Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "GFORTRAN 1"
.TH GFORTRAN 1 "2022-06-28" "gcc-10.4.0" "GNU"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
gfortran \- GNU Fortran compiler
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
gfortran [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR]
         [\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
         [\fB\-W\fR\fIwarn\fR...] [\fB\-pedantic\fR]
         [\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
         [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
         [\fB\-f\fR\fIoption\fR...]
         [\fB\-m\fR\fImachine-option\fR...]
         [\fB\-o\fR \fIoutfile\fR] \fIinfile\fR...
.PP
Only the most useful options are listed here; see below for the
remainder.
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
The \fBgfortran\fR command supports all the options supported by the
\&\fBgcc\fR command.  Only options specific to \s-1GNU\s0 Fortran are documented
here.
.PP
All \s-1GCC\s0 and \s-1GNU\s0 Fortran options
are accepted both by \fBgfortran\fR and by \fBgcc\fR
(as well as any other drivers built at the same time,
such as \fBg++\fR),
since adding \s-1GNU\s0 Fortran to the \s-1GCC\s0 distribution
enables acceptance of \s-1GNU\s0 Fortran options
by all of the relevant drivers.
.PP
In some cases, options have positive and negative forms;
the negative form of \fB\-ffoo\fR would be \fB\-fno\-foo\fR.
This manual documents only one of these two forms, whichever
one is not the default.
.SH "OPTIONS"
.IX Header "OPTIONS"
Here is a summary of all the options specific to \s-1GNU\s0 Fortran, grouped
by type.  Explanations are in the following sections.
.IP "\fIFortran Language Options\fR" 4
.IX Item "Fortran Language Options"
\&\fB\-fall\-intrinsics \-fallow\-argument\-mismatch \-fallow\-invalid\-boz 
\&\-fbackslash \-fcray\-pointer \-fd\-lines\-as\-code \-fd\-lines\-as\-comments 
\&\-fdec \-fdec\-char\-conversions \-fdec\-structure \-fdec\-intrinsic\-ints 
\&\-fdec\-static \-fdec\-math \-fdec\-include \-fdec\-format\-defaults 
\&\-fdec\-blank\-format\-item \-fdefault\-double\-8 \-fdefault\-integer\-8 
\&\-fdefault\-real\-8 \-fdefault\-real\-10 \-fdefault\-real\-16 \-fdollar\-ok 
\&\-ffixed\-line\-length\-\fR\fIn\fR \fB\-ffixed\-line\-length\-none \-fpad\-source 
\&\-ffree\-form \-ffree\-line\-length\-\fR\fIn\fR \fB\-ffree\-line\-length\-none 
\&\-fimplicit\-none \-finteger\-4\-integer\-8 \-fmax\-identifier\-length 
\&\-fmodule\-private \-ffixed\-form \-fno\-range\-check \-fopenacc \-fopenmp 
\&\-freal\-4\-real\-10 \-freal\-4\-real\-16 \-freal\-4\-real\-8 \-freal\-8\-real\-10 
\&\-freal\-8\-real\-16 \-freal\-8\-real\-4 \-std=\fR\fIstd\fR \fB\-ftest\-forall\-temp\fR
.IP "\fIPreprocessing Options\fR" 4
.IX Item "Preprocessing Options"
\&\fB\-A\-\fR\fIquestion\fR[\fB=\fR\fIanswer\fR]
\&\fB\-A\fR\fIquestion\fR\fB=\fR\fIanswer\fR \fB\-C \-CC \-D\fR\fImacro\fR[\fB=\fR\fIdefn\fR]
\&\fB\-H \-P 
\&\-U\fR\fImacro\fR \fB\-cpp \-dD \-dI \-dM \-dN \-dU \-fworking\-directory
\&\-imultilib\fR \fIdir\fR 
\&\fB\-iprefix\fR \fIfile\fR \fB\-iquote \-isysroot\fR \fIdir\fR \fB\-isystem\fR \fIdir\fR \fB\-nocpp 
\&\-nostdinc 
\&\-undef\fR
.IP "\fIError and Warning Options\fR" 4
.IX Item "Error and Warning Options"
\&\fB\-Waliasing \-Wall \-Wampersand \-Warray\-bounds 
\&\-Wc\-binding\-type \-Wcharacter\-truncation \-Wconversion 
\&\-Wdo\-subscript \-Wfunction\-elimination \-Wimplicit\-interface 
\&\-Wimplicit\-procedure \-Wintrinsic\-shadow \-Wuse\-without\-only 
\&\-Wintrinsics\-std \-Wline\-truncation \-Wno\-align\-commons 
\&\-Wno\-overwrite\-recursive \-Wno\-tabs \-Wreal\-q\-constant \-Wsurprising 
\&\-Wunderflow \-Wunused\-parameter \-Wrealloc\-lhs \-Wrealloc\-lhs\-all 
\&\-Wfrontend\-loop\-interchange \-Wtarget\-lifetime \-fmax\-errors=\fR\fIn\fR 
\&\fB\-fsyntax\-only \-pedantic 
\&\-pedantic\-errors\fR
.IP "\fIDebugging Options\fR" 4
.IX Item "Debugging Options"
\&\fB\-fbacktrace \-fdump\-fortran\-optimized \-fdump\-fortran\-original 
\&\-fdump\-fortran\-global \-fdump\-parse\-tree \-ffpe\-trap=\fR\fIlist\fR 
\&\fB\-ffpe\-summary=\fR\fIlist\fR\fB \fR
.IP "\fIDirectory Options\fR" 4
.IX Item "Directory Options"
\&\fB\-I\fR\fIdir\fR  \fB\-J\fR\fIdir\fR \fB\-fintrinsic\-modules\-path\fR \fIdir\fR
.IP "\fILink Options\fR" 4
.IX Item "Link Options"
\&\fB\-static\-libgfortran\fR
.IP "\fIRuntime Options\fR" 4
.IX Item "Runtime Options"
\&\fB\-fconvert=\fR\fIconversion\fR \fB\-fmax\-subrecord\-length=\fR\fIlength\fR 
\&\fB\-frecord\-marker=\fR\fIlength\fR \fB\-fsign\-zero\fR
.IP "\fIInteroperability Options\fR" 4
.IX Item "Interoperability Options"
\&\fB\-fc\-prototypes \-fc\-prototypes\-external\fR
.IP "\fICode Generation Options\fR" 4
.IX Item "Code Generation Options"
\&\fB\-faggressive\-function\-elimination \-fblas\-matmul\-limit=\fR\fIn\fR 
\&\fB\-fbounds\-check \-ftail\-call\-workaround \-ftail\-call\-workaround=\fR\fIn\fR 
\&\fB\-fcheck\-array\-temporaries 
\&\-fcheck=\fR\fI<all|array\-temps|bits|bounds|do|mem|pointer|recursion>\fR 
\&\fB\-fcoarray=\fR\fI<none|single|lib>\fR \fB\-fexternal\-blas \-ff2c 
\&\-ffrontend\-loop\-interchange \-ffrontend\-optimize 
\&\-finit\-character=\fR\fIn\fR \fB\-finit\-integer=\fR\fIn\fR \fB\-finit\-local\-zero 
\&\-finit\-derived \-finit\-logical=\fR\fI<true|false>\fR 
\&\fB\-finit\-real=\fR\fI<zero|inf|\-inf|nan|snan>\fR
\&\fB\-finline\-matmul\-limit=\fR\fIn\fR 
\&\fB\-finline\-arg\-packing \-fmax\-array\-constructor=\fR\fIn\fR 
\&\fB\-fmax\-stack\-var\-size=\fR\fIn\fR \fB\-fno\-align\-commons \-fno\-automatic 
\&\-fno\-protect\-parens \-fno\-underscoring \-fsecond\-underscore 
\&\-fpack\-derived \-frealloc\-lhs \-frecursive \-frepack\-arrays 
\&\-fshort\-enums \-fstack\-arrays\fR
.SS "Options controlling Fortran dialect"
.IX Subsection "Options controlling Fortran dialect"
The following options control the details of the Fortran dialect
accepted by the compiler:
.IP "\fB\-ffree\-form\fR" 4
.IX Item "-ffree-form"
.PD 0
.IP "\fB\-ffixed\-form\fR" 4
.IX Item "-ffixed-form"
.PD
Specify the layout used by the source file.  The free form layout
was introduced in Fortran 90.  Fixed form was traditionally used in
older Fortran programs.  When neither option is specified, the source
form is determined by the file extension.
.IP "\fB\-fall\-intrinsics\fR" 4
.IX Item "-fall-intrinsics"
This option causes all intrinsic procedures (including the GNU-specific
extensions) to be accepted.  This can be useful with \fB\-std=f95\fR to
force standard-compliance but get access to the full range of intrinsics
available with \fBgfortran\fR.  As a consequence, \fB\-Wintrinsics\-std\fR
will be ignored and no user-defined procedure with the same name as any
intrinsic will be called except when it is explicitly declared \f(CW\*(C`EXTERNAL\*(C'\fR.
.IP "\fB\-fallow\-argument\-mismatch\fR" 4
.IX Item "-fallow-argument-mismatch"
Some code contains calls to external procedures whith mismatches
between the calls and the procedure definition, or with mismatches
between different calls. Such code is non-conforming, and will usually
be flagged wi1th an error.  This options degrades the error to a
warning, which can only be disabled by disabling all warnings vial
\&\fB\-w\fR.  Only a single occurrence per argument is flagged by this
warning.  \fB\-fallow\-argument\-mismatch\fR is implied by
\&\fB\-std=legacy\fR.
.Sp
Using this option is \fIstrongly\fR discouraged.  It is possible to
provide standard-conforming code which allows different types of
arguments by using an explicit interface and \f(CWTYPE(*)\fR.
.IP "\fB\-fallow\-invalid\-boz\fR" 4
.IX Item "-fallow-invalid-boz"
A \s-1BOZ\s0 literal constant can occur in a limited number of contexts in
standard conforming Fortran.  This option degrades an error condition
to a warning, and allows a \s-1BOZ\s0 literal constant to appear where the
Fortran standard would otherwise prohibit its use.
.IP "\fB\-fd\-lines\-as\-code\fR" 4
.IX Item "-fd-lines-as-code"
.PD 0
.IP "\fB\-fd\-lines\-as\-comments\fR" 4
.IX Item "-fd-lines-as-comments"
.PD
Enable special treatment for lines beginning with \f(CW\*(C`d\*(C'\fR or \f(CW\*(C`D\*(C'\fR
in fixed form sources.  If the \fB\-fd\-lines\-as\-code\fR option is
given they are treated as if the first column contained a blank.  If the
\&\fB\-fd\-lines\-as\-comments\fR option is given, they are treated as
comment lines.
.IP "\fB\-fdec\fR" 4
.IX Item "-fdec"
\&\s-1DEC\s0 compatibility mode. Enables extensions and other features that mimic
the default behavior of older compilers (such as \s-1DEC\s0).
These features are non-standard and should be avoided at all costs.
For details on \s-1GNU\s0 Fortran's implementation of these extensions see the
full documentation.
.Sp
Other flags enabled by this switch are:
\&\fB\-fdollar\-ok\fR \fB\-fcray\-pointer\fR \fB\-fdec\-char\-conversions\fR
\&\fB\-fdec\-structure\fR \fB\-fdec\-intrinsic\-ints\fR \fB\-fdec\-static\fR
\&\fB\-fdec\-math\fR \fB\-fdec\-include\fR \fB\-fdec\-blank\-format\-item\fR
\&\fB\-fdec\-format\-defaults\fR
.Sp
If \fB\-fd\-lines\-as\-code\fR/\fB\-fd\-lines\-as\-comments\fR are unset, then
\&\fB\-fdec\fR also sets \fB\-fd\-lines\-as\-comments\fR.
.IP "\fB\-fdec\-char\-conversions\fR" 4
.IX Item "-fdec-char-conversions"
Enable the use of character literals in assignments and \f(CW\*(C`DATA\*(C'\fR statements
for non-character variables.
.IP "\fB\-fdec\-structure\fR" 4
.IX Item "-fdec-structure"
Enable \s-1DEC\s0 \f(CW\*(C`STRUCTURE\*(C'\fR and \f(CW\*(C`RECORD\*(C'\fR as well as \f(CW\*(C`UNION\*(C'\fR,
\&\f(CW\*(C`MAP\*(C'\fR, and dot ('.') as a member separator (in addition to '%'). This is
provided for compatibility only; Fortran 90 derived types should be used
instead where possible.
.IP "\fB\-fdec\-intrinsic\-ints\fR" 4
.IX Item "-fdec-intrinsic-ints"
Enable B/I/J/K kind variants of existing integer functions (e.g. \s-1BIAND, IIAND,
JIAND,\s0 etc...). For a complete list of intrinsics see the full documentation.
.IP "\fB\-fdec\-math\fR" 4
.IX Item "-fdec-math"
Enable legacy math intrinsics such as \s-1COTAN\s0 and degree-valued trigonometric
functions (e.g. \s-1TAND, ATAND,\s0 etc...) for compatability with older code.
.IP "\fB\-fdec\-static\fR" 4
.IX Item "-fdec-static"
Enable DEC-style \s-1STATIC\s0 and \s-1AUTOMATIC\s0 attributes to explicitly specify
the storage of variables and other objects.
.IP "\fB\-fdec\-include\fR" 4
.IX Item "-fdec-include"
Enable parsing of \s-1INCLUDE\s0 as a statement in addition to parsing it as
\&\s-1INCLUDE\s0 line.  When parsed as \s-1INCLUDE\s0 statement, \s-1INCLUDE\s0 does not have to
be on a single line and can use line continuations.
.IP "\fB\-fdec\-format\-defaults\fR" 4
.IX Item "-fdec-format-defaults"
Enable format specifiers F, G and I to be used without width specifiers,
default widths will be used instead.
.IP "\fB\-fdec\-blank\-format\-item\fR" 4
.IX Item "-fdec-blank-format-item"
Enable a blank format item at the end of a format specification i.e. nothing
following the final comma.
.IP "\fB\-fdollar\-ok\fR" 4
.IX Item "-fdollar-ok"
Allow \fB$\fR as a valid non-first character in a symbol name. Symbols 
that start with \fB$\fR are rejected since it is unclear which rules to
apply to implicit typing as different vendors implement different rules.
Using \fB$\fR in \f(CW\*(C`IMPLICIT\*(C'\fR statements is also rejected.
.IP "\fB\-fbackslash\fR" 4
.IX Item "-fbackslash"
Change the interpretation of backslashes in string literals from a single
backslash character to \*(L"C\-style\*(R" escape characters. The following
combinations are expanded \f(CW\*(C`\ea\*(C'\fR, \f(CW\*(C`\eb\*(C'\fR, \f(CW\*(C`\ef\*(C'\fR, \f(CW\*(C`\en\*(C'\fR,
\&\f(CW\*(C`\er\*(C'\fR, \f(CW\*(C`\et\*(C'\fR, \f(CW\*(C`\ev\*(C'\fR, \f(CW\*(C`\e\e\*(C'\fR, and \f(CW\*(C`\e0\*(C'\fR to the \s-1ASCII\s0
characters alert, backspace, form feed, newline, carriage return,
horizontal tab, vertical tab, backslash, and \s-1NUL,\s0 respectively.
Additionally, \f(CW\*(C`\ex\*(C'\fR\fInn\fR, \f(CW\*(C`\eu\*(C'\fR\fInnnn\fR and
\&\f(CW\*(C`\eU\*(C'\fR\fInnnnnnnn\fR (where each \fIn\fR is a hexadecimal digit) are
translated into the Unicode characters corresponding to the specified code
points. All other combinations of a character preceded by \e are
unexpanded.
.IP "\fB\-fmodule\-private\fR" 4
.IX Item "-fmodule-private"
Set the default accessibility of module entities to \f(CW\*(C`PRIVATE\*(C'\fR.
Use-associated entities will not be accessible unless they are explicitly
declared as \f(CW\*(C`PUBLIC\*(C'\fR.
.IP "\fB\-ffixed\-line\-length\-\fR\fIn\fR" 4
.IX Item "-ffixed-line-length-n"
Set column after which characters are ignored in typical fixed-form
lines in the source file, and, unless \f(CW\*(C`\-fno\-pad\-source\*(C'\fR, through which
spaces are assumed (as if padded to that length) after the ends of short
fixed-form lines.
.Sp
Popular values for \fIn\fR include 72 (the
standard and the default), 80 (card image), and 132 (corresponding
to \*(L"extended-source\*(R" options in some popular compilers).
\&\fIn\fR may also be \fBnone\fR, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended
to them to fill out the line.
\&\fB\-ffixed\-line\-length\-0\fR means the same thing as
\&\fB\-ffixed\-line\-length\-none\fR.
.IP "\fB\-fno\-pad\-source\fR" 4
.IX Item "-fno-pad-source"
By default fixed-form lines have spaces assumed (as if padded to that length)
after the ends of short fixed-form lines.  This is not done either if
\&\fB\-ffixed\-line\-length\-0\fR, \fB\-ffixed\-line\-length\-none\fR or
if \fB\-fno\-pad\-source\fR option is used.  With any of those options
continued character constants never have implicit spaces appended
to them to fill out the line.
.IP "\fB\-ffree\-line\-length\-\fR\fIn\fR" 4
.IX Item "-ffree-line-length-n"
Set column after which characters are ignored in typical free-form
lines in the source file. The default value is 132.
\&\fIn\fR may be \fBnone\fR, meaning that the entire line is meaningful.
\&\fB\-ffree\-line\-length\-0\fR means the same thing as
\&\fB\-ffree\-line\-length\-none\fR.
.IP "\fB\-fmax\-identifier\-length=\fR\fIn\fR" 4
.IX Item "-fmax-identifier-length=n"
Specify the maximum allowed identifier length. Typical values are
31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).
.IP "\fB\-fimplicit\-none\fR" 4
.IX Item "-fimplicit-none"
Specify that no implicit typing is allowed, unless overridden by explicit
\&\f(CW\*(C`IMPLICIT\*(C'\fR statements.  This is the equivalent of adding
\&\f(CW\*(C`implicit none\*(C'\fR to the start of every procedure.
.IP "\fB\-fcray\-pointer\fR" 4
.IX Item "-fcray-pointer"
Enable the Cray pointer extension, which provides C\-like pointer
functionality.
.IP "\fB\-fopenacc\fR" 4
.IX Item "-fopenacc"
Enable the OpenACC extensions.  This includes OpenACC \f(CW\*(C`!$acc\*(C'\fR
directives in free form and \f(CW\*(C`c$acc\*(C'\fR, \f(CW*$acc\fR and
\&\f(CW\*(C`!$acc\*(C'\fR directives in fixed form, \f(CW\*(C`!$\*(C'\fR conditional
compilation sentinels in free form and \f(CW\*(C`c$\*(C'\fR, \f(CW\*(C`*$\*(C'\fR and
\&\f(CW\*(C`!$\*(C'\fR sentinels in fixed form, and when linking arranges for the
OpenACC runtime library to be linked in.
.IP "\fB\-fopenmp\fR" 4
.IX Item "-fopenmp"
Enable the OpenMP extensions.  This includes OpenMP \f(CW\*(C`!$omp\*(C'\fR directives
in free form
and \f(CW\*(C`c$omp\*(C'\fR, \f(CW*$omp\fR and \f(CW\*(C`!$omp\*(C'\fR directives in fixed form,
\&\f(CW\*(C`!$\*(C'\fR conditional compilation sentinels in free form
and \f(CW\*(C`c$\*(C'\fR, \f(CW\*(C`*$\*(C'\fR and \f(CW\*(C`!$\*(C'\fR sentinels in fixed form, 
and when linking arranges for the OpenMP runtime library to be linked
in.  The option \fB\-fopenmp\fR implies \fB\-frecursive\fR.
.IP "\fB\-fno\-range\-check\fR" 4
.IX Item "-fno-range-check"
Disable range checking on results of simplification of constant
expressions during compilation.  For example, \s-1GNU\s0 Fortran will give
an error at compile time when simplifying \f(CW\*(C`a = 1. / 0\*(C'\fR.
With this option, no error will be given and \f(CW\*(C`a\*(C'\fR will be assigned
the value \f(CW\*(C`+Infinity\*(C'\fR.  If an expression evaluates to a value
outside of the relevant range of [\f(CW\*(C`\-HUGE()\*(C'\fR:\f(CW\*(C`HUGE()\*(C'\fR],
then the expression will be replaced by \f(CW\*(C`\-Inf\*(C'\fR or \f(CW\*(C`+Inf\*(C'\fR
as appropriate.
Similarly, \f(CW\*(C`DATA i/Z\*(AqFFFFFFFF\*(Aq/\*(C'\fR will result in an integer overflow
on most systems, but with \fB\-fno\-range\-check\fR the value will
\&\*(L"wrap around\*(R" and \f(CW\*(C`i\*(C'\fR will be initialized to \-1 instead.
.IP "\fB\-fdefault\-integer\-8\fR" 4
.IX Item "-fdefault-integer-8"
Set the default integer and logical types to an 8 byte wide type.  This option
also affects the kind of integer constants like \f(CW42\fR. Unlike
\&\fB\-finteger\-4\-integer\-8\fR, it does not promote variables with explicit
kind declaration.
.IP "\fB\-fdefault\-real\-8\fR" 4
.IX Item "-fdefault-real-8"
Set the default real type to an 8 byte wide type.  This option also affects
the kind of non-double real constants like \f(CW1.0\fR.  This option promotes
the default width of \f(CW\*(C`DOUBLE PRECISION\*(C'\fR and double real constants
like \f(CW\*(C`1.d0\*(C'\fR to 16 bytes if possible.  If \f(CW\*(C`\-fdefault\-double\-8\*(C'\fR
is given along with \f(CW\*(C`fdefault\-real\-8\*(C'\fR, \f(CW\*(C`DOUBLE PRECISION\*(C'\fR
and double real constants are not promoted.  Unlike \fB\-freal\-4\-real\-8\fR,
\&\f(CW\*(C`fdefault\-real\-8\*(C'\fR does not promote variables with explicit kind
declarations.
.IP "\fB\-fdefault\-real\-10\fR" 4
.IX Item "-fdefault-real-10"
Set the default real type to an 10 byte wide type.  This option also affects
the kind of non-double real constants like \f(CW1.0\fR.  This option promotes
the default width of \f(CW\*(C`DOUBLE PRECISION\*(C'\fR and double real constants
like \f(CW\*(C`1.d0\*(C'\fR to 16 bytes if possible.  If \f(CW\*(C`\-fdefault\-double\-8\*(C'\fR
is given along with \f(CW\*(C`fdefault\-real\-10\*(C'\fR, \f(CW\*(C`DOUBLE PRECISION\*(C'\fR
and double real constants are not promoted.  Unlike \fB\-freal\-4\-real\-10\fR,
\&\f(CW\*(C`fdefault\-real\-10\*(C'\fR does not promote variables with explicit kind
declarations.
.IP "\fB\-fdefault\-real\-16\fR" 4
.IX Item "-fdefault-real-16"
Set the default real type to an 16 byte wide type.  This option also affects
the kind of non-double real constants like \f(CW1.0\fR.  This option promotes
the default width of \f(CW\*(C`DOUBLE PRECISION\*(C'\fR and double real constants
like \f(CW\*(C`1.d0\*(C'\fR to 16 bytes if possible.  If \f(CW\*(C`\-fdefault\-double\-8\*(C'\fR
is given along with \f(CW\*(C`fdefault\-real\-16\*(C'\fR, \f(CW\*(C`DOUBLE PRECISION\*(C'\fR
and double real constants are not promoted.  Unlike \fB\-freal\-4\-real\-16\fR,
\&\f(CW\*(C`fdefault\-real\-16\*(C'\fR does not promote variables with explicit kind
declarations.
.IP "\fB\-fdefault\-double\-8\fR" 4
.IX Item "-fdefault-double-8"
Set the \f(CW\*(C`DOUBLE PRECISION\*(C'\fR type and double real constants
like \f(CW\*(C`1.d0\*(C'\fR to an 8 byte wide type.  Do nothing if this
is already the default.  This option prevents \fB\-fdefault\-real\-8\fR,
\&\fB\-fdefault\-real\-10\fR, and \fB\-fdefault\-real\-16\fR,
from promoting \f(CW\*(C`DOUBLE PRECISION\*(C'\fR and double real constants like
\&\f(CW\*(C`1.d0\*(C'\fR to 16 bytes.
.IP "\fB\-finteger\-4\-integer\-8\fR" 4
.IX Item "-finteger-4-integer-8"
Promote all \f(CW\*(C`INTEGER(KIND=4)\*(C'\fR entities to an \f(CW\*(C`INTEGER(KIND=8)\*(C'\fR
entities.  If \f(CW\*(C`KIND=8\*(C'\fR is unavailable, then an error will be issued.
This option should be used with care and may not be suitable for your codes.
Areas of possible concern include calls to external procedures,
alignment in \f(CW\*(C`EQUIVALENCE\*(C'\fR and/or \f(CW\*(C`COMMON\*(C'\fR, generic interfaces,
\&\s-1BOZ\s0 literal constant conversion, and I/O.  Inspection of the intermediate
representation of the translated Fortran code, produced by
\&\fB\-fdump\-tree\-original\fR, is suggested.
.IP "\fB\-freal\-4\-real\-8\fR" 4
.IX Item "-freal-4-real-8"
.PD 0
.IP "\fB\-freal\-4\-real\-10\fR" 4
.IX Item "-freal-4-real-10"
.IP "\fB\-freal\-4\-real\-16\fR" 4
.IX Item "-freal-4-real-16"
.IP "\fB\-freal\-8\-real\-4\fR" 4
.IX Item "-freal-8-real-4"
.IP "\fB\-freal\-8\-real\-10\fR" 4
.IX Item "-freal-8-real-10"
.IP "\fB\-freal\-8\-real\-16\fR" 4
.IX Item "-freal-8-real-16"
.PD
Promote all \f(CW\*(C`REAL(KIND=M)\*(C'\fR entities to \f(CW\*(C`REAL(KIND=N)\*(C'\fR entities.
If \f(CW\*(C`REAL(KIND=N)\*(C'\fR is unavailable, then an error will be issued.
All other real kind types are unaffected by this option.
These options should be used with care and may not be suitable for your
codes.  Areas of possible concern include calls to external procedures,
alignment in \f(CW\*(C`EQUIVALENCE\*(C'\fR and/or \f(CW\*(C`COMMON\*(C'\fR, generic interfaces,
\&\s-1BOZ\s0 literal constant conversion, and I/O.  Inspection of the intermediate
representation of the translated Fortran code, produced by
\&\fB\-fdump\-tree\-original\fR, is suggested.
.IP "\fB\-std=\fR\fIstd\fR" 4
.IX Item "-std=std"
Specify the standard to which the program is expected to conform,
which may be one of \fBf95\fR, \fBf2003\fR, \fBf2008\fR,
\&\fBf2018\fR, \fBgnu\fR, or \fBlegacy\fR.  The default value for
\&\fIstd\fR is \fBgnu\fR, which specifies a superset of the latest
Fortran standard that includes all of the extensions supported by \s-1GNU\s0
Fortran, although warnings will be given for obsolete extensions not
recommended for use in new code.  The \fBlegacy\fR value is
equivalent but without the warnings for obsolete extensions, and may
be useful for old non-standard programs.  The \fBf95\fR,
\&\fBf2003\fR, \fBf2008\fR, and \fBf2018\fR values specify strict
conformance to the Fortran 95, Fortran 2003, Fortran 2008 and Fortran
2018 standards, respectively; errors are given for all extensions
beyond the relevant language standard, and warnings are given for the
Fortran 77 features that are permitted but obsolescent in later
standards. The deprecated option \fB\-std=f2008ts\fR acts as an alias for
\&\fB\-std=f2018\fR. It is only present for backwards compatibility with
earlier gfortran versions and should not be used any more.
.IP "\fB\-ftest\-forall\-temp\fR" 4
.IX Item "-ftest-forall-temp"
Enhance test coverage by forcing most forall assignments to use temporary.
.SS "Enable and customize preprocessing"
.IX Subsection "Enable and customize preprocessing"
Preprocessor related options. See section 
\&\fBPreprocessing and conditional compilation\fR for more detailed
information on preprocessing in \fBgfortran\fR.
.IP "\fB\-cpp\fR" 4
.IX Item "-cpp"
.PD 0
.IP "\fB\-nocpp\fR" 4
.IX Item "-nocpp"
.PD
Enable preprocessing. The preprocessor is automatically invoked if
the file extension is \fI.fpp\fR, \fI.FPP\fR,  \fI.F\fR, \fI.FOR\fR,
\&\fI.FTN\fR, \fI.F90\fR, \fI.F95\fR, \fI.F03\fR or \fI.F08\fR. Use
this option to manually enable preprocessing of any kind of Fortran file.
.Sp
To disable preprocessing of files with any of the above listed extensions,
use the negative form: \fB\-nocpp\fR.
.Sp
The preprocessor is run in traditional mode. Any restrictions of the
file-format, especially the limits on line length, apply for
preprocessed output as well, so it might be advisable to use the
\&\fB\-ffree\-line\-length\-none\fR or \fB\-ffixed\-line\-length\-none\fR
options.
.IP "\fB\-dM\fR" 4
.IX Item "-dM"
Instead of the normal output, generate a list of \f(CW\*(Aq#define\*(Aq\fR
directives for all the macros defined during the execution of the
preprocessor, including predefined macros. This gives you a way
of finding out what is predefined in your version of the preprocessor.
Assuming you have no file \fIfoo.f90\fR, the command
.Sp
.Vb 1
\&          touch foo.f90; gfortran \-cpp \-E \-dM foo.f90
.Ve
.Sp
will show all the predefined macros.
.IP "\fB\-dD\fR" 4
.IX Item "-dD"
Like \fB\-dM\fR except in two respects: it does not include the
predefined macros, and it outputs both the \f(CW\*(C`#define\*(C'\fR directives
and the result of preprocessing. Both kinds of output go to the
standard output file.
.IP "\fB\-dN\fR" 4
.IX Item "-dN"
Like \fB\-dD\fR, but emit only the macro names, not their expansions.
.IP "\fB\-dU\fR" 4
.IX Item "-dU"
Like \fBdD\fR except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the 
output is delayed until the use or test of the macro; and \f(CW\*(Aq#undef\*(Aq\fR
directives are also output for macros tested but undefined at the time.
.IP "\fB\-dI\fR" 4
.IX Item "-dI"
Output \f(CW\*(Aq#include\*(Aq\fR directives in addition to the result
of preprocessing.
.IP "\fB\-fworking\-directory\fR" 4
.IX Item "-fworking-directory"
Enable generation of linemarkers in the preprocessor output that will
let the compiler know the current working directory at the time of
preprocessing. When this option is enabled, the preprocessor will emit,
after the initial linemarker, a second linemarker with the current
working directory followed by two slashes. \s-1GCC\s0 will use this directory,
when it is present in the preprocessed input, as the directory emitted
as the current working directory in some debugging information formats.
This option is implicitly enabled if debugging information is enabled,
but this can be inhibited with the negated form
\&\fB\-fno\-working\-directory\fR. If the \fB\-P\fR flag is present
in the command line, this option has no effect, since no \f(CW\*(C`#line\*(C'\fR
directives are emitted whatsoever.
.IP "\fB\-idirafter\fR \fIdir\fR" 4
.IX Item "-idirafter dir"
Search \fIdir\fR for include files, but do it after all directories
specified with \fB\-I\fR and the standard system directories have
been exhausted. \fIdir\fR is treated as a system include directory.
If dir begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced by
the sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
.IP "\fB\-imultilib\fR \fIdir\fR" 4
.IX Item "-imultilib dir"
Use \fIdir\fR as a subdirectory of the directory containing target-specific
\&\*(C+ headers.
.IP "\fB\-iprefix\fR \fIprefix\fR" 4
.IX Item "-iprefix prefix"
Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
options. If the \fIprefix\fR represents a directory, you should include
the final \f(CW\*(Aq/\*(Aq\fR.
.IP "\fB\-isysroot\fR \fIdir\fR" 4
.IX Item "-isysroot dir"
This option is like the \fB\-\-sysroot\fR option, but applies only to
header files. See the \fB\-\-sysroot\fR option for more information.
.IP "\fB\-iquote\fR \fIdir\fR" 4
.IX Item "-iquote dir"
Search \fIdir\fR only for header files requested with \f(CW\*(C`#include "file"\*(C'\fR;
they are not searched for \f(CW\*(C`#include <file>\*(C'\fR, before all directories
specified by \fB\-I\fR and before the standard system directories. If
\&\fIdir\fR begins with \f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced by the
sysroot prefix; see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
.IP "\fB\-isystem\fR \fIdir\fR" 4
.IX Item "-isystem dir"
Search \fIdir\fR for header files, after all directories specified by
\&\fB\-I\fR but before the standard system directories. Mark it as a
system directory, so that it gets the same special treatment as is
applied to the standard system directories. If \fIdir\fR begins with
\&\f(CW\*(C`=\*(C'\fR, then the \f(CW\*(C`=\*(C'\fR will be replaced by the sysroot prefix;
see \fB\-\-sysroot\fR and \fB\-isysroot\fR.
.IP "\fB\-nostdinc\fR" 4
.IX Item "-nostdinc"
Do not search the standard system directories for header files. Only
the directories you have specified with \fB\-I\fR options (and the
directory of the current file, if appropriate) are searched.
.IP "\fB\-undef\fR" 4
.IX Item "-undef"
Do not predefine any system-specific or GCC-specific macros.
The standard predefined macros remain defined.
.IP "\fB\-A\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
.IX Item "-Apredicate=answer"
Make an assertion with the predicate \fIpredicate\fR and answer \fIanswer\fR.
This form is preferred to the older form \-A predicate(answer), which is still
supported, because it does not use shell special characters.
.IP "\fB\-A\-\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
.IX Item "-A-predicate=answer"
Cancel an assertion with the predicate \fIpredicate\fR and answer \fIanswer\fR.
.IP "\fB\-C\fR" 4
.IX Item "-C"
Do not discard comments. All comments are passed through to the output
file, except for comments in processed directives, which are deleted
along with the directive.
.Sp
You should be prepared for side effects when using \fB\-C\fR; it causes
the preprocessor to treat comments as tokens in their own right. For example,
comments appearing at the start of what would be a directive line have the
effect of turning that line into an ordinary source line, since the first
token on the line is no longer a \f(CW\*(Aq#\*(Aq\fR.
.Sp
Warning: this currently handles C\-Style comments only. The preprocessor
does not yet recognize Fortran-style comments.
.IP "\fB\-CC\fR" 4
.IX Item "-CC"
Do not discard comments, including during macro expansion. This is like
\&\fB\-C\fR, except that comments contained within macros are also passed
through to the output file where the macro is expanded.
.Sp
In addition to the side-effects of the \fB\-C\fR option, the \fB\-CC\fR
option causes all \*(C+\-style comments inside a macro to be converted to C\-style
comments. This is to prevent later use of that macro from inadvertently
commenting out the remainder of the source line. The \fB\-CC\fR option
is generally used to support lint comments.
.Sp
Warning: this currently handles C\- and \*(C+\-Style comments only. The
preprocessor does not yet recognize Fortran-style comments.
.IP "\fB\-D\fR\fIname\fR" 4
.IX Item "-Dname"
Predefine name as a macro, with definition \f(CW1\fR.
.IP "\fB\-D\fR\fIname\fR\fB=\fR\fIdefinition\fR" 4
.IX Item "-Dname=definition"
The contents of \fIdefinition\fR are tokenized and processed as if they
appeared during translation phase three in a \f(CW\*(Aq#define\*(Aq\fR directive.
In particular, the definition will be truncated by embedded newline
characters.
.Sp
If you are invoking the preprocessor from a shell or shell-like program
you may need to use the shell's quoting syntax to protect characters such
as spaces that have a meaning in the shell syntax.
.Sp
If you wish to define a function-like macro on the command line, write
its argument list with surrounding parentheses before the equals sign
(if any). Parentheses are meaningful to most shells, so you will need
to quote the option. With sh and csh, \f(CW\*(C`\-D\*(Aqname(args...)=definition\*(Aq\*(C'\fR
works.
.Sp
\&\fB\-D\fR and \fB\-U\fR options are processed in the order they are
given on the command line. All \-imacros file and \-include file options
are processed after all \-D and \-U options.
.IP "\fB\-H\fR" 4
.IX Item "-H"
Print the name of each header file used, in addition to other normal
activities. Each name is indented to show how deep in the \f(CW\*(Aq#include\*(Aq\fR
stack it is.
.IP "\fB\-P\fR" 4
.IX Item "-P"
Inhibit generation of linemarkers in the output from the preprocessor.
This might be useful when running the preprocessor on something that
is not C code, and will be sent to a program which might be confused
by the linemarkers.
.IP "\fB\-U\fR\fIname\fR" 4
.IX Item "-Uname"
Cancel any previous definition of \fIname\fR, either built in or provided
with a \fB\-D\fR option.
.SS "Options to request or suppress errors and warnings"
.IX Subsection "Options to request or suppress errors and warnings"
Errors are diagnostic messages that report that the \s-1GNU\s0 Fortran compiler
cannot compile the relevant piece of source code.  The compiler will
continue to process the program in an attempt to report further errors
to aid in debugging, but will not produce any compiled output.
.PP
Warnings are diagnostic messages that report constructions which
are not inherently erroneous but which are risky or suggest there is
likely to be a bug in the program.  Unless \fB\-Werror\fR is specified,
they do not prevent compilation of the program.
.PP
You can request many specific warnings with options beginning \fB\-W\fR,
for example \fB\-Wimplicit\fR to request warnings on implicit
declarations.  Each of these specific warning options also has a
negative form beginning \fB\-Wno\-\fR to turn off warnings;
for example, \fB\-Wno\-implicit\fR.  This manual lists only one of the
two forms, whichever is not the default.
.PP
These options control the amount and kinds of errors and warnings produced
by \s-1GNU\s0 Fortran:
.IP "\fB\-fmax\-errors=\fR\fIn\fR" 4
.IX Item "-fmax-errors=n"
Limits the maximum number of error messages to \fIn\fR, at which point
\&\s-1GNU\s0 Fortran bails out rather than attempting to continue processing the
source code.  If \fIn\fR is 0, there is no limit on the number of error
messages produced.
.IP "\fB\-fsyntax\-only\fR" 4
.IX Item "-fsyntax-only"
Check the code for syntax errors, but do not actually compile it.  This
will generate module files for each module present in the code, but no
other output file.
.IP "\fB\-Wpedantic\fR" 4
.IX Item "-Wpedantic"
.PD 0
.IP "\fB\-pedantic\fR" 4
.IX Item "-pedantic"
.PD
Issue warnings for uses of extensions to Fortran.
\&\fB\-pedantic\fR also applies to C\-language constructs where they
occur in \s-1GNU\s0 Fortran source files, such as use of \fB\ee\fR in a
character constant within a directive like \f(CW\*(C`#include\*(C'\fR.
.Sp
Valid Fortran programs should compile properly with or without
this option.
However, without this option, certain \s-1GNU\s0 extensions and traditional
Fortran features are supported as well.
With this option, many of them are rejected.
.Sp
Some users try to use \fB\-pedantic\fR to check programs for conformance.
They soon find that it does not do quite what they want\-\-\-it finds some
nonstandard practices, but not all.
However, improvements to \s-1GNU\s0 Fortran in this area are welcome.
.Sp
This should be used in conjunction with \fB\-std=f95\fR,
\&\fB\-std=f2003\fR, \fB\-std=f2008\fR or \fB\-std=f2018\fR.
.IP "\fB\-pedantic\-errors\fR" 4
.IX Item "-pedantic-errors"
Like \fB\-pedantic\fR, except that errors are produced rather than
warnings.
.IP "\fB\-Wall\fR" 4
.IX Item "-Wall"
Enables commonly used warning options pertaining to usage that
we recommend avoiding and that we believe are easy to avoid.
This currently includes \fB\-Waliasing\fR, \fB\-Wampersand\fR,
\&\fB\-Wconversion\fR, \fB\-Wsurprising\fR, \fB\-Wc\-binding\-type\fR,
\&\fB\-Wintrinsics\-std\fR, \fB\-Wtabs\fR, \fB\-Wintrinsic\-shadow\fR,
\&\fB\-Wline\-truncation\fR, \fB\-Wtarget\-lifetime\fR,
\&\fB\-Winteger\-division\fR, \fB\-Wreal\-q\-constant\fR, \fB\-Wunused\fR
and \fB\-Wundefined\-do\-loop\fR.
.IP "\fB\-Waliasing\fR" 4
.IX Item "-Waliasing"
Warn about possible aliasing of dummy arguments. Specifically, it warns
if the same actual argument is associated with a dummy argument with
\&\f(CW\*(C`INTENT(IN)\*(C'\fR and a dummy argument with \f(CW\*(C`INTENT(OUT)\*(C'\fR in a call
with an explicit interface.
.Sp
The following example will trigger the warning.
.Sp
.Vb 7
\&          interface
\&            subroutine bar(a,b)
\&              integer, intent(in) :: a
\&              integer, intent(out) :: b
\&            end subroutine
\&          end interface
\&          integer :: a
\&        
\&          call bar(a,a)
.Ve
.IP "\fB\-Wampersand\fR" 4
.IX Item "-Wampersand"
Warn about missing ampersand in continued character constants. The
warning is given with \fB\-Wampersand\fR, \fB\-pedantic\fR,
\&\fB\-std=f95\fR, \fB\-std=f2003\fR, \fB\-std=f2008\fR and
\&\fB\-std=f2018\fR. Note: With no ampersand given in a continued
character constant, \s-1GNU\s0 Fortran assumes continuation at the first
non-comment, non-whitespace character after the ampersand that
initiated the continuation.
.IP "\fB\-Warray\-temporaries\fR" 4
.IX Item "-Warray-temporaries"
Warn about array temporaries generated by the compiler.  The information
generated by this warning is sometimes useful in optimization, in order to
avoid such temporaries.
.IP "\fB\-Wc\-binding\-type\fR" 4
.IX Item "-Wc-binding-type"
Warn if the a variable might not be C interoperable.  In particular, warn if 
the variable has been declared using an intrinsic type with default kind
instead of using a kind parameter defined for C interoperability in the
intrinsic \f(CW\*(C`ISO_C_Binding\*(C'\fR module.  This option is implied by
\&\fB\-Wall\fR.
.IP "\fB\-Wcharacter\-truncation\fR" 4
.IX Item "-Wcharacter-truncation"
Warn when a character assignment will truncate the assigned string.
.IP "\fB\-Wline\-truncation\fR" 4
.IX Item "-Wline-truncation"
Warn when a source code line will be truncated.  This option is
implied by \fB\-Wall\fR.  For free-form source code, the default is
\&\fB\-Werror=line\-truncation\fR such that truncations are reported as
error.
.IP "\fB\-Wconversion\fR" 4
.IX Item "-Wconversion"
Warn about implicit conversions that are likely to change the value of 
the expression after conversion. Implied by \fB\-Wall\fR.
.IP "\fB\-Wconversion\-extra\fR" 4
.IX Item "-Wconversion-extra"
Warn about implicit conversions between different types and kinds. This
option does \fInot\fR imply \fB\-Wconversion\fR.
.IP "\fB\-Wextra\fR" 4
.IX Item "-Wextra"
Enables some warning options for usages of language features which
may be problematic. This currently includes \fB\-Wcompare\-reals\fR,
\&\fB\-Wunused\-parameter\fR and \fB\-Wdo\-subscript\fR.
.IP "\fB\-Wfrontend\-loop\-interchange\fR" 4
.IX Item "-Wfrontend-loop-interchange"
Warn when using \fB\-ffrontend\-loop\-interchange\fR for performing loop
interchanges.
.IP "\fB\-Wimplicit\-interface\fR" 4
.IX Item "-Wimplicit-interface"
Warn if a procedure is called without an explicit interface.
Note this only checks that an explicit interface is present.  It does not
check that the declared interfaces are consistent across program units.
.IP "\fB\-Wimplicit\-procedure\fR" 4
.IX Item "-Wimplicit-procedure"
Warn if a procedure is called that has neither an explicit interface
nor has been declared as \f(CW\*(C`EXTERNAL\*(C'\fR.
.IP "\fB\-Winteger\-division\fR" 4
.IX Item "-Winteger-division"
Warn if a constant integer division truncates its result.
As an example, 3/5 evaluates to 0.
.IP "\fB\-Wintrinsics\-std\fR" 4
.IX Item "-Wintrinsics-std"
Warn if \fBgfortran\fR finds a procedure named like an intrinsic not
available in the currently selected standard (with \fB\-std\fR) and treats
it as \f(CW\*(C`EXTERNAL\*(C'\fR procedure because of this.  \fB\-fall\-intrinsics\fR can
be used to never trigger this behavior and always link to the intrinsic
regardless of the selected standard.
.IP "\fB\-Wno\-overwrite\-recursive\fR" 4
.IX Item "-Wno-overwrite-recursive"
Do not warn when \fB\-fno\-automatic\fR is used with \fB\-frecursive\fR. Recursion
will be broken if the relevant local variables do not have the attribute
\&\f(CW\*(C`AUTOMATIC\*(C'\fR explicitly declared. This option can be used to suppress the warning
when it is known that recursion is not broken. Useful for build environments that use
\&\fB\-Werror\fR.
.IP "\fB\-Wreal\-q\-constant\fR" 4
.IX Item "-Wreal-q-constant"
Produce a warning if a real-literal-constant contains a \f(CW\*(C`q\*(C'\fR
exponent-letter.
.IP "\fB\-Wsurprising\fR" 4
.IX Item "-Wsurprising"
Produce a warning when \*(L"suspicious\*(R" code constructs are encountered.
While technically legal these usually indicate that an error has been made.
.Sp
This currently produces a warning under the following circumstances:
.RS 4
.IP "*" 4
An \s-1INTEGER SELECT\s0 construct has a \s-1CASE\s0 that can never be matched as its
lower value is greater than its upper value.
.IP "*" 4
A \s-1LOGICAL SELECT\s0 construct has three \s-1CASE\s0 statements.
.IP "*" 4
A \s-1TRANSFER\s0 specifies a source that is shorter than the destination.
.IP "*" 4
The type of a function result is declared more than once with the same type.  If
\&\fB\-pedantic\fR or standard-conforming mode is enabled, this is an error.
.IP "*" 4
A \f(CW\*(C`CHARACTER\*(C'\fR variable is declared with negative length.
.RE
.RS 4
.RE
.IP "\fB\-Wtabs\fR" 4
.IX Item "-Wtabs"
By default, tabs are accepted as whitespace, but tabs are not members
of the Fortran Character Set.  For continuation lines, a tab followed
by a digit between 1 and 9 is supported.  \fB\-Wtabs\fR will cause a
warning to be issued if a tab is encountered. Note, \fB\-Wtabs\fR is
active for \fB\-pedantic\fR, \fB\-std=f95\fR, \fB\-std=f2003\fR,
\&\fB\-std=f2008\fR, \fB\-std=f2018\fR and
\&\fB\-Wall\fR.
.IP "\fB\-Wundefined\-do\-loop\fR" 4
.IX Item "-Wundefined-do-loop"
Warn if a \s-1DO\s0 loop with step either 1 or \-1 yields an underflow or an overflow
during iteration of an induction variable of the loop.
This option is implied by \fB\-Wall\fR.
.IP "\fB\-Wunderflow\fR" 4
.IX Item "-Wunderflow"
Produce a warning when numerical constant expressions are
encountered, which yield an \s-1UNDERFLOW\s0 during compilation. Enabled by default.
.IP "\fB\-Wintrinsic\-shadow\fR" 4
.IX Item "-Wintrinsic-shadow"
Warn if a user-defined procedure or module procedure has the same name as an
intrinsic; in this case, an explicit interface or \f(CW\*(C`EXTERNAL\*(C'\fR or
\&\f(CW\*(C`INTRINSIC\*(C'\fR declaration might be needed to get calls later resolved to
the desired intrinsic/procedure.  This option is implied by \fB\-Wall\fR.
.IP "\fB\-Wuse\-without\-only\fR" 4
.IX Item "-Wuse-without-only"
Warn if a \f(CW\*(C`USE\*(C'\fR statement has no \f(CW\*(C`ONLY\*(C'\fR qualifier and 
thus implicitly imports all public entities of the used module.
.IP "\fB\-Wunused\-dummy\-argument\fR" 4
.IX Item "-Wunused-dummy-argument"
Warn about unused dummy arguments. This option is implied by \fB\-Wall\fR.
.IP "\fB\-Wunused\-parameter\fR" 4
.IX Item "-Wunused-parameter"
Contrary to \fBgcc\fR's meaning of \fB\-Wunused\-parameter\fR,
\&\fBgfortran\fR's implementation of this option does not warn
about unused dummy arguments (see \fB\-Wunused\-dummy\-argument\fR),
but about unused \f(CW\*(C`PARAMETER\*(C'\fR values. \fB\-Wunused\-parameter\fR
is implied by \fB\-Wextra\fR if also \fB\-Wunused\fR or
\&\fB\-Wall\fR is used.
.IP "\fB\-Walign\-commons\fR" 4
.IX Item "-Walign-commons"
By default, \fBgfortran\fR warns about any occasion of variables being
padded for proper alignment inside a \f(CW\*(C`COMMON\*(C'\fR block. This warning can be turned
off via \fB\-Wno\-align\-commons\fR. See also \fB\-falign\-commons\fR.
.IP "\fB\-Wfunction\-elimination\fR" 4
.IX Item "-Wfunction-elimination"
Warn if any calls to impure functions are eliminated by the optimizations
enabled by the \fB\-ffrontend\-optimize\fR option.
This option is implied by \fB\-Wextra\fR.
.IP "\fB\-Wrealloc\-lhs\fR" 4
.IX Item "-Wrealloc-lhs"
Warn when the compiler might insert code to for allocation or reallocation of
an allocatable array variable of intrinsic type in intrinsic assignments.  In
hot loops, the Fortran 2003 reallocation feature may reduce the performance.
If the array is already allocated with the correct shape, consider using a
whole-array array-spec (e.g. \f(CW\*(C`(:,:,:)\*(C'\fR) for the variable on the left-hand
side to prevent the reallocation check. Note that in some cases the warning
is shown, even if the compiler will optimize reallocation checks away.  For
instance, when the right-hand side contains the same variable multiplied by
a scalar.  See also \fB\-frealloc\-lhs\fR.
.IP "\fB\-Wrealloc\-lhs\-all\fR" 4
.IX Item "-Wrealloc-lhs-all"
Warn when the compiler inserts code to for allocation or reallocation of an
allocatable variable; this includes scalars and derived types.
.IP "\fB\-Wcompare\-reals\fR" 4
.IX Item "-Wcompare-reals"
Warn when comparing real or complex types for equality or inequality.
This option is implied by \fB\-Wextra\fR.
.IP "\fB\-Wtarget\-lifetime\fR" 4
.IX Item "-Wtarget-lifetime"
Warn if the pointer in a pointer assignment might be longer than the its
target. This option is implied by \fB\-Wall\fR.
.IP "\fB\-Wzerotrip\fR" 4
.IX Item "-Wzerotrip"
Warn if a \f(CW\*(C`DO\*(C'\fR loop is known to execute zero times at compile
time.  This option is implied by \fB\-Wall\fR.
.IP "\fB\-Wdo\-subscript\fR" 4
.IX Item "-Wdo-subscript"
Warn if an array subscript inside a \s-1DO\s0 loop could lead to an
out-of-bounds access even if the compiler cannot prove that the
statement is actually executed, in cases like
.Sp
.Vb 6
\&          real a(3)
\&          do i=1,4
\&            if (condition(i)) then
\&              a(i) = 1.2
\&            end if
\&          end do
.Ve
.Sp
This option is implied by \fB\-Wextra\fR.
.IP "\fB\-Werror\fR" 4
.IX Item "-Werror"
Turns all warnings into errors.
.PP
Some of these have no effect when compiling programs written in Fortran.
.SS "Options for debugging your program or \s-1GNU\s0 Fortran"
.IX Subsection "Options for debugging your program or GNU Fortran"
\&\s-1GNU\s0 Fortran has various special options that are used for debugging
either your program or the \s-1GNU\s0 Fortran compiler.
.IP "\fB\-fdump\-fortran\-original\fR" 4
.IX Item "-fdump-fortran-original"
Output the internal parse tree after translating the source program
into internal representation.  This option is mostly useful for
debugging the \s-1GNU\s0 Fortran compiler itself. The output generated by
this option might change between releases. This option may also
generate internal compiler errors for features which have only
recently been added.
.IP "\fB\-fdump\-fortran\-optimized\fR" 4
.IX Item "-fdump-fortran-optimized"
Output the parse tree after front-end optimization.  Mostly useful for
debugging the \s-1GNU\s0 Fortran compiler itself. The output generated by
this option might change between releases.  This option may also
generate internal compiler errors for features which have only
recently been added.
.IP "\fB\-fdump\-parse\-tree\fR" 4
.IX Item "-fdump-parse-tree"
Output the internal parse tree after translating the source program
into internal representation.  Mostly useful for debugging the \s-1GNU\s0
Fortran compiler itself. The output generated by this option might
change between releases. This option may also generate internal
compiler errors for features which have only recently been added. This
option is deprecated; use \f(CW\*(C`\-fdump\-fortran\-original\*(C'\fR instead.
.IP "\fB\-fdump\-fortran\-global\fR" 4
.IX Item "-fdump-fortran-global"
Output a list of the global identifiers after translating into
middle-end representation. Mostly useful for debugging the \s-1GNU\s0 Fortran
compiler itself. The output generated by this option might change
between releases.  This option may also generate internal compiler
errors for features which have only recently been added.
.IP "\fB\-ffpe\-trap=\fR\fIlist\fR" 4
.IX Item "-ffpe-trap=list"
Specify a list of floating point exception traps to enable.  On most
systems, if a floating point exception occurs and the trap for that
exception is enabled, a \s-1SIGFPE\s0 signal will be sent and the program
being aborted, producing a core file useful for debugging.  \fIlist\fR
is a (possibly empty) comma-separated list of the following
exceptions: \fBinvalid\fR (invalid floating point operation, such as
\&\f(CW\*(C`SQRT(\-1.0)\*(C'\fR), \fBzero\fR (division by zero), \fBoverflow\fR
(overflow in a floating point operation), \fBunderflow\fR (underflow
in a floating point operation), \fBinexact\fR (loss of precision
during operation), and \fBdenormal\fR (operation performed on a
denormal value).  The first five exceptions correspond to the five
\&\s-1IEEE 754\s0 exceptions, whereas the last one (\fBdenormal\fR) is not
part of the \s-1IEEE 754\s0 standard but is available on some common
architectures such as x86.
.Sp
The first three exceptions (\fBinvalid\fR, \fBzero\fR, and
\&\fBoverflow\fR) often indicate serious errors, and unless the program
has provisions for dealing with these exceptions, enabling traps for
these three exceptions is probably a good idea.
.Sp
If the option is used more than once in the command line, the lists will
be joined: '\f(CW\*(C`ffpe\-trap=\*(C'\fR\fIlist1\fR \f(CW\*(C`ffpe\-trap=\*(C'\fR\fIlist2\fR'
is equivalent to \f(CW\*(C`ffpe\-trap=\*(C'\fR\fIlist1\fR,\fIlist2\fR.
.Sp
Note that once enabled an exception cannot be disabled (no negative form).
.Sp
Many, if not most, floating point operations incur loss of precision
due to rounding, and hence the \f(CW\*(C`ffpe\-trap=inexact\*(C'\fR is likely to
be uninteresting in practice.
.Sp
By default no exception traps are enabled.
.IP "\fB\-ffpe\-summary=\fR\fIlist\fR" 4
.IX Item "-ffpe-summary=list"
Specify a list of floating-point exceptions, whose flag status is printed
to \f(CW\*(C`ERROR_UNIT\*(C'\fR when invoking \f(CW\*(C`STOP\*(C'\fR and \f(CW\*(C`ERROR STOP\*(C'\fR.
\&\fIlist\fR can be either \fBnone\fR, \fBall\fR or a comma-separated list
of the following exceptions: \fBinvalid\fR, \fBzero\fR, \fBoverflow\fR,
\&\fBunderflow\fR, \fBinexact\fR and \fBdenormal\fR. (See
\&\fB\-ffpe\-trap\fR for a description of the exceptions.)
.Sp
If the option is used more than once in the command line, only the
last one will be used.
.Sp
By default, a summary for all exceptions but \fBinexact\fR is shown.
.IP "\fB\-fno\-backtrace\fR" 4
.IX Item "-fno-backtrace"
When a serious runtime error is encountered or a deadly signal is
emitted (segmentation fault, illegal instruction, bus error,
floating-point exception, and the other \s-1POSIX\s0 signals that have the
action \fBcore\fR), the Fortran runtime library tries to output a
backtrace of the error. \f(CW\*(C`\-fno\-backtrace\*(C'\fR disables the backtrace
generation. This option only has influence for compilation of the
Fortran main program.
.SS "Options for directory search"
.IX Subsection "Options for directory search"
These options affect how \s-1GNU\s0 Fortran searches
for files specified by the \f(CW\*(C`INCLUDE\*(C'\fR directive and where it searches
for previously compiled modules.
.PP
It also affects the search paths used by \fBcpp\fR when used to preprocess
Fortran source.
.IP "\fB\-I\fR\fIdir\fR" 4
.IX Item "-Idir"
These affect interpretation of the \f(CW\*(C`INCLUDE\*(C'\fR directive
(as well as of the \f(CW\*(C`#include\*(C'\fR directive of the \fBcpp\fR
preprocessor).
.Sp
Also note that the general behavior of \fB\-I\fR and
\&\f(CW\*(C`INCLUDE\*(C'\fR is pretty much the same as of \fB\-I\fR with
\&\f(CW\*(C`#include\*(C'\fR in the \fBcpp\fR preprocessor, with regard to
looking for \fIheader.gcc\fR files and other such things.
.Sp
This path is also used to search for \fI.mod\fR files when previously
compiled modules are required by a \f(CW\*(C`USE\*(C'\fR statement.
.IP "\fB\-J\fR\fIdir\fR" 4
.IX Item "-Jdir"
This option specifies where to put \fI.mod\fR files for compiled modules.
It is also added to the list of directories to searched by an \f(CW\*(C`USE\*(C'\fR
statement.
.Sp
The default is the current directory.
.IP "\fB\-fintrinsic\-modules\-path\fR \fIdir\fR" 4
.IX Item "-fintrinsic-modules-path dir"
This option specifies the location of pre-compiled intrinsic modules, if
they are not in the default location expected by the compiler.
.SS "Influencing the linking step"
.IX Subsection "Influencing the linking step"
These options come into play when the compiler links object files into an 
executable output file. They are meaningless if the compiler is not doing 
a link step.
.IP "\fB\-static\-libgfortran\fR" 4
.IX Item "-static-libgfortran"
On systems that provide \fIlibgfortran\fR as a shared and a static
library, this option forces the use of the static version. If no
shared version of \fIlibgfortran\fR was built when the compiler was
configured, this option has no effect.
.SS "Influencing runtime behavior"
.IX Subsection "Influencing runtime behavior"
These options affect the runtime behavior of programs compiled with \s-1GNU\s0 Fortran.
.IP "\fB\-fconvert=\fR\fIconversion\fR" 4
.IX Item "-fconvert=conversion"
Specify the representation of data for unformatted files.  Valid
values for conversion are: \fBnative\fR, the default; \fBswap\fR,
swap between big\- and little-endian; \fBbig-endian\fR, use big-endian
representation for unformatted files; \fBlittle-endian\fR, use little-endian
representation for unformatted files.
.Sp
\&\fIThis option has an effect only when used in the main program.
The \f(CI\*(C`CONVERT\*(C'\fI specifier and the \s-1GFORTRAN_CONVERT_UNIT\s0 environment
variable override the default specified by \f(BI\-fconvert\fI.\fR
.IP "\fB\-frecord\-marker=\fR\fIlength\fR" 4
.IX Item "-frecord-marker=length"
Specify the length of record markers for unformatted files.
Valid values for \fIlength\fR are 4 and 8.  Default is 4.
\&\fIThis is different from previous versions of\fR \fBgfortran\fR,
which specified a default record marker length of 8 on most
systems.  If you want to read or write files compatible
with earlier versions of \fBgfortran\fR, use \fB\-frecord\-marker=8\fR.
.IP "\fB\-fmax\-subrecord\-length=\fR\fIlength\fR" 4
.IX Item "-fmax-subrecord-length=length"
Specify the maximum length for a subrecord.  The maximum permitted
value for length is 2147483639, which is also the default.  Only
really useful for use by the gfortran testsuite.
.IP "\fB\-fsign\-zero\fR" 4
.IX Item "-fsign-zero"
When enabled, floating point numbers of value zero with the sign bit set
are written as negative number in formatted output and treated as
negative in the \f(CW\*(C`SIGN\*(C'\fR intrinsic.  \fB\-fno\-sign\-zero\fR does not
print the negative sign of zero values (or values rounded to zero for I/O)
and regards zero as positive number in the \f(CW\*(C`SIGN\*(C'\fR intrinsic for
compatibility with Fortran 77. The default is \fB\-fsign\-zero\fR.
.SS "Options for code generation conventions"
.IX Subsection "Options for code generation conventions"
These machine-independent options control the interface conventions
used in code generation.
.PP
Most of them have both positive and negative forms; the negative form
of \fB\-ffoo\fR would be \fB\-fno\-foo\fR.  In the table below, only
one of the forms is listed\-\-\-the one which is not the default.  You
can figure out the other form by either removing \fBno\-\fR or adding
it.
.IP "\fB\-fno\-automatic\fR" 4
.IX Item "-fno-automatic"
Treat each program unit (except those marked as \s-1RECURSIVE\s0) as if the
\&\f(CW\*(C`SAVE\*(C'\fR statement were specified for every local variable and array
referenced in it. Does not affect common blocks. (Some Fortran compilers
provide this option under the name \fB\-static\fR or \fB\-save\fR.)
The default, which is \fB\-fautomatic\fR, uses the stack for local
variables smaller than the value given by \fB\-fmax\-stack\-var\-size\fR.
Use the option \fB\-frecursive\fR to use no static memory.
.Sp
Local variables or arrays having an explicit \f(CW\*(C`SAVE\*(C'\fR attribute are
silently ignored unless the \fB\-pedantic\fR option is added.
.IP "\fB\-ff2c\fR" 4
.IX Item "-ff2c"
Generate code designed to be compatible with code generated
by \fBg77\fR and \fBf2c\fR.
.Sp
The calling conventions used by \fBg77\fR (originally implemented
in \fBf2c\fR) require functions that return type
default \f(CW\*(C`REAL\*(C'\fR to actually return the C type \f(CW\*(C`double\*(C'\fR, and
functions that return type \f(CW\*(C`COMPLEX\*(C'\fR to return the values via an
extra argument in the calling sequence that points to where to
store the return value.  Under the default \s-1GNU\s0 calling conventions, such
functions simply return their results as they would in \s-1GNU\s0
C\-\-\-default \f(CW\*(C`REAL\*(C'\fR functions return the C type \f(CW\*(C`float\*(C'\fR, and
\&\f(CW\*(C`COMPLEX\*(C'\fR functions return the \s-1GNU C\s0 type \f(CW\*(C`complex\*(C'\fR.
Additionally, this option implies the \fB\-fsecond\-underscore\fR
option, unless \fB\-fno\-second\-underscore\fR is explicitly requested.
.Sp
This does not affect the generation of code that interfaces with
the \fBlibgfortran\fR library.
.Sp
\&\fICaution:\fR It is not a good idea to mix Fortran code compiled with
\&\fB\-ff2c\fR with code compiled with the default \fB\-fno\-f2c\fR
calling conventions as, calling \f(CW\*(C`COMPLEX\*(C'\fR or default \f(CW\*(C`REAL\*(C'\fR
functions between program parts which were compiled with different
calling conventions will break at execution time.
.Sp
\&\fICaution:\fR This will break code which passes intrinsic functions
of type default \f(CW\*(C`REAL\*(C'\fR or \f(CW\*(C`COMPLEX\*(C'\fR as actual arguments, as
the library implementations use the \fB\-fno\-f2c\fR calling conventions.
.IP "\fB\-fno\-underscoring\fR" 4
.IX Item "-fno-underscoring"
Do not transform names of entities specified in the Fortran
source file by appending underscores to them.
.Sp
With \fB\-funderscoring\fR in effect, \s-1GNU\s0 Fortran appends one
underscore to external names with no underscores.  This is done to ensure
compatibility with code produced by many \s-1UNIX\s0 Fortran compilers.
.Sp
\&\fICaution\fR: The default behavior of \s-1GNU\s0 Fortran is
incompatible with \fBf2c\fR and \fBg77\fR, please use the
\&\fB\-ff2c\fR option if you want object files compiled with
\&\s-1GNU\s0 Fortran to be compatible with object code created with these
tools.
.Sp
Use of \fB\-fno\-underscoring\fR is not recommended unless you are
experimenting with issues such as integration of \s-1GNU\s0 Fortran into
existing system environments (vis\-a\*`\-vis existing libraries, tools,
and so on).
.Sp
For example, with \fB\-funderscoring\fR, and assuming that \f(CW\*(C`j()\*(C'\fR and
\&\f(CW\*(C`max_count()\*(C'\fR are external functions while \f(CW\*(C`my_var\*(C'\fR and
\&\f(CW\*(C`lvar\*(C'\fR are local variables, a statement like
.Sp
.Vb 1
\&        I = J() + MAX_COUNT (MY_VAR, LVAR)
.Ve
.Sp
is implemented as something akin to:
.Sp
.Vb 1
\&        i = j_() + max_count_\|_(&my_var_\|_, &lvar);
.Ve
.Sp
With \fB\-fno\-underscoring\fR, the same statement is implemented as:
.Sp
.Vb 1
\&        i = j() + max_count(&my_var, &lvar);
.Ve
.Sp
Use of \fB\-fno\-underscoring\fR allows direct specification of
user-defined names while debugging and when interfacing \s-1GNU\s0 Fortran
code with other languages.
.Sp
Note that just because the names match does \fInot\fR mean that the
interface implemented by \s-1GNU\s0 Fortran for an external name matches the
interface implemented by some other language for that same name.
That is, getting code produced by \s-1GNU\s0 Fortran to link to code produced
by some other compiler using this or any other method can be only a
small part of the overall solution\-\-\-getting the code generated by
both compilers to agree on issues other than naming can require
significant effort, and, unlike naming disagreements, linkers normally
cannot detect disagreements in these other areas.
.Sp
Also, note that with \fB\-fno\-underscoring\fR, the lack of appended
underscores introduces the very real possibility that a user-defined
external name will conflict with a name in a system library, which
could make finding unresolved-reference bugs quite difficult in some
cases\-\-\-they might occur at program run time, and show up only as
buggy behavior at run time.
.Sp
In future versions of \s-1GNU\s0 Fortran we hope to improve naming and linking
issues so that debugging always involves using the names as they appear
in the source, even if the names as seen by the linker are mangled to
prevent accidental linking between procedures with incompatible
interfaces.
.IP "\fB\-fsecond\-underscore\fR" 4
.IX Item "-fsecond-underscore"
By default, \s-1GNU\s0 Fortran appends an underscore to external
names.  If this option is used \s-1GNU\s0 Fortran appends two
underscores to names with underscores and one underscore to external names
with no underscores.  \s-1GNU\s0 Fortran also appends two underscores to
internal names with underscores to avoid naming collisions with external
names.
.Sp
This option has no effect if \fB\-fno\-underscoring\fR is
in effect.  It is implied by the \fB\-ff2c\fR option.
.Sp
Otherwise, with this option, an external name such as \f(CW\*(C`MAX_COUNT\*(C'\fR
is implemented as a reference to the link-time external symbol
\&\f(CW\*(C`max_count_\|_\*(C'\fR, instead of \f(CW\*(C`max_count_\*(C'\fR.  This is required
for compatibility with \fBg77\fR and \fBf2c\fR, and is implied
by use of the \fB\-ff2c\fR option.
.IP "\fB\-fcoarray=\fR\fI<keyword>\fR" 4
.IX Item "-fcoarray=<keyword>"
.RS 4
.PD 0
.IP "\fBnone\fR" 4
.IX Item "none"
.PD
Disable coarray support; using coarray declarations and image-control
statements will produce a compile-time error. (Default)
.IP "\fBsingle\fR" 4
.IX Item "single"
Single-image mode, i.e. \f(CW\*(C`num_images()\*(C'\fR is always one.
.IP "\fBlib\fR" 4
.IX Item "lib"
Library-based coarray parallelization; a suitable \s-1GNU\s0 Fortran coarray
library needs to be linked.
.RE
.RS 4
.RE
.IP "\fB\-fcheck=\fR\fI<keyword>\fR" 4
.IX Item "-fcheck=<keyword>"
Enable the generation of run-time checks; the argument shall be
a comma-delimited list of the following keywords.  Prefixing a check with
\&\fBno\-\fR disables it if it was activated by a previous specification.
.RS 4
.IP "\fBall\fR" 4
.IX Item "all"
Enable all run-time test of \fB\-fcheck\fR.
.IP "\fBarray-temps\fR" 4
.IX Item "array-temps"
Warns at run time when for passing an actual argument a temporary array
had to be generated. The information generated by this warning is
sometimes useful in optimization, in order to avoid such temporaries.
.Sp
Note: The warning is only printed once per location.
.IP "\fBbits\fR" 4
.IX Item "bits"
Enable generation of run-time checks for invalid arguments to the bit
manipulation intrinsics.
.IP "\fBbounds\fR" 4
.IX Item "bounds"
Enable generation of run-time checks for array subscripts
and against the declared minimum and maximum values.  It also
checks array indices for assumed and deferred
shape arrays against the actual allocated bounds and ensures that all string
lengths are equal for character array constructors without an explicit
typespec.
.Sp
Some checks require that \fB\-fcheck=bounds\fR is set for
the compilation of the main program.
.Sp
Note: In the future this may also include other forms of checking, e.g.,
checking substring references.
.IP "\fBdo\fR" 4
.IX Item "do"
Enable generation of run-time checks for invalid modification of loop
iteration variables.
.IP "\fBmem\fR" 4
.IX Item "mem"
Enable generation of run-time checks for memory allocation.
Note: This option does not affect explicit allocations using the
\&\f(CW\*(C`ALLOCATE\*(C'\fR statement, which will be always checked.
.IP "\fBpointer\fR" 4
.IX Item "pointer"
Enable generation of run-time checks for pointers and allocatables.
.IP "\fBrecursion\fR" 4
.IX Item "recursion"
Enable generation of run-time checks for recursively called subroutines and
functions which are not marked as recursive. See also \fB\-frecursive\fR.
Note: This check does not work for OpenMP programs and is disabled if used
together with \fB\-frecursive\fR and \fB\-fopenmp\fR.
.RE
.RS 4
.Sp
Example: Assuming you have a file \fIfoo.f90\fR, the command
.Sp
.Vb 1
\&          gfortran \-fcheck=all,no\-array\-temps foo.f90
.Ve
.Sp
will compile the file with all checks enabled as specified above except
warnings for generated array temporaries.
.RE
.IP "\fB\-fbounds\-check\fR" 4
.IX Item "-fbounds-check"
Deprecated alias for \fB\-fcheck=bounds\fR.
.IP "\fB\-ftail\-call\-workaround\fR" 4
.IX Item "-ftail-call-workaround"
.PD 0
.IP "\fB\-ftail\-call\-workaround=\fR\fIn\fR" 4
.IX Item "-ftail-call-workaround=n"
.PD
Some C interfaces to Fortran codes violate the gfortran \s-1ABI\s0 by
omitting the hidden character length arguments as described in
  This can lead to crashes
because pushing arguments for tail calls can overflow the stack.
.Sp
To provide a workaround for existing binary packages, this option
disables tail call optimization for gfortran procedures with character
arguments.  With \fB\-ftail\-call\-workaround=2\fR tail call optimization
is disabled in all gfortran procedures with character arguments,
with \fB\-ftail\-call\-workaround=1\fR or equivalent
\&\fB\-ftail\-call\-workaround\fR only in gfortran procedures with character
arguments that call implicitly prototyped procedures.
.Sp
Using this option can lead to problems including crashes due to
insufficient stack space.
.Sp
It is \fIvery strongly\fR recommended to fix the code in question.
The \fB\-fc\-prototypes\-external\fR option can be used to generate
prototypes which conform to gfortran's \s-1ABI,\s0 for inclusion in the
source code.
.Sp
Support for this option will likely be withdrawn in a future release
of gfortran.
.Sp
The negative form, \fB\-fno\-tail\-call\-workaround\fR or equivalent
\&\fB\-ftail\-call\-workaround=0\fR, can be used to disable this option.
.Sp
Default is currently \fB\-ftail\-call\-workaround\fR, this will change
in future releases.
.IP "\fB\-fcheck\-array\-temporaries\fR" 4
.IX Item "-fcheck-array-temporaries"
Deprecated alias for \fB\-fcheck=array\-temps\fR.
.IP "\fB\-fmax\-array\-constructor=\fR\fIn\fR" 4
.IX Item "-fmax-array-constructor=n"
This option can be used to increase the upper limit permitted in 
array constructors.  The code below requires this option to expand
the array at compile time.
.Sp
.Vb 7
\&        program test
\&        implicit none
\&        integer j
\&        integer, parameter :: n = 100000
\&        integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)
\&        print \*(Aq(10(I0,1X))\*(Aq, i
\&        end program test
.Ve
.Sp
\&\fICaution:  This option can lead to long compile times and excessively
large object files.\fR
.Sp
The default value for \fIn\fR is 65535.
.IP "\fB\-fmax\-stack\-var\-size=\fR\fIn\fR" 4
.IX Item "-fmax-stack-var-size=n"
This option specifies the size in bytes of the largest array that will be put
on the stack; if the size is exceeded static memory is used (except in
procedures marked as \s-1RECURSIVE\s0). Use the option \fB\-frecursive\fR to
allow for recursive procedures which do not have a \s-1RECURSIVE\s0 attribute or
for parallel programs. Use \fB\-fno\-automatic\fR to never use the stack.
.Sp
This option currently only affects local arrays declared with constant
bounds, and may not apply to all character variables.
Future versions of \s-1GNU\s0 Fortran may improve this behavior.
.Sp
The default value for \fIn\fR is 65536.
.IP "\fB\-fstack\-arrays\fR" 4
.IX Item "-fstack-arrays"
Adding this option will make the Fortran compiler put all arrays of
unknown size and array temporaries onto stack memory.  If your program uses very
large local arrays it is possible that you will have to extend your runtime
limits for stack memory on some operating systems. This flag is enabled
by default at optimization level \fB\-Ofast\fR unless
\&\fB\-fmax\-stack\-var\-size\fR is specified.
.IP "\fB\-fpack\-derived\fR" 4
.IX Item "-fpack-derived"
This option tells \s-1GNU\s0 Fortran to pack derived type members as closely as
possible.  Code compiled with this option is likely to be incompatible
with code compiled without this option, and may execute slower.
.IP "\fB\-frepack\-arrays\fR" 4
.IX Item "-frepack-arrays"
In some circumstances \s-1GNU\s0 Fortran may pass assumed shape array
sections via a descriptor describing a noncontiguous area of memory.
This option adds code to the function prologue to repack the data into
a contiguous block at runtime.
.Sp
This should result in faster accesses to the array.  However it can introduce
significant overhead to the function call, especially  when the passed data
is noncontiguous.
.IP "\fB\-fshort\-enums\fR" 4
.IX Item "-fshort-enums"
This option is provided for interoperability with C code that was
compiled with the \fB\-fshort\-enums\fR option.  It will make
\&\s-1GNU\s0 Fortran choose the smallest \f(CW\*(C`INTEGER\*(C'\fR kind a given
enumerator set will fit in, and give all its enumerators this kind.
.IP "\fB\-finline\-arg\-packing\fR" 4
.IX Item "-finline-arg-packing"
When passing an assumed-shape argument of a procedure as actual
argument to an assumed-size or explicit size or as argument to a
procedure that does not have an explicit interface, the argument may
have to be packed, that is put into contiguous memory. An example is
the call to \f(CW\*(C`foo\*(C'\fR in
.Sp
.Vb 7
\&          subroutine foo(a)
\&             real, dimension(*) :: a
\&          end subroutine foo
\&          subroutine bar(b)
\&             real, dimension(:) :: b
\&             call foo(b)
\&          end subroutine bar
.Ve
.Sp
When \fB\-finline\-arg\-packing\fR is in effect, this packing will be
performed by inline code. This allows for more optimization while
increasing code size.
.Sp
\&\fB\-finline\-arg\-packing\fR is implied by any of the \fB\-O\fR options
except when optimizing for size via \fB\-Os\fR.  If the code
contains a very large number of argument that have to be packed, code
size and also compilation time may become excessive.  If that is the
case, it may be better to disable this option.  Instances of packing
can be found by using by using \fB\-Warray\-temporaries\fR.
.IP "\fB\-fexternal\-blas\fR" 4
.IX Item "-fexternal-blas"
This option will make \fBgfortran\fR generate calls to \s-1BLAS\s0 functions
for some matrix operations like \f(CW\*(C`MATMUL\*(C'\fR, instead of using our own
algorithms, if the size of the matrices involved is larger than a given
limit (see \fB\-fblas\-matmul\-limit\fR).  This may be profitable if an
optimized vendor \s-1BLAS\s0 library is available.  The \s-1BLAS\s0 library will have
to be specified at link time.
.IP "\fB\-fblas\-matmul\-limit=\fR\fIn\fR" 4
.IX Item "-fblas-matmul-limit=n"
Only significant when \fB\-fexternal\-blas\fR is in effect.
Matrix multiplication of matrices with size larger than (or equal to) \fIn\fR
will be performed by calls to \s-1BLAS\s0 functions, while others will be
handled by \fBgfortran\fR internal algorithms. If the matrices
involved are not square, the size comparison is performed using the
geometric mean of the dimensions of the argument and result matrices.
.Sp
The default value for \fIn\fR is 30.
.IP "\fB\-finline\-matmul\-limit=\fR\fIn\fR" 4
.IX Item "-finline-matmul-limit=n"
When front-end optimiztion is active, some calls to the \f(CW\*(C`MATMUL\*(C'\fR
intrinsic function will be inlined.  This may result in code size
increase if the size of the matrix cannot be determined at compile
time, as code for both cases is generated.  Setting
\&\f(CW\*(C`\-finline\-matmul\-limit=0\*(C'\fR will disable inlining in all cases.
Setting this option with a value of \fIn\fR will produce inline code
for matrices with size up to \fIn\fR. If the matrices involved are not
square, the size comparison is performed using the geometric mean of
the dimensions of the argument and result matrices.
.Sp
The default value for \fIn\fR is 30.  The \f(CW\*(C`\-fblas\-matmul\-limit\*(C'\fR
can be used to change this value.
.IP "\fB\-frecursive\fR" 4
.IX Item "-frecursive"
Allow indirect recursion by forcing all local arrays to be allocated
on the stack. This flag cannot be used together with
\&\fB\-fmax\-stack\-var\-size=\fR or \fB\-fno\-automatic\fR.
.IP "\fB\-finit\-local\-zero\fR" 4
.IX Item "-finit-local-zero"
.PD 0
.IP "\fB\-finit\-derived\fR" 4
.IX Item "-finit-derived"
.IP "\fB\-finit\-integer=\fR\fIn\fR" 4
.IX Item "-finit-integer=n"
.IP "\fB\-finit\-real=\fR\fI<zero|inf|\-inf|nan|snan>\fR" 4
.IX Item "-finit-real=<zero|inf|-inf|nan|snan>"
.IP "\fB\-finit\-logical=\fR\fI<true|false>\fR" 4
.IX Item "-finit-logical=<true|false>"
.IP "\fB\-finit\-character=\fR\fIn\fR" 4
.IX Item "-finit-character=n"
.PD
The \fB\-finit\-local\-zero\fR option instructs the compiler to
initialize local \f(CW\*(C`INTEGER\*(C'\fR, \f(CW\*(C`REAL\*(C'\fR, and \f(CW\*(C`COMPLEX\*(C'\fR
variables to zero, \f(CW\*(C`LOGICAL\*(C'\fR variables to false, and
\&\f(CW\*(C`CHARACTER\*(C'\fR variables to a string of null bytes.  Finer-grained
initialization options are provided by the
\&\fB\-finit\-integer=\fR\fIn\fR,
\&\fB\-finit\-real=\fR\fI<zero|inf|\-inf|nan|snan>\fR (which also initializes
the real and imaginary parts of local \f(CW\*(C`COMPLEX\*(C'\fR variables),
\&\fB\-finit\-logical=\fR\fI<true|false>\fR, and
\&\fB\-finit\-character=\fR\fIn\fR (where \fIn\fR is an \s-1ASCII\s0 character
value) options.
.Sp
With \fB\-finit\-derived\fR, components of derived type variables will be
initialized according to these flags.  Components whose type is not covered by
an explicit \fB\-finit\-*\fR flag will be treated as described above with
\&\fB\-finit\-local\-zero\fR.
.Sp
These options do not initialize
.RS 4
.IP "*" 4
objects with the \s-1POINTER\s0 attribute
.IP "*" 4
allocatable arrays
.IP "*" 4
variables that appear in an \f(CW\*(C`EQUIVALENCE\*(C'\fR statement.
.RE
.RS 4
.Sp
(These limitations may be removed in future releases).
.Sp
Note that the \fB\-finit\-real=nan\fR option initializes \f(CW\*(C`REAL\*(C'\fR
and \f(CW\*(C`COMPLEX\*(C'\fR variables with a quiet NaN. For a signalling NaN
use \fB\-finit\-real=snan\fR; note, however, that compile-time
optimizations may convert them into quiet NaN and that trapping
needs to be enabled (e.g. via \fB\-ffpe\-trap\fR).
.Sp
The \fB\-finit\-integer\fR option will parse the value into an
integer of type \f(CW\*(C`INTEGER(kind=C_LONG)\*(C'\fR on the host.  Said value
is then assigned to the integer variables in the Fortran code, which
might result in wraparound if the value is too large for the kind.
.Sp
Finally, note that enabling any of the \fB\-finit\-*\fR options will
silence warnings that would have been emitted by \fB\-Wuninitialized\fR
for the affected local variables.
.RE
.IP "\fB\-falign\-commons\fR" 4
.IX Item "-falign-commons"
By default, \fBgfortran\fR enforces proper alignment of all variables in a
\&\f(CW\*(C`COMMON\*(C'\fR block by padding them as needed. On certain platforms this is mandatory,
on others it increases performance. If a \f(CW\*(C`COMMON\*(C'\fR block is not declared with
consistent data types everywhere, this padding can cause trouble, and
\&\fB\-fno\-align\-commons\fR can be used to disable automatic alignment. The
same form of this option should be used for all files that share a \f(CW\*(C`COMMON\*(C'\fR block.
To avoid potential alignment issues in \f(CW\*(C`COMMON\*(C'\fR blocks, it is recommended to order
objects from largest to smallest.
.IP "\fB\-fno\-protect\-parens\fR" 4
.IX Item "-fno-protect-parens"
By default the parentheses in expression are honored for all optimization
levels such that the compiler does not do any re-association. Using
\&\fB\-fno\-protect\-parens\fR allows the compiler to reorder \f(CW\*(C`REAL\*(C'\fR and
\&\f(CW\*(C`COMPLEX\*(C'\fR expressions to produce faster code. Note that for the re-association
optimization \fB\-fno\-signed\-zeros\fR and \fB\-fno\-trapping\-math\fR
need to be in effect. The parentheses protection is enabled by default, unless
\&\fB\-Ofast\fR is given.
.IP "\fB\-frealloc\-lhs\fR" 4
.IX Item "-frealloc-lhs"
An allocatable left-hand side of an intrinsic assignment is automatically
(re)allocated if it is either unallocated or has a different shape. The
option is enabled by default except when \fB\-std=f95\fR is given. See
also \fB\-Wrealloc\-lhs\fR.
.IP "\fB\-faggressive\-function\-elimination\fR" 4
.IX Item "-faggressive-function-elimination"
Functions with identical argument lists are eliminated within
statements, regardless of whether these functions are marked
\&\f(CW\*(C`PURE\*(C'\fR or not. For example, in
.Sp
.Vb 1
\&          a = f(b,c) + f(b,c)
.Ve
.Sp
there will only be a single call to \f(CW\*(C`f\*(C'\fR.  This option only works
if \fB\-ffrontend\-optimize\fR is in effect.
.IP "\fB\-ffrontend\-optimize\fR" 4
.IX Item "-ffrontend-optimize"
This option performs front-end optimization, based on manipulating
parts the Fortran parse tree.  Enabled by default by any \fB\-O\fR option
except \fB\-O0\fR and \fB\-Og\fR.  Optimizations enabled by this option
include:
.RS 4
.ie n .IP "*<inlining calls to ""MATMUL"",>" 4
.el .IP "*<inlining calls to \f(CWMATMUL\fR,>" 4
.IX Item "*<inlining calls to MATMUL,>"
.PD 0
.IP "*<elimination of identical function calls within expressions,>" 4
.IX Item "*<elimination of identical function calls within expressions,>"
.ie n .IP "*<removing unnecessary calls to ""TRIM"" in comparisons and assignments,>" 4
.el .IP "*<removing unnecessary calls to \f(CWTRIM\fR in comparisons and assignments,>" 4
.IX Item "*<removing unnecessary calls to TRIM in comparisons and assignments,>"
.ie n .IP "*<replacing TRIM(a) with ""a(1:LEN_TRIM(a))"" and>" 4
.el .IP "*<replacing \f(CWTRIM(a)\fR with \f(CWa(1:LEN_TRIM(a))\fR and>" 4
.IX Item "*<replacing TRIM(a) with a(1:LEN_TRIM(a)) and>"
.ie n .IP "*<short\-circuiting of logical operators ("".AND."" and "".OR."").>" 4
.el .IP "*<short\-circuiting of logical operators (\f(CW.AND.\fR and \f(CW.OR.\fR).>" 4
.IX Item "*<short-circuiting of logical operators (.AND. and .OR.).>"
.RE
.RS 4
.PD
.Sp
It can be deselected by specifying \fB\-fno\-frontend\-optimize\fR.
.RE
.IP "\fB\-ffrontend\-loop\-interchange\fR" 4
.IX Item "-ffrontend-loop-interchange"
Attempt to interchange loops in the Fortran front end where
profitable.  Enabled by default by any \fB\-O\fR option.
At the moment, this option only affects \f(CW\*(C`FORALL\*(C'\fR and
\&\f(CW\*(C`DO CONCURRENT\*(C'\fR statements with several forall triplets.
.SH "ENVIRONMENT"
.IX Header "ENVIRONMENT"
The \fBgfortran\fR compiler currently does not make use of any environment
variables to control its operation above and beyond those
that affect the operation of \fBgcc\fR.
.SH "BUGS"
.IX Header "BUGS"
For instructions on reporting bugs, see
<\fBhttps://gcc.gnu.org/bugs/\fR>.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fBgpl\fR\|(7), \fBgfdl\fR\|(7), \fBfsf\-funding\fR\|(7),
\&\fBcpp\fR\|(1), \fBgcov\fR\|(1), \fBgcc\fR\|(1), \fBas\fR\|(1), \fBld\fR\|(1), \fBgdb\fR\|(1), \fBdbx\fR\|(1)
and the Info entries for \fIgcc\fR, \fIcpp\fR, \fIgfortran\fR, \fIas\fR,
\&\fIld\fR, \fIbinutils\fR and \fIgdb\fR.
.SH "AUTHOR"
.IX Header "AUTHOR"
See the Info entry for \fBgfortran\fR for contributors to \s-1GCC\s0 and
\&\s-1GNU\s0 Fortran.
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright (c) 2004\-2020 Free Software Foundation, Inc.
.PP
Permission is granted to copy, distribute and/or modify this document
under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being \*(L"Funding Free Software\*(R", the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the \fBgfdl\fR\|(7) man page.
.PP
(a) The \s-1FSF\s0's Front-Cover Text is:
.PP
.Vb 1
\&     A GNU Manual
.Ve
.PP
(b) The \s-1FSF\s0's Back-Cover Text is:
.PP
.Vb 3
\&     You have freedom to copy and modify this GNU Manual, like GNU
\&     software.  Copies published by the Free Software Foundation raise
\&     funds for GNU development.
.Ve