Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/* Target Definitions for TI C6X.
   Copyright (C) 2010-2020 Free Software Foundation, Inc.
   Contributed by Andrew Jenner <andrew@codesourcery.com>
   Contributed by Bernd Schmidt <bernds@codesourcery.com>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#ifndef GCC_C6X_H
#define GCC_C6X_H

/* Feature bit definitions that enable specific insns.  */
#define C6X_INSNS_C62X		1
#define C6X_INSNS_C64X		2
#define C6X_INSNS_C64XP		4
#define C6X_INSNS_C67X		8
#define C6X_INSNS_C67XP		16
#define C6X_INSNS_C674X		32
#define C6X_INSNS_ATOMIC	64
#define C6X_INSNS_ALL_CPU_BITS	127

#define C6X_DEFAULT_INSN_MASK						\
  (C6X_INSNS_C62X | C6X_INSNS_C64X | C6X_INSNS_C64XP)

/* A mask of allowed insn types, as defined above.  */
extern unsigned long c6x_insn_mask;

/* Value of -march= */
extern c6x_cpu_t c6x_arch;
#define C6X_DEFAULT_ARCH C6X_CPU_C64XP

/* True if the target has C64x instructions.  */
#define TARGET_INSNS_64		((c6x_insn_mask & C6X_INSNS_C64X) != 0)
/* True if the target has C64x+ instructions.  */
#define TARGET_INSNS_64PLUS	((c6x_insn_mask & C6X_INSNS_C64XP) != 0)
/* True if the target has C67x instructions.  */
#define TARGET_INSNS_67		((c6x_insn_mask & C6X_INSNS_C67X) != 0)
/* True if the target has C67x+ instructions.  */
#define TARGET_INSNS_67PLUS	((c6x_insn_mask & C6X_INSNS_C67XP) != 0)

/* True if the target supports doubleword loads.  */
#define TARGET_LDDW		(TARGET_INSNS_64 || TARGET_INSNS_67)
/* True if the target supports doubleword loads.  */
#define TARGET_STDW		TARGET_INSNS_64
/* True if the target supports the MPY32 family of instructions.  */
#define TARGET_MPY32		TARGET_INSNS_64PLUS
/* True if the target has floating point hardware.  */
#define TARGET_FP		TARGET_INSNS_67
/* True if the target has C67x+ floating point extensions.  */
#define TARGET_FP_EXT		TARGET_INSNS_67PLUS

#define TARGET_DEFAULT 0

/* Run-time Target.  */

#define TARGET_CPU_CPP_BUILTINS()		\
  do						\
    {						\
      builtin_assert ("machine=tic6x");		\
      builtin_assert ("cpu=tic6x");		\
      builtin_define ("__TMS320C6X__");		\
      builtin_define ("_TMS320C6X");		\
						\
      if (TARGET_DSBT)				\
	builtin_define ("__DSBT__");		\
						\
      if (TARGET_BIG_ENDIAN)			\
	builtin_define ("_BIG_ENDIAN");		\
      else					\
	builtin_define ("_LITTLE_ENDIAN");	\
						\
      switch (c6x_arch)				\
	{					\
	case unk_isa:				\
	  break;				\
	case C6X_CPU_C62X:			\
	  builtin_define ("_TMS320C6200");	\
	  break;				\
						\
	case C6X_CPU_C64XP:			\
	  builtin_define ("_TMS320C6400_PLUS");	\
	  /* fall through */			\
	case C6X_CPU_C64X:			\
	  builtin_define ("_TMS320C6400");	\
	  break;				\
						\
	case C6X_CPU_C67XP:			\
	  builtin_define ("_TMS320C6700_PLUS");	\
	  /* fall through */			\
	case C6X_CPU_C67X:			\
	  builtin_define ("_TMS320C6700");	\
	  break;				\
						\
	case C6X_CPU_C674X:			\
	  builtin_define ("_TMS320C6740");	\
	  builtin_define ("_TMS320C6700_PLUS");	\
	  builtin_define ("_TMS320C6700");	\
	  builtin_define ("_TMS320C6400_PLUS");	\
	  builtin_define ("_TMS320C6400");	\
	  break;				\
	}					\
    } while (0)

#define OPTION_DEFAULT_SPECS \
  {"arch", "%{!march=*:-march=%(VALUE)}" }

/* Storage Layout.  */

#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)

#define REG_WORDS_BIG_ENDIAN 0

#define UNITS_PER_WORD 4
#define PARM_BOUNDARY 8
#define STACK_BOUNDARY 64
#define FUNCTION_BOUNDARY 32
#define BIGGEST_ALIGNMENT 64
#define STRICT_ALIGNMENT 1

/* The ABI requires static arrays must be at least 8 byte aligned.
   Really only externally visible arrays must be aligned this way, as
   only those are directly visible from another compilation unit.  But
   we don't have that information available here.  */
#define DATA_ABI_ALIGNMENT(TYPE, ALIGN)					\
  (((ALIGN) < BITS_PER_UNIT * 8 && TREE_CODE (TYPE) == ARRAY_TYPE)	\
   ? BITS_PER_UNIT * 8 : (ALIGN))

/* Type Layout.  */

#define DEFAULT_SIGNED_CHAR 1

#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"

/* Registers.  */

#define FIRST_PSEUDO_REGISTER 67
#define FIXED_REGISTERS					\
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,	\
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
    1, 1, 1}
#define CALL_USED_REGISTERS				\
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,	\
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,	\
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
    1, 1, 1}

/* This lists call-used non-predicate registers first, followed by call-used
   registers, followed by predicate registers.  We want to avoid allocating
   the predicate registers for other uses as much as possible.  */
#define REG_ALLOC_ORDER							\
  {									\
    REG_A0, REG_A3, REG_A4, REG_A5, REG_A6, REG_A7, REG_A8, REG_A9,	\
    REG_A16, REG_A17, REG_A18, REG_A19, REG_A20, REG_A21, REG_A22, REG_A23, \
    REG_A24, REG_A25, REG_A26, REG_A27, REG_A28, REG_A29, REG_A30, REG_A31, \
    REG_B4, REG_B5, REG_B6, REG_B7, REG_B8, REG_B9, REG_B16,	\
    REG_B17, REG_B18, REG_B19, REG_B20, REG_B21, REG_B22, REG_B23, REG_B24, \
    REG_B25, REG_B26, REG_B27, REG_B28, REG_B29, REG_B30, REG_B31,	\
    REG_A10, REG_A11, REG_A12, REG_A13, REG_A14, REG_A15,		\
    REG_B3, REG_B10, REG_B11, REG_B12, REG_B13, REG_B14, REG_B15,	\
    REG_A1, REG_A2, REG_B0, REG_B1, REG_B2, REG_ILC			\
  }

/* Register Classes.  */

enum reg_class
  {
    NO_REGS,
    PREDICATE_A_REGS,
    PREDICATE_B_REGS,
    PREDICATE_REGS,
    PICREG,
    SPREG,
    CALL_USED_B_REGS,
    NONPREDICATE_A_REGS,
    NONPREDICATE_B_REGS,
    NONPREDICATE_REGS,
    A_REGS,
    B_REGS,
    GENERAL_REGS,
    ALL_REGS,
    LIM_REG_CLASSES
  };

#define N_REG_CLASSES (int) LIM_REG_CLASSES

#define REG_CLASS_NAMES {	  \
    "NO_REGS",			  \
    "PREDICATE_A_REGS",		  \
    "PREDICATE_B_REGS",		  \
    "PREDICATE_REGS",		  \
    "PICREG",			  \
    "SPREG",			  \
    "CALL_USED_B_REGS",		  \
    "NONPREDICATE_A_REGS",	  \
    "NONPREDICATE_B_REGS",	  \
    "NONPREDICATE_REGS",	  \
    "A_REGS",			  \
    "B_REGS",			  \
    "GENERAL_REGS",		  \
    "ALL_REGS" }

#define REG_CLASS_CONTENTS			\
{						\
  /* NO_REGS.  */				\
  { 0x00000000, 0x00000000, 0 },		\
  /* PREDICATE_A_REGS.  */			\
  { 0x00000006, 0x00000000, 0 },		\
  /* PREDICATE_B_REGS.  */			\
  { 0x00000000, 0x00000007, 0 },		\
  /* PREDICATE_REGS.  */			\
  { 0x00000006, 0x00000007, 0 },		\
  /* PICREG.  */				\
  { 0x00000000, 0x00004000, 0 },		\
  /* SPREG.  */					\
  { 0x00000000, 0x00008000, 0 },		\
  /* CALL_USED_B_REGS.  */			\
  { 0x00000000, 0xFFFF03FF, 0 },		\
  /* NONPREDICATE_A_REGS.  */			\
  { 0xFFFFFFF9, 0x00000000, 0 },		\
  /* NONPREDICATE_B_REGS.  */			\
  { 0x00000000, 0xFFFFFFF8, 0 },		\
  /* NONPREDICATE_REGS.  */			\
  { 0xFFFFFFF9, 0xFFFFFFF8, 0 },		\
  /* A_REGS.  */				\
  { 0xFFFFFFFF, 0x00000000, 3 },		\
  /* B_REGS.  */				\
  { 0x00000000, 0xFFFFFFFF, 3 },		\
  /* GENERAL_REGS.  */				\
  { 0xFFFFFFFF, 0xFFFFFFFF, 3 },		\
  /* ALL_REGS.  */				\
  { 0xFFFFFFFF, 0xFFFFFFFF, 7 },		\
}

#define A_REGNO_P(N) ((N) <= REG_A31)
#define B_REGNO_P(N) ((N) >= REG_B0 && (N) <= REG_B31)

#define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
#define CROSS_OPERANDS(X0,X1) \
  (A_REG_P (X0) == A_REG_P (X1) ? CROSS_N : CROSS_Y)

#define REGNO_REG_CLASS(reg) c6x_regno_reg_class (reg)

#define BASE_REG_CLASS ALL_REGS
#define INDEX_REG_CLASS ALL_REGS

#define REGNO_OK_FOR_BASE_STRICT_P(X)				\
  ((X) < FIRST_PSEUDO_REGISTER					\
   || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
#define REGNO_OK_FOR_BASE_NONSTRICT_P(X) 1

#define REGNO_OK_FOR_INDEX_STRICT_P(X)				\
  ((X) < FIRST_PSEUDO_REGISTER					\
   || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
#define REGNO_OK_FOR_INDEX_NONSTRICT_P(X) 1

#ifdef REG_OK_STRICT
#define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
#define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_STRICT_P (X)
#else
#define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
#define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (X)
#endif

#define CLASS_MAX_NREGS(class, mode) \
  ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

#define REGNO_OK_FOR_INDIRECT_JUMP_P(REGNO, MODE) B_REGNO_P (REGNO)

/* Stack and Calling.  */

/* SP points to 4 bytes below the first word of the frame.  */
#define STACK_POINTER_OFFSET 4
/* Likewise for AP (which is the incoming stack pointer).  */
#define FIRST_PARM_OFFSET(fundecl) 4
#define FRAME_GROWS_DOWNWARD 1
#define STACK_GROWS_DOWNWARD 1

#define STACK_POINTER_REGNUM REG_B15
#define HARD_FRAME_POINTER_REGNUM REG_A15
/* These two always get eliminated in favour of the stack pointer
   or the hard frame pointer.  */
#define FRAME_POINTER_REGNUM REG_FRAME
#define ARG_POINTER_REGNUM REG_ARGP

#define PIC_OFFSET_TABLE_REGNUM REG_B14

/* We keep the stack pointer constant rather than using push/pop
   instructions.  */
#define ACCUMULATE_OUTGOING_ARGS 1

/* Before the prologue, the return address is in the B3 register.  */
#define RETURN_ADDR_REGNO REG_B3
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNO)
#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (RETURN_ADDR_REGNO)

#define RETURN_ADDR_RTX(COUNT, FRAME) c6x_return_addr_rtx (COUNT)

#define INCOMING_FRAME_SP_OFFSET 0
#define ARG_POINTER_CFA_OFFSET(fundecl) 0

#define STATIC_CHAIN_REGNUM REG_A2

struct c6x_args {
  /* Number of arguments to pass in registers.  */
  int nregs;
  /* Number of arguments passed in registers so far.  */
  int count;
};

#define CUMULATIVE_ARGS struct c6x_args

#define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
  c6x_init_cumulative_args (&cum, fntype, libname, n_named_args)

#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
  (c6x_block_reg_pad_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)

#define FUNCTION_ARG_REGNO_P(r) \
    (((r) >= REG_A4 && (r) <= REG_A13) || ((r) >= REG_B4 && (r) <= REG_B13))

#define DEFAULT_PCC_STRUCT_RETURN 0

#define FUNCTION_PROFILER(file, labelno) \
  fatal_error (input_location, \
	       "profiling is not yet implemented for this architecture")


/* Trampolines.  */
#define TRAMPOLINE_SIZE 32
#define TRAMPOLINE_ALIGNMENT 256

#define ELIMINABLE_REGS					\
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\

/* Define the offset between two registers, one to be eliminated, and the other
   its replacement, at the start of a routine.  */

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
  ((OFFSET) = c6x_initial_elimination_offset ((FROM), (TO)))

/* Addressing Modes.  */

#define CONSTANT_ADDRESS_P(x) (CONSTANT_P(x) && GET_CODE(x) != CONST_DOUBLE)
#define MAX_REGS_PER_ADDRESS 2

#define HAVE_PRE_DECREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_POST_INCREMENT 1

/* Register forms are available, but due to scaling we currently don't
   support them.  */
#define HAVE_PRE_MODIFY_DISP 1
#define HAVE_POST_MODIFY_DISP 1

#define LEGITIMATE_PIC_OPERAND_P(X) \
  (!symbolic_operand (X, SImode))

struct GTY(()) machine_function
{
  /* True if we expanded a sibling call.  */
  int contains_sibcall;
};

/* Costs.  */
#define NO_FUNCTION_CSE 1

#define SLOW_BYTE_ACCESS 0

#define BRANCH_COST(speed_p, predictable_p) 6


/* Model costs for the vectorizer.  */

/* Cost of conditional branch.  */
#ifndef TARG_COND_BRANCH_COST
#define TARG_COND_BRANCH_COST        6
#endif

/* Cost of any scalar operation, excluding load and store.  */
#ifndef TARG_SCALAR_STMT_COST
#define TARG_SCALAR_STMT_COST        1
#endif

/* Cost of scalar load. */
#undef TARG_SCALAR_LOAD_COST
#define TARG_SCALAR_LOAD_COST        2 /* load + rotate */

/* Cost of scalar store.  */
#undef TARG_SCALAR_STORE_COST
#define TARG_SCALAR_STORE_COST       10

/* Cost of any vector operation, excluding load, store,
   or vector to scalar operation.  */
#undef TARG_VEC_STMT_COST
#define TARG_VEC_STMT_COST           1

/* Cost of vector to scalar operation.  */
#undef TARG_VEC_TO_SCALAR_COST
#define TARG_VEC_TO_SCALAR_COST      1

/* Cost of scalar to vector operation.  */
#undef TARG_SCALAR_TO_VEC_COST
#define TARG_SCALAR_TO_VEC_COST      1

/* Cost of aligned vector load.  */
#undef TARG_VEC_LOAD_COST
#define TARG_VEC_LOAD_COST           1

/* Cost of misaligned vector load.  */
#undef TARG_VEC_UNALIGNED_LOAD_COST
#define TARG_VEC_UNALIGNED_LOAD_COST 2

/* Cost of vector store.  */
#undef TARG_VEC_STORE_COST
#define TARG_VEC_STORE_COST          1

/* Cost of vector permutation.  */
#ifndef TARG_VEC_PERMUTE_COST
#define TARG_VEC_PERMUTE_COST        1
#endif

/* ttype entries (the only interesting data references used) are
   sb-relative got-indirect (aka .ehtype).  */
#define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
  (((code) == 0 && (data) == 1) ? (DW_EH_PE_datarel | DW_EH_PE_indirect) \
				: DW_EH_PE_absptr)

/* This should be the same as the definition in elfos.h, plus the call
   to output special unwinding directives.  */
#undef ASM_DECLARE_FUNCTION_NAME
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL)		\
  do								\
    {								\
      c6x_output_file_unwind (FILE);				\
      ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function");	\
      ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL));		\
      ASM_OUTPUT_LABEL (FILE, NAME);				\
    }								\
  while (0)

/* This should be the same as the definition in elfos.h, plus the call
   to output special unwinding directives.  */
#undef ASM_DECLARE_FUNCTION_SIZE
#define ASM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
  c6x_function_end (STREAM, NAME)

/* Arbitrarily choose A4/A5.  */
#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) + 4 : INVALID_REGNUM)

/* The register that holds the return address in exception handlers.  */
#define C6X_EH_STACKADJ_REGNUM  3
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (SImode, C6X_EH_STACKADJ_REGNUM)


/* Assembler Format.  */

#define DWARF2_ASM_LINE_DEBUG_INFO 1

#undef ASM_APP_ON
#define ASM_APP_ON "\t; #APP \n"
#undef ASM_APP_OFF
#define ASM_APP_OFF "\t; #NO_APP \n"

#define ASM_OUTPUT_COMMON(stream, name, size, rounded)
#define ASM_OUTPUT_LOCAL(stream, name, size, rounded)

#define GLOBAL_ASM_OP "\t.global\t"

#define REGISTER_NAMES						\
  {								\
    "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",		\
    "A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15",	\
    "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",	\
    "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",     \
    "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",             \
    "B8", "B9", "B10", "B11", "B12", "B13", "B14", "B15",       \
    "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",     \
    "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",	\
    "FP", "ARGP", "ILC" }

#define DBX_REGISTER_NUMBER(N) (dbx_register_map[(N)])

extern unsigned const dbx_register_map[FIRST_PSEUDO_REGISTER];

#define FINAL_PRESCAN_INSN c6x_final_prescan_insn

#define TEXT_SECTION_ASM_OP ".text;"
#define DATA_SECTION_ASM_OP ".data;"

#define ASM_OUTPUT_ALIGN(stream, power)			    \
  do							    \
    {							    \
      if (power)					    \
        fprintf ((stream), "\t.align\t%d\n", power);	    \
    }                                                       \
  while (0)

#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)    	\
do { char __buf[256];					\
     fprintf (FILE, "\t.long\t");				\
     ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);	\
     assemble_name (FILE, __buf);			\
     fputc ('\n', FILE);				\
   } while (0)

/* Determine whether to place EXP (an expression or a decl) should be
   placed into one of the small data sections.  */
#define PLACE_IN_SDATA_P(EXP) \
  (c6x_sdata_mode == C6X_SDATA_NONE ? false	\
   : c6x_sdata_mode == C6X_SDATA_ALL ? true	\
   : !AGGREGATE_TYPE_P (TREE_TYPE (EXP)))

#define SCOMMON_ASM_OP "\t.scomm\t"

#undef  ASM_OUTPUT_ALIGNED_DECL_COMMON
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN)	\
  do									\
    {									\
      if (DECL != NULL && PLACE_IN_SDATA_P (DECL))			\
	fprintf ((FILE), "%s", SCOMMON_ASM_OP);				\
      else								\
	fprintf ((FILE), "%s", COMMON_ASM_OP);				\
      assemble_name ((FILE), (NAME));					\
      fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
    }									\
  while (0)

/* This says how to output assembler code to declare an
   uninitialized internal linkage data object.  */

#undef  ASM_OUTPUT_ALIGNED_DECL_LOCAL
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN)	\
do {									\
  if (PLACE_IN_SDATA_P (DECL))						\
    switch_to_section (sbss_section);					\
  else									\
    switch_to_section (bss_section);					\
  ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "object");			\
  if (!flag_inhibit_size_directive)					\
    ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);			\
  ASM_OUTPUT_ALIGN ((FILE), exact_log2((ALIGN) / BITS_PER_UNIT));	\
  ASM_OUTPUT_LABEL(FILE, NAME);						\
  ASM_OUTPUT_SKIP((FILE), (SIZE) ? (SIZE) : 1);				\
} while (0)

#define CASE_VECTOR_PC_RELATIVE flag_pic
#define JUMP_TABLES_IN_TEXT_SECTION flag_pic

#define ADDR_VEC_ALIGN(VEC) (JUMP_TABLES_IN_TEXT_SECTION ? 5 : 2)

/* This is how to output an element of a case-vector that is relative.  */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
  do { char buf[100];					\
       fputs ("\t.long ", FILE);			\
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
       assemble_name (FILE, buf);			\
       putc ('-', FILE);				\
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
       assemble_name (FILE, buf);			\
       putc ('\n', FILE);				\
     } while (0)

/* Misc.  */

#define CASE_VECTOR_MODE SImode
#define MOVE_MAX 4
#define MOVE_RATIO(SPEED) 4
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
#define Pmode SImode
#define FUNCTION_MODE QImode

#define CPU_UNITS_QUERY 1

extern int c6x_initial_flag_pic;

#endif /* GCC_C6X_H */