI 1 "address_operand")
(const_int -8))))
(set (match_operand:DI 3 "register_operand")
(match_dup 1))
(set (match_operand:DI 0 "register_operand")
(zero_extract:DI (match_dup 2)
(const_int 8)
(ashift:DI (match_dup 3) (const_int 3))))])
(define_expand "unaligned_loadhi"
[(set (match_operand:DI 2 "register_operand")
(mem:DI (and:DI (match_operand:DI 1 "address_operand")
(const_int -8))))
(set (match_operand:DI 3 "register_operand")
(match_dup 1))
(set (match_operand:DI 0 "register_operand")
(zero_extract:DI (match_dup 2)
(const_int 16)
(ashift:DI (match_dup 3) (const_int 3))))])
;; Storing an aligned byte or word requires two temporaries. Operand 0 is the
;; aligned SImode MEM. Operand 1 is the register containing the
;; byte or word to store. Operand 2 is the number of bits within the word that
;; the value should be placed. Operands 3 and 4 are SImode temporaries.
(define_expand "aligned_store"
[(set (match_operand:SI 3 "register_operand")
(match_operand:SI 0 "memory_operand"))
(set (subreg:DI (match_dup 3) 0)
(and:DI (subreg:DI (match_dup 3) 0) (match_dup 5)))
(set (subreg:DI (match_operand:SI 4 "register_operand") 0)
(ashift:DI (zero_extend:DI (match_operand 1 "register_operand"))
(match_operand:DI 2 "const_int_operand")))
(set (subreg:DI (match_dup 4) 0)
(ior:DI (subreg:DI (match_dup 4) 0) (subreg:DI (match_dup 3) 0)))
(set (match_dup 0) (match_dup 4))]
""
{
operands[5] = GEN_INT (~ (GET_MODE_MASK (GET_MODE (operands[1]))
<< INTVAL (operands[2])));
})
;; For the unaligned byte and halfword cases, we use code similar to that
;; in the ;; Architecture book, but reordered to lower the number of registers
;; required. Operand 0 is the address. Operand 1 is the data to store.
;; Operands 2, 3, and 4 are DImode temporaries, where operands 2 and 4 may
;; be the same temporary, if desired. If the address is in a register,
;; operand 2 can be that register.
(define_expand "@unaligned_store<mode>"
[(set (match_operand:DI 3 "register_operand")
(mem:DI (and:DI (match_operand:DI 0 "address_operand")
(const_int -8))))
(set (match_operand:DI 2 "register_operand")
(match_dup 0))
(set (match_dup 3)
(and:DI (not:DI (ashift:DI (match_dup 5)
(ashift:DI (match_dup 2) (const_int 3))))
(match_dup 3)))
(set (match_operand:DI 4 "register_operand")
(ashift:DI (zero_extend:DI
(match_operand:I12MODE 1 "register_operand"))
(ashift:DI (match_dup 2) (const_int 3))))
(set (match_dup 4) (ior:DI (match_dup 4) (match_dup 3)))
(set (mem:DI (and:DI (match_dup 0) (const_int -8)))
(match_dup 4))]
""
"operands[5] = GEN_INT (GET_MODE_MASK (<MODE>mode));")
;; Here are the define_expand's for QI and HI moves that use the above
;; patterns. We have the normal sets, plus the ones that need scratch
;; registers for reload.
(define_expand "mov<mode>"
[(set (match_operand:I12MODE 0 "nonimmediate_operand")
(match_operand:I12MODE 1 "general_operand"))]
""
{
if (TARGET_BWX
? alpha_expand_mov (<MODE>mode, operands)
: alpha_expand_mov_nobwx (<MODE>mode, operands))
DONE;
})
(define_insn "*movqi"
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,m")
(match_operand:QI 1 "input_operand" "rJ,n,m,rJ"))]
"register_operand (operands[0], QImode)
|| reg_or_0_operand (operands[1], QImode)"
"@
bis $31,%r1,%0
lda %0,%L1($31)
ldbu %0,%1
stb %r1,%0"
[(set_attr "type" "ilog,iadd,ild,ist")
(set_attr "isa" "*,*,bwx,bwx")])
(define_insn "*movhi"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,m")
(match_operand:HI 1 "input_operand" "rJ,n,m,rJ"))]
"register_operand (operands[0], HImode)
|| reg_or_0_operand (operands[1], HImode)"
"@
bis $31,%r1,%0
lda %0,%L1($31)
ldwu %0,%1
stw %r1,%0"
[(set_attr "type" "ilog,iadd,ild,ist")
(set_attr "isa" "*,*,bwx,bwx")])
;; We need to hook into the extra support that we have for HImode
;; reloads when BWX insns are not available.
(define_expand "movcqi"
[(set (match_operand:CQI 0 "nonimmediate_operand")
(match_operand:CQI 1 "general_operand"))]
"!TARGET_BWX"
{
if (GET_CODE (operands[0]) == CONCAT || GET_CODE (operands[1]) == CONCAT)
;
else if (!any_memory_operand (operands[0], CQImode))
{
if (!any_memory_operand (operands[1], CQImode))
{
emit_move_insn (gen_lowpart (HImode, operands[0]),
gen_lowpart (HImode, operands[1]));
DONE;
}
if (aligned_memory_operand (operands[1], CQImode))
{
bool done;
do_aligned1:
operands[1] = gen_lowpart (HImode, operands[1]);
do_aligned2:
operands[0] = gen_lowpart (HImode, operands[0]);
done = alpha_expand_mov_nobwx (HImode, operands);
gcc_assert (done);
DONE;
}
}
else if (aligned_memory_operand (operands[0], CQImode))
{
if (MEM_P (operands[1]))
{
rtx x = gen_reg_rtx (HImode);
emit_move_insn (gen_lowpart (CQImode, x), operands[1]);
operands[1] = x;
goto do_aligned2;
}
goto do_aligned1;
}
gcc_assert (!reload_in_progress);
emit_move_complex_parts (operands[0], operands[1]);
DONE;
})
;; Here are the versions for reload.
;;
;; The aligned input case is recognized early in alpha_secondary_reload
;; in order to avoid allocating an unnecessary scratch register.
;;
;; Note that in the unaligned cases we know that the operand must not be
;; a pseudo-register because stack slots are always aligned references.
(define_expand "reload_in<mode>"
[(parallel [(match_operand:RELOAD12 0 "register_operand" "=r")
(match_operand:RELOAD12 1 "any_memory_operand" "m")
(match_operand:TI 2 "register_operand" "=&r")])]
"!TARGET_BWX"
{
rtx scratch, seq, addr;
unsigned regno = REGNO (operands[2]);
/* It is possible that one of the registers we got for operands[2]
might coincide with that of operands[0] (which is why we made
it TImode). Pick the other one to use as our scratch. */
if (regno == REGNO (operands[0]))
regno++;
scratch = gen_rtx_REG (DImode, regno);
addr = get_unaligned_address (operands[1]);
operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));
seq = gen_unaligned_load<reloadmode> (operands[0], addr,
scratch, operands[0]);
alpha_set_memflags (seq, operands[1]);
emit_insn (seq);
DONE;
})
(define_expand "reload_out<mode>"
[(parallel [(match_operand:RELOAD12 0 "any_memory_operand" "=m")
(match_operand:RELOAD12 1 "register_operand" "r")
(match_operand:TI 2 "register_operand" "=&r")])]
"!TARGET_BWX"
{
unsigned regno = REGNO (operands[2]);
if (<MODE>mode == CQImode)
{
operands[0] = gen_lowpart (HImode, operands[0]);
operands[1] = gen_lowpart (HImode, operands[1]);
}
if (aligned_memory_operand (operands[0], <MODE>mode))
{
emit_insn (gen_reload_out<reloadmode>_aligned
(operands[0], operands[1],
gen_rtx_REG (SImode, regno),
gen_rtx_REG (SImode, regno + 1)));
}
else
{
rtx addr = get_unaligned_address (operands[0]);
rtx scratch1 = gen_rtx_REG (DImode, regno);
rtx scratch2 = gen_rtx_REG (DImode, regno + 1);
rtx scratch3 = scratch1;
rtx seq;
if (REG_P (addr))
scratch1 = addr;
seq = gen_unaligned_store<reloadmode> (addr, operands[1], scratch1,
scratch2, scratch3);
alpha_set_memflags (seq, operands[0]);
emit_insn (seq);
}
DONE;
})
;; Helpers for the above. The way reload is structured, we can't
;; always get a proper address for a stack slot during reload_foo
;; expansion, so we must delay our address manipulations until after.
(define_insn_and_split "@reload_in<mode>_aligned"
[(set (match_operand:I12MODE 0 "register_operand" "=r")
(match_operand:I12MODE 1 "memory_operand" "m"))]
"!TARGET_BWX && (reload_in_progress || reload_completed)"
"#"
"!TARGET_BWX && reload_completed"
[(const_int 0)]
{
rtx aligned_mem, bitnum;
get_aligned_mem (operands[1], &aligned_mem, &bitnum);
emit_insn (gen_aligned_load<reloadmode>
(gen_lowpart (DImode, operands[0]), aligned_mem, bitnum,
gen_rtx_REG (SImode, REGNO (operands[0]))));
DONE;
})
(define_insn_and_split "reload_out<mode>_aligned"
[(set (match_operand:I12MODE 0 "memory_operand" "=m")
(match_operand:I12MODE 1 "register_operand" "r"))
(clobber (match_operand:SI 2 "register_operand" "=&r"))
(clobber (match_operand:SI 3 "register_operand" "=&r"))]
"!TARGET_BWX && (reload_in_progress || reload_completed)"
"#"
"!TARGET_BWX && reload_completed"
[(const_int 0)]
{
rtx aligned_mem, bitnum;
get_aligned_mem (operands[0], &aligned_mem, &bitnum);
emit_insn (gen_aligned_store (aligned_mem, operands[1], bitnum,
operands[2], operands[3]));
DONE;
})
;; Vector operations
(define_mode_iterator VEC [V8QI V4HI V2SI])
(define_mode_iterator VEC12 [V8QI V4HI])
(define_expand "mov<mode>"
[(set (match_operand:VEC 0 "nonimmediate_operand")
(match_operand:VEC 1 "general_operand"))]
""
{
if (alpha_expand_mov (<MODE>mode, operands))
DONE;
})
(define_split
[(set (match_operand:VEC 0 "register_operand")
(match_operand:VEC 1 "non_zero_const_operand"))]
""
[(const_int 0)]
{
if (alpha_split_const_mov (<MODE>mode, operands))
DONE;
else
FAIL;
})
(define_expand "movmisalign<mode>"
[(set (match_operand:VEC 0 "nonimmediate_operand")
(match_operand:VEC 1 "general_operand"))]
""
{
alpha_expand_movmisalign (<MODE>mode, operands);
DONE;
})
(define_insn "*mov<mode>_fix"
[(set (match_operand:VEC 0 "nonimmediate_operand" "=r,r,r,m,*f,*f,m,r,*f")
(match_operand:VEC 1 "input_operand" "rW,i,m,rW,*fW,m,*f,*f,r"))]
"register_operand (operands[0], <MODE>mode)
|| reg_or_0_operand (operands[1], <MODE>mode)"
"@
bis $31,%r1,%0
#
ldq %0,%1
stq %r1,%0
cpys %R1,%R1,%0
ldt %0,%1
stt %R1,%0
ftoit %1,%0
itoft %1,%0"
[(set_attr "type" "ilog,multi,ild,ist,fcpys,fld,fst,ftoi,itof")
(set_attr "isa" "*,*,*,*,*,*,*,fix,fix")])
(define_insn "<code><mode>3"
[(set (match_operand:VEC12 0 "register_operand" "=r")
(any_maxmin:VEC12
(match_operand:VEC12 1 "reg_or_0_operand" "rW")
(match_operand:VEC12 2 "reg_or_0_operand" "rW")))]
"TARGET_MAX"
"<maxmin><modesuffix> %r1,%r2,%0"
[(set_attr "type" "mvi")])
(define_insn "one_cmpl<mode>2"
[(set (match_operand:VEC 0 "register_operand" "=r")
(not:VEC (match_operand:VEC 1 "register_operand" "r")))]
""
"ornot $31,%1,%0"
[(set_attr "type" "ilog")])
(define_insn "and<mode>3"
[(set (match_operand:VEC 0 "register_operand" "=r")
(and:VEC (match_operand:VEC 1 "register_operand" "r")
(match_operand:VEC 2 "register_operand" "r")))]
""
"and %1,%2,%0"
[(set_attr "type" "ilog")])
(define_insn "*andnot<mode>3"
[(set (match_operand:VEC 0 "register_operand" "=r")
(and:VEC (not:VEC (match_operand:VEC 1 "register_operand" "r"))
(match_operand:VEC 2 "register_operand" "r")))]
""
"bic %2,%1,%0"
[(set_attr "type" "ilog")])
(define_insn "ior<mode>3"
[(set (match_operand:VEC 0 "register_operand" "=r")
(ior:VEC (match_operand:VEC 1 "register_operand" "r")
(match_operand:VEC 2 "register_operand" "r")))]
""
"bis %1,%2,%0"
[(set_attr "type" "ilog")])
(define_insn "*iornot<mode>3"
[(set (match_operand:VEC 0 "register_operand" "=r")
(ior:VEC (not:DI (match_operand:VEC 1 "register_operand" "r"))
(match_operand:VEC 2 "register_operand" "r")))]
""
"ornot %2,%1,%0"
[(set_attr "type" "ilog")])
(define_insn "xor<mode>3"
[(set (match_operand:VEC 0 "register_operand" "=r")
(xor:VEC (match_operand:VEC 1 "register_operand" "r")
(match_operand:VEC 2 "register_operand" "r")))]
""
"xor %1,%2,%0"
[(set_attr "type" "ilog")])
(define_insn "*xornot<mode>3"
[(set (match_operand:VEC 0 "register_operand" "=r")
(not:VEC (xor:VEC (match_operand:VEC 1 "register_operand" "r")
(match_operand:VEC 2 "register_operand" "r"))))]
""
"eqv %1,%2,%0"
[(set_attr "type" "ilog")])
(define_expand "vec_shl_<mode>"
[(set (match_operand:VEC 0 "register_operand")
(ashift:DI (match_operand:VEC 1 "register_operand")
(match_operand:DI 2 "reg_or_6bit_operand")))]
""
{
operands[0] = gen_lowpart (DImode, operands[0]);
operands[1] = gen_lowpart (DImode, operands[1]);
})
(define_expand "vec_shr_<mode>"
[(set (match_operand:VEC 0 "register_operand")
(lshiftrt:DI (match_operand:VEC 1 "register_operand")
(match_operand:DI 2 "reg_or_6bit_operand")))]
""
{
operands[0] = gen_lowpart (DImode, operands[0]);
operands[1] = gen_lowpart (DImode, operands[1]);
})
;; Bit field extract patterns which use ext[wlq][lh]
(define_expand "extvmisaligndi"
[(set (match_operand:DI 0 "register_operand")
(sign_extract:DI (match_operand:BLK 1 "memory_operand")
(match_operand:DI 2 "const_int_operand")
(match_operand:DI 3 "const_int_operand")))]
""
{
/* We can do 16, 32 and 64 bit fields, if aligned on byte boundaries. */
if (INTVAL (operands[3]) % 8 != 0
|| (INTVAL (operands[2]) != 16
&& INTVAL (operands[2]) != 32
&& INTVAL (operands[2]) != 64))
FAIL;
alpha_expand_unaligned_load (operands[0], operands[1],
INTVAL (operands[2]) / 8,
INTVAL (operands[3]) / 8, 1);
DONE;
})
(define_expand "extzvdi"
[(set (match_operand:DI 0 "register_operand")
(zero_extract:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "const_int_operand")
(match_operand:DI 3 "const_int_operand")))]
""
{
/* We can do 8, 16, 32 and 64 bit fields, if aligned on byte boundaries. */
if (INTVAL (operands[3]) % 8 != 0
|| (INTVAL (operands[2]) != 8
&& INTVAL (operands[2]) != 16
&& INTVAL (operands[2]) != 32
&& INTVAL (operands[2]) != 64))
FAIL;
})
(define_expand "extzvmisaligndi"
[(set (match_operand:DI 0 "register_operand")
(zero_extract:DI (match_operand:BLK 1 "memory_operand")
(match_operand:DI 2 "const_int_operand")
(match_operand:DI 3 "const_int_operand")))]
""
{
/* We can do 16, 32 and 64 bit fields, if aligned on byte boundaries.
We fail 8-bit fields, falling back on a simple byte load. */
if (INTVAL (operands[3]) % 8 != 0
|| (INTVAL (operands[2]) != 16
&& INTVAL (operands[2]) != 32
&& INTVAL (operands[2]) != 64))
FAIL;
alpha_expand_unaligned_load (operands[0], operands[1],
INTVAL (operands[2]) / 8,
INTVAL (operands[3]) / 8, 0);
DONE;
})
(define_expand "insvmisaligndi"
[(set (zero_extract:DI (match_operand:BLK 0 "memory_operand")
(match_operand:DI 1 "const_int_operand")
(match_operand:DI 2 "const_int_operand"))
(match_operand:DI 3 "register_operand"))]
""
{
/* We can do 16, 32 and 64 bit fields, if aligned on byte boundaries. */
if (INTVAL (operands[2]) % 8 != 0
|| (INTVAL (operands[1]) != 16
&& INTVAL (operands[1]) != 32
&& INTVAL (operands[1]) != 64))
FAIL;
alpha_expand_unaligned_store (operands[0], operands[3],
INTVAL (operands[1]) / 8,
INTVAL (operands[2]) / 8);
DONE;
})
;; Block move/clear, see alpha.c for more details.
;; Argument 0 is the destination
;; Argument 1 is the source
;; Argument 2 is the length
;; Argument 3 is the alignment
(define_expand "cpymemqi"
[(parallel [(set (match_operand:BLK 0 "memory_operand")
(match_operand:BLK 1 "memory_operand"))
(use (match_operand:DI 2 "immediate_operand"))
(use (match_operand:DI 3 "immediate_operand"))])]
""
{
if (alpha_expand_block_move (operands))
DONE;
else
FAIL;
})
(define_expand "cpymemdi"
[(parallel [(set (match_operand:BLK 0 "memory_operand")
(match_operand:BLK 1 "memory_operand"))
(use (match_operand:DI 2 "immediate_operand"))
(use (match_operand:DI 3 "immediate_operand"))
(use (match_dup 4))
(clobber (reg:DI 25))
(clobber (reg:DI 16))
(clobber (reg:DI 17))
(clobber (reg:DI 18))
(clobber (reg:DI 19))
(clobber (reg:DI 20))
(clobber (reg:DI 26))
(clobber (reg:DI 27))])]
"TARGET_ABI_OPEN_VMS"
"operands[4] = gen_rtx_SYMBOL_REF (Pmode, \"OTS$MOVE\");")
(define_insn "*cpymemdi_1"
[(set (match_operand:BLK 0 "memory_operand" "=m,m")
(match_operand:BLK 1 "memory_operand" "m,m"))
(use (match_operand:DI 2 "nonmemory_operand" "r,i"))
(use (match_operand:DI 3 "immediate_operand"))
(use (match_operand:DI 4 "call_operand" "i,i"))
(clobber (reg:DI 25))
(clobber (reg:DI 16))
(clobber (reg:DI 17))
(clobber (reg:DI 18))
(clobber (reg:DI 19))
(clobber (reg:DI 20))
(clobber (reg:DI 26))
(clobber (reg:DI 27))]
"TARGET_ABI_OPEN_VMS"
{
operands [5] = alpha_use_linkage (operands [4], false, true);
switch (which_alternative)
{
case 0:
return "lda $16,%0\;bis $31,%2,$17\;lda $18,%1\;ldq $26,%5\;lda $25,3($31)\;jsr $26,%4\;ldq $27,0($29)";
case 1:
return "lda $16,%0\;lda $17,%2($31)\;lda $18,%1\;ldq $26,%5\;lda $25,3($31)\;jsr $26,%4\;ldq $27,0($29)";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "multi")
(set_attr "length" "28")])
(define_expand "setmemqi"
[(parallel [(set (match_operand:BLK 0 "memory_operand")
(match_operand 2 "const_int_operand"))
(use (match_operand:DI 1 "immediate_operand"))
(use (match_operand:DI 3 "immediate_operand"))])]
""
{
/* If value to set is not zero, use the library routine. */
if (operands[2] != const0_rtx)
FAIL;
if (alpha_expand_block_clear (operands))
DONE;
else
FAIL;
})
(define_expand "setmemdi"
[(parallel [(set (match_operand:BLK 0 "memory_operand")
(match_operand 2 "const_int_operand"))
(use (match_operand:DI 1 "immediate_operand"))
(use (match_operand:DI 3 "immediate_operand"))
(use (match_dup 4))
(clobber (reg:DI 25))
(clobber (reg:DI 16))
(clobber (reg:DI 17))
(clobber (reg:DI 26))
(clobber (reg:DI 27))])]
"TARGET_ABI_OPEN_VMS"
{
/* If value to set is not zero, use the library routine. */
if (operands[2] != const0_rtx)
FAIL;
operands[4] = gen_rtx_SYMBOL_REF (Pmode, "OTS$ZERO");
})
(define_insn "*clrmemdi_1"
[(set (match_operand:BLK 0 "memory_operand" "=m,m")
(const_int 0))
(use (match_operand:DI 1 "nonmemory_operand" "r,i"))
(use (match_operand:DI 2 "immediate_operand"))
(use (match_operand:DI 3 "call_operand" "i,i"))
(clobber (reg:DI 25))
(clobber (reg:DI 16))
(clobber (reg:DI 17))
(clobber (reg:DI 26))
(clobber (reg:DI 27))]
"TARGET_ABI_OPEN_VMS"
{
operands [4] = alpha_use_linkage (operands [3], false, true);
switch (which_alternative)
{
case 0:
return "lda $16,%0\;bis $31,%1,$17\;ldq $26,%4\;lda $25,2($31)\;jsr $26,%3\;ldq $27,0($29)";
case 1:
return "lda $16,%0\;lda $17,%1($31)\;ldq $26,%4\;lda $25,2($31)\;jsr $26,%3\;ldq $27,0($29)";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "multi")
(set_attr "length" "24")])
;; Subroutine of stack space allocation. Perform a stack probe.
(define_expand "stack_probe_internal"
[(set (match_dup 1) (match_operand:DI 0 "const_int_operand"))]
""
{
operands[1] = gen_rtx_MEM (DImode, plus_constant (Pmode, stack_pointer_rtx,
INTVAL (operands[0])));
MEM_VOLATILE_P (operands[1]) = 1;
operands[0] = const0_rtx;
})
;; This is how we allocate stack space. If we are allocating a
;; constant amount of space and we know it is less than 4096
;; bytes, we need do nothing.
;;
;; If it is more than 4096 bytes, we need to probe the stack
;; periodically.
(define_expand "allocate_stack"
[(set (reg:DI 30)
(plus:DI (reg:DI 30)
(match_operand:DI 1 "reg_or_cint_operand")))
(set (match_operand:DI 0 "register_operand" "=r")
(match_dup 2))]
""
{
if (CONST_INT_P (operands[1])
&& INTVAL (operands[1]) < 32768)
{
if (INTVAL (operands[1]) >= 4096)
{
/* We do this the same way as in the prologue and generate explicit
probes. Then we update the stack by the constant. */
int probed = 4096;
emit_insn (gen_stack_probe_internal (GEN_INT (- probed)));
while (probed + 8192 < INTVAL (operands[1]))
emit_insn (gen_stack_probe_internal
(GEN_INT (- (probed += 8192))));
if (probed + 4096 < INTVAL (operands[1]))
emit_insn (gen_stack_probe_internal
(GEN_INT (- INTVAL(operands[1]))));
}
operands[1] = GEN_INT (- INTVAL (operands[1]));
operands[2] = virtual_stack_dynamic_rtx;
}
else
{
rtx_code_label *out_label = 0;
rtx_code_label *loop_label = gen_label_rtx ();
rtx want = gen_reg_rtx (Pmode);
rtx tmp = gen_reg_rtx (Pmode);
rtx memref, test;
emit_insn (gen_subdi3 (want, stack_pointer_rtx,
force_reg (Pmode, operands[1])));
if (!CONST_INT_P (operands[1]))
{
rtx limit = GEN_INT (4096);
out_label = gen_label_rtx ();
test = gen_rtx_LTU (VOIDmode, operands[1], limit);
emit_jump_insn
(gen_cbranchdi4 (test, operands[1], limit, out_label));
}
emit_insn (gen_adddi3 (tmp, stack_pointer_rtx, GEN_INT (-4096)));
emit_label (loop_label);
memref = gen_rtx_MEM (DImode, tmp);
MEM_VOLATILE_P (memref) = 1;
emit_move_insn (memref, const0_rtx);
emit_insn (gen_adddi3 (tmp, tmp, GEN_INT(-8192)));
test = gen_rtx_GTU (VOIDmode, tmp, want);
emit_jump_insn (gen_cbranchdi4 (test, tmp, want, loop_label));
memref = gen_rtx_MEM (DImode, want);
MEM_VOLATILE_P (memref) = 1;
emit_move_insn (memref, const0_rtx);
if (out_label)
emit_label (out_label);
emit_move_insn (stack_pointer_rtx, want);
emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
DONE;
}
})
;; This is used by alpha_expand_prolog to do the same thing as above,
;; except we cannot at that time generate new basic blocks, so we hide
;; the loop in this one insn.
(define_insn "prologue_stack_probe_loop"
[(unspec_volatile [(match_operand:DI 0 "register_operand" "r")
(match_operand:DI 1 "register_operand" "r")]
UNSPECV_PSPL)]
""
{
operands[2] = gen_label_rtx ();
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (operands[2]));
return "stq $31,-8192(%1)\;subq %0,1,%0\;lda %1,-8192(%1)\;bne %0,%l2";
}
[(set_attr "length" "16")
(set_attr "type" "multi")])
(define_expand "prologue"
[(const_int 0)]
""
{
alpha_expand_prologue ();
DONE;
})
;; These take care of emitting the ldgp insn in the prologue. This will be
;; an lda/ldah pair and we want to align them properly. So we have two
;; unspec_volatile insns, the first of which emits the ldgp assembler macro
;; and the second of which emits nothing. However, both are marked as type
;; IADD (the default) so the alignment code in alpha.c does the right thing
;; with them.
(define_expand "prologue_ldgp"
[(set (match_dup 0)
(unspec_volatile:DI [(match_dup 1) (match_dup 2)] UNSPECV_LDGP1))
(set (match_dup 0)
(unspec_volatile:DI [(match_dup 0) (match_dup 2)] UNSPECV_PLDGP2))]
""
{
operands[0] = pic_offset_table_rtx;
operands[1] = gen_rtx_REG (Pmode, 27);
operands[2] = (TARGET_EXPLICIT_RELOCS
? GEN_INT (alpha_next_sequence_number++)
: const0_rtx);
})
(define_insn "*ldgp_er_1"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec_volatile:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand 2 "const_int_operand")]
UNSPECV_LDGP1))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"ldah %0,0(%1)\t\t!gpdisp!%2"
[(set_attr "cannot_copy" "true")])
(define_insn "*ldgp_er_2"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand 2 "const_int_operand")]
UNSPEC_LDGP2))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"lda %0,0(%1)\t\t!gpdisp!%2"
[(set_attr "cannot_copy" "true")])
(define_insn "*prologue_ldgp_er_2"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec_volatile:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand 2 "const_int_operand")]
UNSPECV_PLDGP2))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"lda %0,0(%1)\t\t!gpdisp!%2\n$%~..ng:"
[(set_attr "cannot_copy" "true")])
(define_insn "*prologue_ldgp_1"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec_volatile:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand 2 "const_int_operand")]
UNSPECV_LDGP1))]
""
"ldgp %0,0(%1)\n$%~..ng:"
[(set_attr "cannot_copy" "true")])
(define_insn "*prologue_ldgp_2"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec_volatile:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand 2 "const_int_operand")]
UNSPECV_PLDGP2))]
""
)
;; The _mcount profiling hook has special calling conventions, and
;; does not clobber all the registers that a normal call would. So
;; hide the fact this is a call at all.
(define_insn "prologue_mcount"
[(unspec_volatile [(const_int 0)] UNSPECV_MCOUNT)]
""
{
if (TARGET_EXPLICIT_RELOCS)
/* Note that we cannot use a lituse_jsr reloc, since _mcount
cannot be called via the PLT. */
return "ldq $28,_mcount($29)\t\t!literal\;jsr $28,($28),_mcount";
else
return "lda $28,_mcount\;jsr $28,($28),_mcount";
}
[(set_attr "type" "multi")
(set_attr "length" "8")])
(define_insn "init_fp"
[(set (match_operand:DI 0 "register_operand" "=r")
(match_operand:DI 1 "register_operand" "r"))
(clobber (mem:BLK (match_operand:DI 2 "register_operand" "=r")))]
""
"bis $31,%1,%0")
(define_expand "epilogue"
[(return)]
""
"alpha_expand_epilogue ();")
(define_expand "sibcall_epilogue"
[(return)]
"TARGET_ABI_OSF"
{
alpha_expand_epilogue ();
DONE;
})
(define_expand "builtin_longjmp"
[(use (match_operand:DI 0 "register_operand" "r"))]
"TARGET_ABI_OSF"
{
/* The elements of the buffer are, in order: */
rtx fp = gen_rtx_MEM (Pmode, operands[0]);
rtx lab = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 8));
rtx stack = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 16));
rtx pv = gen_rtx_REG (Pmode, 27);
/* This bit is the same as expand_builtin_longjmp. */
emit_move_insn (hard_frame_pointer_rtx, fp);
emit_move_insn (pv, lab);
emit_stack_restore (SAVE_NONLOCAL, stack);
emit_use (hard_frame_pointer_rtx);
emit_use (stack_pointer_rtx);
/* Load the label we are jumping through into $27 so that we know
where to look for it when we get back to setjmp's function for
restoring the gp. */
emit_jump_insn (gen_builtin_longjmp_internal (pv));
emit_barrier ();
DONE;
})
;; This is effectively a copy of indirect_jump, but constrained such
;; that register renaming cannot foil our cunning plan with $27.
(define_insn "builtin_longjmp_internal"
[(set (pc)
(unspec_volatile [(match_operand:DI 0 "register_operand" "c")]
UNSPECV_LONGJMP))]
""
"jmp $31,(%0),0"
[(set_attr "type" "ibr")])
(define_expand "builtin_setjmp_receiver"
[(unspec_volatile [(label_ref (match_operand 0))] UNSPECV_SETJMPR)]
"TARGET_ABI_OSF")
(define_insn_and_split "*builtin_setjmp_receiver_1"
[(unspec_volatile [(match_operand 0)] UNSPECV_SETJMPR)]
"TARGET_ABI_OSF"
{
if (TARGET_EXPLICIT_RELOCS)
return "#";
else
return "br $27,$LSJ%=\n$LSJ%=:\;ldgp $29,0($27)";
}
"&& TARGET_EXPLICIT_RELOCS && reload_completed"
[(set (match_dup 1)
(unspec_volatile:DI [(match_dup 2) (match_dup 3)] UNSPECV_LDGP1))
(set (match_dup 1)
(unspec:DI [(match_dup 1) (match_dup 3)] UNSPEC_LDGP2))]
{
if (prev_nonnote_insn (curr_insn) != XEXP (operands[0], 0))
emit_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode, gen_rtvec (1, operands[0]),
UNSPECV_SETJMPR_ER));
operands[1] = pic_offset_table_rtx;
operands[2] = gen_rtx_REG (Pmode, 27);
operands[3] = GEN_INT (alpha_next_sequence_number++);
}
[(set_attr "length" "12")
(set_attr "type" "multi")])
(define_insn "*builtin_setjmp_receiver_er_sl_1"
[(unspec_volatile [(match_operand 0)] UNSPECV_SETJMPR_ER)]
"TARGET_ABI_OSF && TARGET_EXPLICIT_RELOCS"
"lda $27,$LSJ%=-%l0($27)\n$LSJ%=:")
;; When flag_reorder_blocks_and_partition is in effect, compiler puts
;; exception landing pads in a cold section. To prevent inter-section offset
;; calculation, a jump to original landing pad is emitted in the place of the
;; original landing pad. Since landing pad is moved, RA-relative GP
;; calculation in the prologue of landing pad breaks. To solve this problem,
;; we use alternative GP load approach.
(define_expand "exception_receiver"
[(unspec_volatile [(match_dup 0)] UNSPECV_EHR)]
"TARGET_ABI_OSF"
{
if (flag_reorder_blocks_and_partition)
operands[0] = copy_rtx (alpha_gp_save_rtx ());
else
operands[0] = const0_rtx;
})
(define_insn "*exception_receiver_2"
[(unspec_volatile [(match_operand:DI 0 "memory_operand" "m")] UNSPECV_EHR)]
"TARGET_ABI_OSF && flag_reorder_blocks_and_partition"
"ldq $29,%0"
[(set_attr "type" "ild")])
(define_insn_and_split "*exception_receiver_1"
[(unspec_volatile [(const_int 0)] UNSPECV_EHR)]
"TARGET_ABI_OSF"
{
if (TARGET_EXPLICIT_RELOCS)
return "#";
else
return "ldgp $29,0($26)";
}
"&& TARGET_EXPLICIT_RELOCS && reload_completed"
[(set (match_dup 0)
(unspec_volatile:DI [(match_dup 1) (match_dup 2)] UNSPECV_LDGP1))
(set (match_dup 0)
(unspec:DI [(match_dup 0) (match_dup 2)] UNSPEC_LDGP2))]
{
operands[0] = pic_offset_table_rtx;
operands[1] = gen_rtx_REG (Pmode, 26);
operands[2] = GEN_INT (alpha_next_sequence_number++);
}
[(set_attr "length" "8")
(set_attr "type" "multi")])
(define_expand "nonlocal_goto_receiver"
[(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)
(set (reg:DI 27) (mem:DI (reg:DI 29)))
(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)
(use (reg:DI 27))]
"TARGET_ABI_OPEN_VMS")
(define_insn "arg_home"
[(unspec [(const_int 0)] UNSPEC_ARG_HOME)
(use (reg:DI 1))
(use (reg:DI 25))
(use (reg:DI 16))
(use (reg:DI 17))
(use (reg:DI 18))
(use (reg:DI 19))
(use (reg:DI 20))
(use (reg:DI 21))
(use (reg:DI 48))
(use (reg:DI 49))
(use (reg:DI 50))
(use (reg:DI 51))
(use (reg:DI 52))
(use (reg:DI 53))
(clobber (mem:BLK (const_int 0)))
(clobber (reg:DI 24))
(clobber (reg:DI 25))
(clobber (reg:DI 0))]
"TARGET_ABI_OPEN_VMS"
"lda $0,OTS$HOME_ARGS\;ldq $0,8($0)\;jsr $0,OTS$HOME_ARGS"
[(set_attr "length" "16")
(set_attr "type" "multi")])
;; Prefetch data.
;;
;; On EV4, these instructions are nops -- no load occurs.
;;
;; On EV5, these instructions act as a normal load, and thus can trap
;; if the address is invalid. The OS may (or may not) handle this in
;; the entMM fault handler and suppress the fault. If so, then this
;; has the effect of a read prefetch instruction.
;;
;; On EV6, these become official prefetch instructions.
(define_insn "prefetch"
[(prefetch (match_operand:DI 0 "address_operand" "p")
(match_operand:DI 1 "const_int_operand" "n")
(match_operand:DI 2 "const_int_operand" "n"))]
"TARGET_FIXUP_EV5_PREFETCH || alpha_cpu == PROCESSOR_EV6"
{
/* Interpret "no temporal locality" as this data should be evicted once
it is used. The "evict next" alternatives load the data into the cache
and leave the LRU eviction counter pointing to that block. */
static const char * const alt[2][2] = {
{
"ldq $31,%a0", /* read, evict next */
"ldl $31,%a0", /* read, evict last */
},
{
"ldt $f31,%a0", /* write, evict next */
"lds $f31,%a0", /* write, evict last */
}
};
bool write = INTVAL (operands[1]) != 0;
bool lru = INTVAL (operands[2]) != 0;
return alt[write][lru];
}
[(set_attr "type" "ild")])
;; Close the trap shadow of preceding instructions. This is generated
;; by alpha_reorg.
(define_insn "trapb"
[(unspec_volatile [(const_int 0)] UNSPECV_TRAPB)]
""
"trapb"
[(set_attr "type" "misc")])
;; No-op instructions used by machine-dependent reorg to preserve
;; alignment for instruction issue.
;; The Unicos/Mk assembler does not support these opcodes.
(define_insn "nop"
[(const_int 0)]
""
"bis $31,$31,$31"
[(set_attr "type" "ilog")])
(define_insn "fnop"
[(const_int 1)]
"TARGET_FP"
"cpys $f31,$f31,$f31"
[(set_attr "type" "fcpys")])
(define_insn "unop"
[(const_int 2)]
""
"ldq_u $31,0($30)")
(define_insn "realign"
[(unspec_volatile [(match_operand 0 "immediate_operand" "i")]
UNSPECV_REALIGN)]
""
".align %0 #realign")
;; Instructions to be emitted from __builtins.
(define_insn "builtin_cmpbge"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "reg_or_0_operand" "rJ")
(match_operand:DI 2 "reg_or_8bit_operand" "rI")]
UNSPEC_CMPBGE))]
""
"cmpbge %r1,%2,%0"
;; The EV6 data sheets list this as ILOG. OTOH, EV6 doesn't
;; actually differentiate between ILOG and ICMP in the schedule.
[(set_attr "type" "icmp")])
(define_expand "extbl"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_extxl (operands[0], operands[1], GEN_INT (8), operands[2]));
DONE;
})
(define_expand "extwl"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_extxl (operands[0], operands[1], GEN_INT (16), operands[2]));
DONE;
})
(define_expand "extll"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_extxl (operands[0], operands[1], GEN_INT (32), operands[2]));
DONE;
})
(define_expand "extql"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_extxl (operands[0], operands[1], GEN_INT (64), operands[2]));
DONE;
})
(define_expand "builtin_insbl"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
operands[1] = gen_lowpart (QImode, operands[1]);
emit_insn (gen_insbl (operands[0], operands[1], operands[2]));
DONE;
})
(define_expand "builtin_inswl"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
operands[1] = gen_lowpart (HImode, operands[1]);
emit_insn (gen_inswl (operands[0], operands[1], operands[2]));
DONE;
})
(define_expand "builtin_insll"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
operands[1] = gen_lowpart (SImode, operands[1]);
emit_insn (gen_insll (operands[0], operands[1], operands[2]));
DONE;
})
(define_expand "inswh"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_insxh (operands[0], operands[1], GEN_INT (16), operands[2]));
DONE;
})
(define_expand "inslh"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_insxh (operands[0], operands[1], GEN_INT (32), operands[2]));
DONE;
})
(define_expand "insqh"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_insxh (operands[0], operands[1], GEN_INT (64), operands[2]));
DONE;
})
(define_expand "mskbl"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
rtx mask = GEN_INT (0xff);
emit_insn (gen_mskxl (operands[0], operands[1], mask, operands[2]));
DONE;
})
(define_expand "mskwl"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
rtx mask = GEN_INT (0xffff);
emit_insn (gen_mskxl (operands[0], operands[1], mask, operands[2]));
DONE;
})
(define_expand "mskll"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
rtx mask = gen_int_mode (0xffffffff, DImode);
emit_insn (gen_mskxl (operands[0], operands[1], mask, operands[2]));
DONE;
})
(define_expand "mskql"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
rtx mask = constm1_rtx;
emit_insn (gen_mskxl (operands[0], operands[1], mask, operands[2]));
DONE;
})
(define_expand "mskwh"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_mskxh (operands[0], operands[1], GEN_INT (16), operands[2]));
DONE;
})
(define_expand "msklh"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_mskxh (operands[0], operands[1], GEN_INT (32), operands[2]));
DONE;
})
(define_expand "mskqh"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "register_operand")
(match_operand:DI 2 "reg_or_8bit_operand")]
""
{
emit_insn (gen_mskxh (operands[0], operands[1], GEN_INT (64), operands[2]));
DONE;
})
(define_expand "builtin_zap"
[(set (match_operand:DI 0 "register_operand")
(and:DI (unspec:DI
[(match_operand:DI 2 "reg_or_cint_operand")]
UNSPEC_ZAP)
(match_operand:DI 1 "reg_or_cint_operand")))]
""
{
if (CONST_INT_P (operands[2]))
{
rtx mask = alpha_expand_zap_mask (INTVAL (operands[2]));
if (mask == const0_rtx)
{
emit_move_insn (operands[0], const0_rtx);
DONE;
}
if (mask == constm1_rtx)
{
emit_move_insn (operands[0], operands[1]);
DONE;
}
operands[1] = force_reg (DImode, operands[1]);
emit_insn (gen_anddi3 (operands[0], operands[1], mask));
DONE;
}
operands[1] = force_reg (DImode, operands[1]);
operands[2] = gen_lowpart (QImode, operands[2]);
})
(define_insn "*builtin_zap_1"
[(set (match_operand:DI 0 "register_operand" "=r,r,r,r")
(and:DI (unspec:DI
[(match_operand:QI 2 "reg_or_cint_operand" "n,n,r,r")]
UNSPEC_ZAP)
(match_operand:DI 1 "reg_or_cint_operand" "n,r,J,r")))]
""
"@
#
#
bis $31,$31,%0
zap %r1,%2,%0"
[(set_attr "type" "shift,shift,ilog,shift")])
(define_split
[(set (match_operand:DI 0 "register_operand")
(and:DI (unspec:DI
[(match_operand:QI 2 "const_int_operand")]
UNSPEC_ZAP)
(match_operand:DI 1 "const_int_operand")))]
""
[(const_int 0)]
{
rtx mask = alpha_expand_zap_mask (INTVAL (operands[2]));
operands[1] = gen_int_mode (INTVAL (operands[1]) & INTVAL (mask), DImode);
emit_move_insn (operands[0], operands[1]);
DONE;
})
(define_split
[(set (match_operand:DI 0 "register_operand")
(and:DI (unspec:DI
[(match_operand:QI 2 "const_int_operand")]
UNSPEC_ZAP)
(match_operand:DI 1 "register_operand")))]
""
[(set (match_dup 0)
(and:DI (match_dup 1) (match_dup 2)))]
{
operands[2] = alpha_expand_zap_mask (INTVAL (operands[2]));
if (operands[2] == const0_rtx)
{
emit_move_insn (operands[0], const0_rtx);
DONE;
}
if (operands[2] == constm1_rtx)
{
emit_move_insn (operands[0], operands[1]);
DONE;
}
})
(define_expand "builtin_zapnot"
[(set (match_operand:DI 0 "register_operand")
(and:DI (unspec:DI
[(not:QI (match_operand:DI 2 "reg_or_cint_operand"))]
UNSPEC_ZAP)
(match_operand:DI 1 "reg_or_cint_operand")))]
""
{
if (CONST_INT_P (operands[2]))
{
rtx mask = alpha_expand_zap_mask (~ INTVAL (operands[2]));
if (mask == const0_rtx)
{
emit_move_insn (operands[0], const0_rtx);
DONE;
}
if (mask == constm1_rtx)
{
emit_move_insn (operands[0], operands[1]);
DONE;
}
operands[1] = force_reg (DImode, operands[1]);
emit_insn (gen_anddi3 (operands[0], operands[1], mask));
DONE;
}
operands[1] = force_reg (DImode, operands[1]);
operands[2] = gen_lowpart (QImode, operands[2]);
})
(define_insn "*builtin_zapnot_1"
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (unspec:DI
[(not:QI (match_operand:QI 2 "register_operand" "r"))]
UNSPEC_ZAP)
(match_operand:DI 1 "reg_or_0_operand" "rJ")))]
""
"zapnot %r1,%2,%0"
[(set_attr "type" "shift")])
(define_insn "builtin_amask"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "reg_or_8bit_operand" "rI")]
UNSPEC_AMASK))]
""
"amask %1,%0"
[(set_attr "type" "ilog")])
(define_insn "builtin_implver"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(const_int 0)] UNSPEC_IMPLVER))]
""
"implver %0"
[(set_attr "type" "ilog")])
(define_insn "builtin_rpcc"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec_volatile:DI [(const_int 0)] UNSPECV_RPCC))]
""
"rpcc %0"
[(set_attr "type" "ilog")])
(define_expand "builtin_minub8"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_uminv8qi3, V8QImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_expand "builtin_minsb8"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_sminv8qi3, V8QImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_expand "builtin_minuw4"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_uminv4hi3, V4HImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_expand "builtin_minsw4"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_sminv4hi3, V4HImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_expand "builtin_maxub8"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_umaxv8qi3, V8QImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_expand "builtin_maxsb8"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_smaxv8qi3, V8QImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_expand "builtin_maxuw4"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_umaxv4hi3, V4HImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_expand "builtin_maxsw4"
[(match_operand:DI 0 "register_operand")
(match_operand:DI 1 "reg_or_0_operand")
(match_operand:DI 2 "reg_or_0_operand")]
"TARGET_MAX"
{
alpha_expand_builtin_vector_binop (gen_smaxv4hi3, V4HImode, operands[0],
operands[1], operands[2]);
DONE;
})
(define_insn "builtin_perr"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "reg_or_0_operand" "%rJ")
(match_operand:DI 2 "reg_or_8bit_operand" "rJ")]
UNSPEC_PERR))]
"TARGET_MAX"
"perr %r1,%r2,%0"
[(set_attr "type" "mvi")])
(define_expand "builtin_pklb"
[(set (match_operand:DI 0 "register_operand")
(vec_concat:V8QI
(vec_concat:V4QI
(truncate:V2QI (match_operand:DI 1 "register_operand"))
(match_dup 2))
(match_dup 3)))]
"TARGET_MAX"
{
operands[0] = gen_lowpart (V8QImode, operands[0]);
operands[1] = gen_lowpart (V2SImode, operands[1]);
operands[2] = CONST0_RTX (V2QImode);
operands[3] = CONST0_RTX (V4QImode);
})
(define_insn "*pklb"
[(set (match_operand:V8QI 0 "register_operand" "=r")
(vec_concat:V8QI
(vec_concat:V4QI
(truncate:V2QI (match_operand:V2SI 1 "register_operand" "r"))
(match_operand:V2QI 2 "const0_operand"))
(match_operand:V4QI 3 "const0_operand")))]
"TARGET_MAX"
"pklb %r1,%0"
[(set_attr "type" "mvi")])
(define_expand "builtin_pkwb"
[(set (match_operand:DI 0 "register_operand")
(vec_concat:V8QI
(truncate:V4QI (match_operand:DI 1 "register_operand"))
(match_dup 2)))]
"TARGET_MAX"
{
operands[0] = gen_lowpart (V8QImode, operands[0]);
operands[1] = gen_lowpart (V4HImode, operands[1]);
operands[2] = CONST0_RTX (V4QImode);
})
(define_insn "*pkwb"
[(set (match_operand:V8QI 0 "register_operand" "=r")
(vec_concat:V8QI
(truncate:V4QI (match_operand:V4HI 1 "register_operand" "r"))
(match_operand:V4QI 2 "const0_operand")))]
"TARGET_MAX"
"pkwb %r1,%0"
[(set_attr "type" "mvi")])
(define_expand "builtin_unpkbl"
[(set (match_operand:DI 0 "register_operand")
(zero_extend:V2SI
(vec_select:V2QI (match_operand:DI 1 "register_operand")
(parallel [(const_int 0) (const_int 1)]))))]
"TARGET_MAX"
{
operands[0] = gen_lowpart (V2SImode, operands[0]);
operands[1] = gen_lowpart (V8QImode, operands[1]);
})
(define_insn "*unpkbl"
[(set (match_operand:V2SI 0 "register_operand" "=r")
(zero_extend:V2SI
(vec_select:V2QI (match_operand:V8QI 1 "reg_or_0_operand" "rW")
(parallel [(const_int 0) (const_int 1)]))))]
"TARGET_MAX"
"unpkbl %r1,%0"
[(set_attr "type" "mvi")])
(define_expand "builtin_unpkbw"
[(set (match_operand:DI 0 "register_operand")
(zero_extend:V4HI
(vec_select:V4QI (match_operand:DI 1 "register_operand")
(parallel [(const_int 0)
(const_int 1)
(const_int 2)
(const_int 3)]))))]
"TARGET_MAX"
{
operands[0] = gen_lowpart (V4HImode, operands[0]);
operands[1] = gen_lowpart (V8QImode, operands[1]);
})
(define_insn "*unpkbw"
[(set (match_operand:V4HI 0 "register_operand" "=r")
(zero_extend:V4HI
(vec_select:V4QI (match_operand:V8QI 1 "reg_or_0_operand" "rW")
(parallel [(const_int 0)
(const_int 1)
(const_int 2)
(const_int 3)]))))]
"TARGET_MAX"
"unpkbw %r1,%0"
[(set_attr "type" "mvi")])
(include "sync.md")
;; The call patterns are at the end of the file because their
;; wildcard operand0 interferes with nice recognition.
(define_insn "*call_value_osf_1_er_noreturn"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "call_operand" "c,R,s"))
(match_operand 2)))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF
&& find_reg_note (insn, REG_NORETURN, NULL_RTX)"
"@
jsr $26,($27),0
bsr $26,%1\t\t!samegp
ldq $27,%1($29)\t\t!literal!%#\;jsr $26,($27),%1\t\t!lituse_jsr!%#"
[(set_attr "type" "jsr")
(set_attr "length" "*,*,8")])
(define_insn "*call_value_osf_1_er"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "call_operand" "c,R,s"))
(match_operand 2)))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
jsr $26,(%1),0\;ldah $29,0($26)\t\t!gpdisp!%*\;lda $29,0($29)\t\t!gpdisp!%*
bsr $26,%1\t\t!samegp
ldq $27,%1($29)\t\t!literal!%#\;jsr $26,($27),0\t\t!lituse_jsr!%#\;ldah $29,0($26)\t\t!gpdisp!%*\;lda $29,0($29)\t\t!gpdisp!%*"
[(set_attr "type" "jsr")
(set_attr "length" "12,*,16")])
;; We must use peep2 instead of a split because we need accurate life
;; information for $gp. Consider the case of { bar(); while (1); }.
(define_peephole2
[(parallel [(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "call_operand"))
(match_operand 2)))
(use (reg:DI 29))
(clobber (reg:DI 26))])]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF && reload_completed
&& ! samegp_function_operand (operands[1], Pmode)
&& (peep2_regno_dead_p (1, 29)
|| find_reg_note (insn, REG_NORETURN, NULL_RTX))"
[(parallel [(set (match_dup 0)
(call (mem:DI (match_dup 3))
(match_dup 2)))
(use (reg:DI 29))
(use (match_dup 1))
(use (match_dup 4))
(clobber (reg:DI 26))])]
{
if (CONSTANT_P (operands[1]))
{
operands[3] = gen_rtx_REG (Pmode, 27);
operands[4] = GEN_INT (alpha_next_sequence_number++);
emit_insn (gen_movdi_er_high_g (operands[3], pic_offset_table_rtx,
operands[1], operands[4]));
}
else
{
operands[3] = operands[1];
operands[1] = const0_rtx;
operands[4] = const0_rtx;
}
})
(define_peephole2
[(parallel [(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "call_operand"))
(match_operand 2)))
(use (reg:DI 29))
(clobber (reg:DI 26))])]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF && reload_completed
&& ! samegp_function_operand (operands[1], Pmode)
&& ! (peep2_regno_dead_p (1, 29)
|| find_reg_note (insn, REG_NORETURN, NULL_RTX))"
[(parallel [(set (match_dup 0)
(call (mem:DI (match_dup 3))
(match_dup 2)))
(set (match_dup 6)
(unspec:DI [(match_dup 6) (match_dup 4)] UNSPEC_LDGP1))
(use (match_dup 1))
(use (match_dup 5))
(clobber (reg:DI 26))])
(set (match_dup 6)
(unspec:DI [(match_dup 6) (match_dup 4)] UNSPEC_LDGP2))]
{
if (CONSTANT_P (operands[1]))
{
operands[3] = gen_rtx_REG (Pmode, 27);
operands[5] = GEN_INT (alpha_next_sequence_number++);
emit_insn (gen_movdi_er_high_g (operands[3], pic_offset_table_rtx,
operands[1], operands[5]));
}
else
{
operands[3] = operands[1];
operands[1] = const0_rtx;
operands[5] = const0_rtx;
}
operands[4] = GEN_INT (alpha_next_sequence_number++);
operands[6] = pic_offset_table_rtx;
})
(define_insn "*call_value_osf_2_er_nogp"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "register_operand" "c"))
(match_operand 2)))
(use (reg:DI 29))
(use (match_operand 3))
(use (match_operand 4))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"jsr $26,(%1),%3%J4"
[(set_attr "type" "jsr")])
(define_insn "*call_value_osf_2_er"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "register_operand" "c"))
(match_operand 2)))
(set (reg:DI 29)
(unspec:DI [(reg:DI 29) (match_operand 5 "const_int_operand")]
UNSPEC_LDGP1))
(use (match_operand 3))
(use (match_operand 4))
(clobber (reg:DI 26))]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"jsr $26,(%1),%3%J4\;ldah $29,0($26)\t\t!gpdisp!%5"
[(set_attr "type" "jsr")
(set_attr "cannot_copy" "true")
(set_attr "length" "8")])
(define_insn "*call_value_osf_1_noreturn"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "call_operand" "c,R,s"))
(match_operand 2)))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"! TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF
&& find_reg_note (insn, REG_NORETURN, NULL_RTX)"
"@
jsr $26,($27),0
bsr $26,$%1..ng
jsr $26,%1"
[(set_attr "type" "jsr")
(set_attr "length" "*,*,8")])
(define_int_iterator TLS_CALL
[UNSPEC_TLSGD_CALL
UNSPEC_TLSLDM_CALL])
(define_int_attr tls
[(UNSPEC_TLSGD_CALL "tlsgd")
(UNSPEC_TLSLDM_CALL "tlsldm")])
(define_insn "call_value_osf_<tls>"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "symbolic_operand"))
(const_int 0)))
(unspec [(match_operand:DI 2 "const_int_operand")] TLS_CALL)
(use (reg:DI 29))
(clobber (reg:DI 26))]
"HAVE_AS_TLS"
"ldq $27,%1($29)\t\t!literal!%2\;jsr $26,($27),%1\t\t!lituse_<tls>!%2\;ldah $29,0($26)\t\t!gpdisp!%*\;lda $29,0($29)\t\t!gpdisp!%*"
[(set_attr "type" "jsr")
(set_attr "length" "16")])
;; We must use peep2 instead of a split because we need accurate life
;; information for $gp.
(define_peephole2
[(parallel
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "symbolic_operand"))
(const_int 0)))
(unspec [(match_operand:DI 2 "const_int_operand")] TLS_CALL)
(use (reg:DI 29))
(clobber (reg:DI 26))])]
"HAVE_AS_TLS && reload_completed
&& peep2_regno_dead_p (1, 29)"
[(set (match_dup 3)
(unspec:DI [(match_dup 5)
(match_dup 1)
(match_dup 2)] UNSPEC_LITERAL))
(parallel [(set (match_dup 0)
(call (mem:DI (match_dup 3))
(const_int 0)))
(use (match_dup 5))
(use (match_dup 1))
(use (unspec [(match_dup 2)] TLS_CALL))
(clobber (reg:DI 26))])
(set (match_dup 5)
(unspec:DI [(match_dup 5) (match_dup 4)] UNSPEC_LDGP2))]
{
operands[3] = gen_rtx_REG (Pmode, 27);
operands[4] = GEN_INT (alpha_next_sequence_number++);
operands[5] = pic_offset_table_rtx;
})
(define_peephole2
[(parallel
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "symbolic_operand"))
(const_int 0)))
(unspec [(match_operand:DI 2 "const_int_operand")] TLS_CALL)
(use (reg:DI 29))
(clobber (reg:DI 26))])]
"HAVE_AS_TLS && reload_completed
&& !peep2_regno_dead_p (1, 29)"
[(set (match_dup 3)
(unspec:DI [(match_dup 5)
(match_dup 1)
(match_dup 2)] UNSPEC_LITERAL))
(parallel [(set (match_dup 0)
(call (mem:DI (match_dup 3))
(const_int 0)))
(set (match_dup 5)
(unspec:DI [(match_dup 5) (match_dup 4)] UNSPEC_LDGP1))
(use (match_dup 1))
(use (unspec [(match_dup 2)] TLS_CALL))
(clobber (reg:DI 26))])
(set (match_dup 5)
(unspec:DI [(match_dup 5) (match_dup 4)] UNSPEC_LDGP2))]
{
operands[3] = gen_rtx_REG (Pmode, 27);
operands[4] = GEN_INT (alpha_next_sequence_number++);
operands[5] = pic_offset_table_rtx;
})
(define_insn "*call_value_osf_1"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "call_operand" "c,R,s"))
(match_operand 2)))
(use (reg:DI 29))
(clobber (reg:DI 26))]
"! TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
jsr $26,($27),0\;ldgp $29,0($26)
bsr $26,$%1..ng
jsr $26,%1\;ldgp $29,0($26)"
[(set_attr "type" "jsr")
(set_attr "length" "12,*,16")])
(define_insn "*sibcall_value_osf_1_er"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "symbolic_operand" "R,s"))
(match_operand 2)))
(unspec [(reg:DI 29)] UNSPEC_SIBCALL)]
"TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
br $31,%1\t\t!samegp
ldq $27,%1($29)\t\t!literal!%#\;jmp $31,($27),%1\t\t!lituse_jsr!%#"
[(set_attr "type" "jsr")
(set_attr "length" "*,8")])
(define_insn "*sibcall_value_osf_1"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "symbolic_operand" "R,s"))
(match_operand 2)))
(unspec [(reg:DI 29)] UNSPEC_SIBCALL)]
"! TARGET_EXPLICIT_RELOCS && TARGET_ABI_OSF"
"@
br $31,$%1..ng
lda $27,%1\;jmp $31,($27),%1"
[(set_attr "type" "jsr")
(set_attr "length" "*,8")])
; GAS relies on the order and position of instructions output below in order
; to generate relocs for VMS link to potentially optimize the call.
; Please do not molest.
(define_insn "*call_value_vms_1"
[(set (match_operand 0)
(call (mem:DI (match_operand:DI 1 "call_operand" "r,s"))
(match_operand 2)))
(use (match_operand:DI 3 "nonmemory_operand" "r,n"))
(use (reg:DI 25))
(use (reg:DI 26))
(clobber (reg:DI 27))]
"TARGET_ABI_OPEN_VMS"
{
switch (which_alternative)
{
case 0:
return "mov %3,$27\;jsr $26,0\;ldq $27,0($29)";
case 1:
operands [3] = alpha_use_linkage (operands [1], true, false);
operands [4] = alpha_use_linkage (operands [1], false, false);
return "ldq $26,%4\;ldq $27,%3\;jsr $26,%1\;ldq $27,0($29)";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "jsr")
(set_attr "length" "12,16")])