Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
/* Loop versioning pass.
   Copyright (C) 2018-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "tree-pass.h"
#include "gimplify-me.h"
#include "cfgloop.h"
#include "tree-ssa-loop.h"
#include "ssa.h"
#include "tree-scalar-evolution.h"
#include "tree-chrec.h"
#include "tree-ssa-loop-ivopts.h"
#include "fold-const.h"
#include "tree-ssa-propagate.h"
#include "tree-inline.h"
#include "domwalk.h"
#include "alloc-pool.h"
#include "vr-values.h"
#include "gimple-ssa-evrp-analyze.h"
#include "tree-vectorizer.h"
#include "omp-general.h"
#include "predict.h"
#include "tree-into-ssa.h"

namespace {

/* This pass looks for loops that could be simplified if certain loop
   invariant conditions were true.  It is effectively a form of loop
   splitting in which the pass produces the split conditions itself,
   instead of using ones that are already present in the IL.

   Versioning for when strides are 1
   ---------------------------------

   At the moment the only thing the pass looks for are memory references
   like:

     for (auto i : ...)
       ...x[i * stride]...

   It considers changing such loops to:

     if (stride == 1)
       for (auto i : ...)    [A]
	 ...x[i]...
     else
       for (auto i : ...)    [B]
	 ...x[i * stride]...

   This can have several benefits:

   (1) [A] is often easier or cheaper to vectorize than [B].

   (2) The scalar code in [A] is simpler than the scalar code in [B]
       (if the loops cannot be vectorized or need an epilogue loop).

   (3) We might recognize [A] as a pattern, such as a memcpy or memset.

   (4) [A] has simpler address evolutions, which can help other passes
       like loop interchange.

   The optimization is particularly useful for assumed-shape arrays in
   Fortran, where the stride of the innermost dimension depends on the
   array descriptor but is often equal to 1 in practice.  For example:

     subroutine f1(x)
       real :: x(:)
       x(:) = 100
     end subroutine f1

   generates the equivalent of:

     raw_stride = *x.dim[0].stride;
     stride = raw_stride != 0 ? raw_stride : 1;
     x_base = *x.data;
     ...
     tmp1 = stride * S;
     tmp2 = tmp1 - stride;
     *x_base[tmp2] = 1.0e+2;

   but in the common case that stride == 1, the last three statements
   simplify to:

     tmp3 = S + -1;
     *x_base[tmp3] = 1.0e+2;

   The optimization is in principle very simple.  The difficult parts are:

   (a) deciding which parts of a general address calculation correspond
       to the inner dimension of an array, since this usually isn't explicit
       in the IL, and for C often isn't even explicit in the source code

   (b) estimating when the transformation is worthwhile

   Structure
   ---------

   The pass has four phases:

   (1) Walk through the statements looking for and recording potential
       versioning opportunities.  Stop if there are none.

   (2) Use context-sensitive range information to see whether any versioning
       conditions are impossible in practice.  Remove them if so, and stop
       if no opportunities remain.

       (We do this only after (1) to keep compile time down when no
       versioning opportunities exist.)

   (3) Apply the cost model.  Decide which versioning opportunities are
       worthwhile and at which nesting level they should be applied.

   (4) Attempt to version all the loops selected by (3), so that:

	 for (...)
	   ...

       becomes:

	 if (!cond)
	   for (...) // Original loop
	     ...
	 else
	   for (...) // New loop
	     ...

       Use the version condition COND to simplify the new loop.  */

/* Enumerates the likelihood that a particular value indexes the inner
   dimension of an array.  */
enum inner_likelihood {
  INNER_UNLIKELY,
  INNER_DONT_KNOW,
  INNER_LIKELY
};

/* Information about one term of an address_info.  */
struct address_term_info
{
  /* The value of the term is EXPR * MULTIPLIER.  */
  tree expr;
  unsigned HOST_WIDE_INT multiplier;

  /* The stride applied by EXPR in each iteration of some unrecorded loop,
     or null if no stride has been identified.  */
  tree stride;

  /* Enumerates the likelihood that EXPR indexes the inner dimension
     of an array.  */
  enum inner_likelihood inner_likelihood;

  /* True if STRIDE == 1 is a versioning opportunity when considered
     in isolation.  */
  bool versioning_opportunity_p;
};

/* Information about an address calculation, and the range of constant
   offsets applied to it.  */
class address_info
{
public:
  static const unsigned int MAX_TERMS = 8;

  /* One statement that calculates the address.  If multiple statements
     share the same address, we only record the first.  */
  gimple *stmt;

  /* The loop containing STMT (cached for convenience).  If multiple
     statements share the same address, they all belong to this loop.  */
  class loop *loop;

  /* A decomposition of the calculation into a sum of terms plus an
     optional base.  When BASE is provided, it is never an SSA name.
     Once initialization is complete, all members of TERMs are SSA names.  */
  tree base;
  auto_vec<address_term_info, MAX_TERMS> terms;

  /* All bytes accessed from the address fall in the offset range
     [MIN_OFFSET, MAX_OFFSET).  */
  HOST_WIDE_INT min_offset, max_offset;
};

/* Stores addresses based on their base and terms (ignoring the offsets).  */
struct address_info_hasher : nofree_ptr_hash <address_info>
{
  static hashval_t hash (const address_info *);
  static bool equal (const address_info *, const address_info *);
};

/* Information about the versioning we'd like to apply to a loop.  */
class loop_info
{
public:
  bool worth_versioning_p () const;

  /* True if we've decided not to version this loop.  The remaining
     fields are meaningless if so.  */
  bool rejected_p;

  /* True if at least one subloop of this loop benefits from versioning.  */
  bool subloops_benefit_p;

  /* An estimate of the total number of instructions in the loop,
     excluding those in subloops that benefit from versioning.  */
  unsigned int num_insns;

  /* The outermost loop that can handle all the version checks
     described below.  */
  class loop *outermost;

  /* The first entry in the list of blocks that belong to this loop
     (and not to subloops).  m_next_block_in_loop provides the chain
     pointers for the list.  */
  basic_block block_list;

  /* We'd like to version the loop for the case in which these SSA names
     (keyed off their SSA_NAME_VERSION) are all equal to 1 at runtime.  */
  bitmap_head unity_names;

  /* If versioning succeeds, this points the version of the loop that
     assumes the version conditions holds.  */
  class loop *optimized_loop;
};

/* The main pass structure.  */
class loop_versioning
{
public:
  loop_versioning (function *);
  ~loop_versioning ();
  unsigned int run ();

private:
  /* Used to walk the dominator tree to find loop versioning conditions
     that are always false.  */
  class lv_dom_walker : public dom_walker
  {
  public:
    lv_dom_walker (loop_versioning &);

    edge before_dom_children (basic_block) FINAL OVERRIDE;
    void after_dom_children (basic_block) FINAL OVERRIDE;

  private:
    /* The parent pass.  */
    loop_versioning &m_lv;

    /* Used to build context-dependent range information.  */
    evrp_range_analyzer m_range_analyzer;
  };

  /* Used to simplify statements based on conditions that are established
     by the version checks.  */
  class name_prop : public substitute_and_fold_engine
  {
  public:
    name_prop (loop_info &li) : m_li (li) {}
    tree get_value (tree) FINAL OVERRIDE;

  private:
    /* Information about the versioning we've performed on the loop.  */
    loop_info &m_li;
  };

  loop_info &get_loop_info (class loop *loop) { return m_loops[loop->num]; }

  unsigned int max_insns_for_loop (class loop *);
  bool expensive_stmt_p (gimple *);

  void version_for_unity (gimple *, tree);
  bool acceptable_multiplier_p (tree, unsigned HOST_WIDE_INT,
				unsigned HOST_WIDE_INT * = 0);
  bool acceptable_type_p (tree, unsigned HOST_WIDE_INT *);
  bool multiply_term_by (address_term_info &, tree);
  inner_likelihood get_inner_likelihood (tree, unsigned HOST_WIDE_INT);
  void dump_inner_likelihood (address_info &, address_term_info &);
  void analyze_stride (address_info &, address_term_info &,
		       tree, class loop *);
  bool find_per_loop_multiplication (address_info &, address_term_info &);
  bool analyze_term_using_scevs (address_info &, address_term_info &);
  void analyze_arbitrary_term (address_info &, address_term_info &);
  void analyze_address_fragment (address_info &);
  void record_address_fragment (gimple *, unsigned HOST_WIDE_INT,
				tree, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
  void analyze_expr (gimple *, tree);
  bool analyze_block (basic_block);
  bool analyze_blocks ();

  void prune_loop_conditions (class loop *, vr_values *);
  bool prune_conditions ();

  void merge_loop_info (class loop *, class loop *);
  void add_loop_to_queue (class loop *);
  bool decide_whether_loop_is_versionable (class loop *);
  bool make_versioning_decisions ();

  bool version_loop (class loop *);
  void implement_versioning_decisions ();

  /* The function we're optimizing.  */
  function *m_fn;

  /* The obstack to use for all pass-specific bitmaps.  */
  bitmap_obstack m_bitmap_obstack;

  /* An obstack to use for general allocation.  */
  obstack m_obstack;

  /* The number of loops in the function.  */
  unsigned int m_nloops;

  /* The total number of loop version conditions we've found.  */
  unsigned int m_num_conditions;

  /* Assume that an address fragment of the form i * stride * scale
     (for variable stride and constant scale) will not benefit from
     versioning for stride == 1 when scale is greater than this value.  */
  unsigned HOST_WIDE_INT m_maximum_scale;

  /* Information about each loop.  */
  auto_vec<loop_info> m_loops;

  /* Used to form a linked list of blocks that belong to a loop,
     started by loop_info::block_list.  */
  auto_vec<basic_block> m_next_block_in_loop;

  /* The list of loops that we've decided to version.  */
  auto_vec<class loop *> m_loops_to_version;

  /* A table of addresses in the current loop, keyed off their values
     but not their offsets.  */
  hash_table <address_info_hasher> m_address_table;

  /* A list of all addresses in M_ADDRESS_TABLE, in a predictable order.  */
  auto_vec <address_info *, 32> m_address_list;
};

/* If EXPR is an SSA name and not a default definition, return the
   defining statement, otherwise return null.  */

static gimple *
maybe_get_stmt (tree expr)
{
  if (TREE_CODE (expr) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (expr))
    return SSA_NAME_DEF_STMT (expr);
  return NULL;
}

/* Like maybe_get_stmt, but also return null if the defining
   statement isn't an assignment.  */

static gassign *
maybe_get_assign (tree expr)
{
  return safe_dyn_cast <gassign *> (maybe_get_stmt (expr));
}

/* Return true if this pass should look through a cast of expression FROM
   to type TYPE when analyzing pieces of an address.  */

static bool
look_through_cast_p (tree type, tree from)
{
  return (INTEGRAL_TYPE_P (TREE_TYPE (from)) == INTEGRAL_TYPE_P (type)
	  && POINTER_TYPE_P (TREE_TYPE (from)) == POINTER_TYPE_P (type));
}

/* Strip all conversions of integers or pointers from EXPR, regardless
   of whether the conversions are nops.  This is useful in the context
   of this pass because we're not trying to fold or simulate the
   expression; we just want to see how it's structured.  */

static tree
strip_casts (tree expr)
{
  const unsigned int MAX_NITERS = 4;

  tree type = TREE_TYPE (expr);
  while (CONVERT_EXPR_P (expr)
	 && look_through_cast_p (type, TREE_OPERAND (expr, 0)))
    expr = TREE_OPERAND (expr, 0);

  for (unsigned int niters = 0; niters < MAX_NITERS; ++niters)
    {
      gassign *assign = maybe_get_assign (expr);
      if (assign
	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign))
	  && look_through_cast_p (type, gimple_assign_rhs1 (assign)))
	expr = gimple_assign_rhs1 (assign);
      else
	break;
    }
  return expr;
}

/* Compare two address_term_infos in the same address_info.  */

static int
compare_address_terms (const void *a_uncast, const void *b_uncast)
{
  const address_term_info *a = (const address_term_info *) a_uncast;
  const address_term_info *b = (const address_term_info *) b_uncast;

  if (a->expr != b->expr)
    return SSA_NAME_VERSION (a->expr) < SSA_NAME_VERSION (b->expr) ? -1 : 1;

  if (a->multiplier != b->multiplier)
    return a->multiplier < b->multiplier ? -1 : 1;

  return 0;
}

/* Dump ADDRESS using flags FLAGS.  */

static void
dump_address_info (dump_flags_t flags, address_info &address)
{
  if (address.base)
    dump_printf (flags, "%T + ", address.base);
  for (unsigned int i = 0; i < address.terms.length (); ++i)
    {
      if (i != 0)
	dump_printf (flags, " + ");
      dump_printf (flags, "%T", address.terms[i].expr);
      if (address.terms[i].multiplier != 1)
	dump_printf (flags, " * %wd", address.terms[i].multiplier);
    }
  dump_printf (flags, " + [%wd, %wd]",
	       address.min_offset, address.max_offset - 1);
}

/* Hash an address_info based on its base and terms.  */

hashval_t
address_info_hasher::hash (const address_info *info)
{
  inchash::hash hash;
  hash.add_int (info->base ? TREE_CODE (info->base) : 0);
  hash.add_int (info->terms.length ());
  for (unsigned int i = 0; i < info->terms.length (); ++i)
    {
      hash.add_int (SSA_NAME_VERSION (info->terms[i].expr));
      hash.add_hwi (info->terms[i].multiplier);
    }
  return hash.end ();
}

/* Return true if two address_infos have equal bases and terms.  Other
   properties might be different (such as the statement or constant
   offset range).  */

bool
address_info_hasher::equal (const address_info *a, const address_info *b)
{
  if (a->base != b->base
      && (!a->base || !b->base || !operand_equal_p (a->base, b->base, 0)))
    return false;

  if (a->terms.length () != b->terms.length ())
    return false;

  for (unsigned int i = 0; i < a->terms.length (); ++i)
    if (a->terms[i].expr != b->terms[i].expr
	|| a->terms[i].multiplier != b->terms[i].multiplier)
      return false;

  return true;
}

/* Return true if we want to version the loop, i.e. if we have a
   specific reason for doing so and no specific reason not to.  */

bool
loop_info::worth_versioning_p () const
{
  return (!rejected_p
	  && (!bitmap_empty_p (&unity_names) || subloops_benefit_p));
}

loop_versioning::lv_dom_walker::lv_dom_walker (loop_versioning &lv)
  : dom_walker (CDI_DOMINATORS), m_lv (lv), m_range_analyzer (false)
{
}

/* Process BB before processing the blocks it dominates.  */

edge
loop_versioning::lv_dom_walker::before_dom_children (basic_block bb)
{
  m_range_analyzer.enter (bb);

  if (bb == bb->loop_father->header)
    m_lv.prune_loop_conditions (bb->loop_father,
				m_range_analyzer.get_vr_values ());

  for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
       gsi_next (&si))
    m_range_analyzer.record_ranges_from_stmt (gsi_stmt (si), false);

  return NULL;
}

/* Process BB after processing the blocks it dominates.  */

void
loop_versioning::lv_dom_walker::after_dom_children (basic_block bb)
{
  m_range_analyzer.leave (bb);
}

/* Decide whether to replace VAL with a new value in a versioned loop.
   Return the new value if so, otherwise return null.  */

tree
loop_versioning::name_prop::get_value (tree val)
{
  if (TREE_CODE (val) == SSA_NAME
      && bitmap_bit_p (&m_li.unity_names, SSA_NAME_VERSION (val)))
    return build_one_cst (TREE_TYPE (val));
  return NULL_TREE;
}

/* Initialize the structure to optimize FN.  */

loop_versioning::loop_versioning (function *fn)
  : m_fn (fn),
    m_nloops (number_of_loops (fn)),
    m_num_conditions (0),
    m_address_table (31)
{
  bitmap_obstack_initialize (&m_bitmap_obstack);
  gcc_obstack_init (&m_obstack);

  /* Initialize the loop information.  */
  m_loops.safe_grow_cleared (m_nloops);
  for (unsigned int i = 0; i < m_nloops; ++i)
    {
      m_loops[i].outermost = get_loop (m_fn, 0);
      bitmap_initialize (&m_loops[i].unity_names, &m_bitmap_obstack);
    }

  /* Initialize the list of blocks that belong to each loop.  */
  unsigned int nbbs = last_basic_block_for_fn (fn);
  m_next_block_in_loop.safe_grow (nbbs);
  basic_block bb;
  FOR_EACH_BB_FN (bb, fn)
    {
      loop_info &li = get_loop_info (bb->loop_father);
      m_next_block_in_loop[bb->index] = li.block_list;
      li.block_list = bb;
    }

  /* MAX_FIXED_MODE_SIZE should be a reasonable maximum scale for
     unvectorizable code, since it is the largest size that can be
     handled efficiently by scalar code.  omp_max_vf calculates the
     maximum number of bytes in a vector, when such a value is relevant
     to loop optimization.  */
  m_maximum_scale = estimated_poly_value (omp_max_vf ());
  m_maximum_scale = MAX (m_maximum_scale, MAX_FIXED_MODE_SIZE);
}

loop_versioning::~loop_versioning ()
{
  bitmap_obstack_release (&m_bitmap_obstack);
  obstack_free (&m_obstack, NULL);
}

/* Return the maximum number of instructions allowed in LOOP before
   it becomes too big for versioning.

   There are separate limits for inner and outer loops.  The limit for
   inner loops applies only to loops that benefit directly from versioning.
   The limit for outer loops applies to all code in the outer loop and
   its subloops that *doesn't* benefit directly from versioning; such code
   would be "taken along for the ride".  The idea is that if the cost of
   the latter is small, it is better to version outer loops rather than
   inner loops, both to reduce the number of repeated checks and to enable
   more of the loop nest to be optimized as a natural nest (e.g. by loop
   interchange or outer-loop vectorization).  */

unsigned int
loop_versioning::max_insns_for_loop (class loop *loop)
{
  return (loop->inner
	  ? param_loop_versioning_max_outer_insns
	  : param_loop_versioning_max_inner_insns);
}

/* Return true if for cost reasons we should avoid versioning any loop
   that contains STMT.

   Note that we don't need to check whether versioning is invalid for
   correctness reasons, since the versioning process does that for us.
   The conditions involved are too rare to be worth duplicating here.  */

bool
loop_versioning::expensive_stmt_p (gimple *stmt)
{
  if (gcall *call = dyn_cast <gcall *> (stmt))
    /* Assume for now that the time spent in an "expensive" call would
       overwhelm any saving from versioning.  */
    return !gimple_inexpensive_call_p (call);
  return false;
}

/* Record that we want to version the loop that contains STMT for the
   case in which SSA name NAME is equal to 1.  We already know that NAME
   is invariant in the loop.  */

void
loop_versioning::version_for_unity (gimple *stmt, tree name)
{
  class loop *loop = loop_containing_stmt (stmt);
  loop_info &li = get_loop_info (loop);

  if (bitmap_set_bit (&li.unity_names, SSA_NAME_VERSION (name)))
    {
      /* This is the first time we've wanted to version LOOP for NAME.
	 Keep track of the outermost loop that can handle all versioning
	 checks in LI.  */
      class loop *outermost
	= outermost_invariant_loop_for_expr (loop, name);
      if (loop_depth (li.outermost) < loop_depth (outermost))
	li.outermost = outermost;

      if (dump_enabled_p ())
	{
	  dump_printf_loc (MSG_NOTE, stmt, "want to version containing loop"
			   " for when %T == 1", name);
	  if (outermost == loop)
	    dump_printf (MSG_NOTE, "; cannot hoist check further");
	  else
	    {
	      dump_printf (MSG_NOTE, "; could implement the check at loop"
			   " depth %d", loop_depth (outermost));
	      if (loop_depth (li.outermost) > loop_depth (outermost))
		dump_printf (MSG_NOTE, ", but other checks only allow"
			     " a depth of %d", loop_depth (li.outermost));
	    }
	  dump_printf (MSG_NOTE, "\n");
	}

      m_num_conditions += 1;
    }
  else
    {
      /* This is a duplicate request.  */
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, stmt, "already asked to version containing"
			 " loop for when %T == 1\n", name);
    }
}

/* Return true if OP1_TREE is constant and if in principle it is worth
   versioning an address fragment of the form:

     i * OP1_TREE * OP2 * stride

   for the case in which stride == 1.  This in practice means testing
   whether:

     OP1_TREE * OP2 <= M_MAXIMUM_SCALE.

   If RESULT is nonnull, store OP1_TREE * OP2 there when returning true.  */

bool
loop_versioning::acceptable_multiplier_p (tree op1_tree,
					  unsigned HOST_WIDE_INT op2,
					  unsigned HOST_WIDE_INT *result)
{
  if (tree_fits_uhwi_p (op1_tree))
    {
      unsigned HOST_WIDE_INT op1 = tree_to_uhwi (op1_tree);
      /* The first part checks for overflow.  */
      if (op1 * op2 >= op2 && op1 * op2 <= m_maximum_scale)
	{
	  if (result)
	    *result = op1 * op2;
	  return true;
	}
    }
  return false;
}

/* Return true if it is worth using loop versioning on a memory access
   of type TYPE.  Store the size of the access in *SIZE if so.  */

bool
loop_versioning::acceptable_type_p (tree type, unsigned HOST_WIDE_INT *size)
{
  return (TYPE_SIZE_UNIT (type)
	  && acceptable_multiplier_p (TYPE_SIZE_UNIT (type), 1, size));
}

/* See whether OP is constant and whether we can multiply TERM by that
   constant without exceeding M_MAXIMUM_SCALE.  Return true and update
   TERM if so.  */

bool
loop_versioning::multiply_term_by (address_term_info &term, tree op)
{
  return acceptable_multiplier_p (op, term.multiplier, &term.multiplier);
}

/* Decide whether an address fragment of the form STRIDE * MULTIPLIER
   is likely to be indexing an innermost dimension, returning the result
   as an INNER_* probability.  */

inner_likelihood
loop_versioning::get_inner_likelihood (tree stride,
				       unsigned HOST_WIDE_INT multiplier)
{
  const unsigned int MAX_NITERS = 8;

  /* Iterate over possible values of STRIDE.  Return INNER_LIKELY if at
     least one of those values is likely to be for the innermost dimension.
     Record in UNLIKELY_P if at least one of those values is unlikely to be
     for the innermost dimension.

     E.g. for:

       stride = cond ? a * b : 1

     we should treat STRIDE as being a likely inner dimension, since
     we know that it is 1 under at least some circumstances.  (See the
     Fortran example below.)  However:

       stride = a * b

     on its own is unlikely to be for the innermost dimension, since
     that would require both a and b to be 1 at runtime.  */
  bool unlikely_p = false;
  tree worklist[MAX_NITERS];
  unsigned int length = 0;
  worklist[length++] = stride;
  for (unsigned int i = 0; i < length; ++i)
    {
      tree expr = worklist[i];

      if (CONSTANT_CLASS_P (expr))
	{
	  /* See if EXPR * MULTIPLIER would be consistent with an individual
	     access or a small grouped access.  */
	  if (acceptable_multiplier_p (expr, multiplier))
	    return INNER_LIKELY;
	  else
	    unlikely_p = true;
	}
      else if (gimple *stmt = maybe_get_stmt (expr))
	{
	  /* If EXPR is set by a PHI node, queue its arguments in case
	     we find one that is consistent with an inner dimension.

	     An important instance of this is the Fortran handling of array
	     descriptors, which calculates the stride of the inner dimension
	     using a PHI equivalent of:

		raw_stride = a.dim[0].stride;
		stride = raw_stride != 0 ? raw_stride : 1;

	     (Strides for outer dimensions do not treat 0 specially.)  */
	  if (gphi *phi = dyn_cast <gphi *> (stmt))
	    {
	      unsigned int nargs = gimple_phi_num_args (phi);
	      for (unsigned int j = 0; j < nargs && length < MAX_NITERS; ++j)
		worklist[length++] = strip_casts (gimple_phi_arg_def (phi, j));
	    }
	  /* If the value is set by an assignment, expect it to be read
	     from memory (such as an array descriptor) rather than be
	     calculated.  */
	  else if (gassign *assign = dyn_cast <gassign *> (stmt))
	    {
	      if (!gimple_assign_load_p (assign))
		unlikely_p = true;
	    }
	  /* Things like calls don't really tell us anything.  */
	}
    }

  /* We didn't find any possible values of STRIDE that were likely to be
     for the innermost dimension.  If we found one that was actively
     unlikely to be for the innermost dimension, assume that that applies
     to STRIDE too.  */
  return unlikely_p ? INNER_UNLIKELY : INNER_DONT_KNOW;
}

/* Dump the likelihood that TERM's stride is for the innermost dimension.
   ADDRESS is the address that contains TERM.  */

void
loop_versioning::dump_inner_likelihood (address_info &address,
					address_term_info &term)
{
  if (term.inner_likelihood == INNER_LIKELY)
    dump_printf_loc (MSG_NOTE, address.stmt, "%T is likely to be the"
		     " innermost dimension\n", term.stride);
  else if (term.inner_likelihood == INNER_UNLIKELY)
    dump_printf_loc (MSG_NOTE, address.stmt, "%T is probably not the"
		     " innermost dimension\n", term.stride);
  else
    dump_printf_loc (MSG_NOTE, address.stmt, "cannot tell whether %T"
		     " is the innermost dimension\n", term.stride);
}

/* The caller has identified that STRIDE is the stride of interest
   in TERM, and that the stride is applied in OP_LOOP.  Record this
   information in TERM, deciding whether STRIDE is likely to be for
   the innermost dimension of an array and whether it represents a
   versioning opportunity.  ADDRESS is the address that contains TERM.  */

void
loop_versioning::analyze_stride (address_info &address,
				 address_term_info &term,
				 tree stride, class loop *op_loop)
{
  term.stride = stride;

  term.inner_likelihood = get_inner_likelihood (stride, term.multiplier);
  if (dump_enabled_p ())
    dump_inner_likelihood (address, term);

  /* To be a versioning opportunity we require:

     - The multiplier applied by TERM is equal to the access size,
       so that when STRIDE is 1, the accesses in successive loop
       iterations are consecutive.

       This is deliberately conservative.  We could relax it to handle
       other cases (such as those with gaps between iterations) if we
       find any real testcases for which it's useful.

     - the stride is applied in the same loop as STMT rather than
       in an outer loop.  Although versioning for strides applied in
       outer loops could help in some cases -- such as enabling
       more loop interchange -- the savings are much lower than for
       inner loops.

     - the stride is an SSA name that is invariant in STMT's loop,
       since otherwise versioning isn't possible.  */
  unsigned HOST_WIDE_INT access_size = address.max_offset - address.min_offset;
  if (term.multiplier == access_size
      && address.loop == op_loop
      && TREE_CODE (stride) == SSA_NAME
      && expr_invariant_in_loop_p (address.loop, stride))
    {
      term.versioning_opportunity_p = true;
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, address.stmt, "%T == 1 is a versioning"
			 " opportunity\n", stride);
    }
}

/* See whether address term TERM (which belongs to ADDRESS) is the result
   of multiplying a varying SSA name by a loop-invariant SSA name.
   Return true and update TERM if so.

   This handles both cases that SCEV might handle, such as:

     for (int i = 0; i < n; ++i)
       res += a[i * stride];

   and ones in which the term varies arbitrarily between iterations, such as:

     for (int i = 0; i < n; ++i)
       res += a[index[i] * stride];  */

bool
loop_versioning::find_per_loop_multiplication (address_info &address,
					       address_term_info &term)
{
  gassign *mult = maybe_get_assign (term.expr);
  if (!mult || gimple_assign_rhs_code (mult) != MULT_EXPR)
    return false;

  class loop *mult_loop = loop_containing_stmt (mult);
  if (!loop_outer (mult_loop))
    return false;

  tree op1 = strip_casts (gimple_assign_rhs1 (mult));
  tree op2 = strip_casts (gimple_assign_rhs2 (mult));
  if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
    return false;

  bool invariant1_p = expr_invariant_in_loop_p (mult_loop, op1);
  bool invariant2_p = expr_invariant_in_loop_p (mult_loop, op2);
  if (invariant1_p == invariant2_p)
    return false;

  /* Make sure that the loop invariant is OP2 rather than OP1.  */
  if (invariant1_p)
    std::swap (op1, op2);

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, address.stmt, "address term %T = varying %T"
		     " * loop-invariant %T\n", term.expr, op1, op2);
  analyze_stride (address, term, op2, mult_loop);
  return true;
}

/* Try to use scalar evolutions to find an address stride for TERM,
   which belongs to ADDRESS.  Return true and update TERM if so.

   Here we are interested in any evolution information we can find,
   not just evolutions wrt ADDRESS->LOOP.  For example, if we find that
   an outer loop obviously iterates over the inner dimension of an array,
   that information can help us eliminate worthless versioning opportunities
   in inner loops.  */

bool
loop_versioning::analyze_term_using_scevs (address_info &address,
					   address_term_info &term)
{
  gimple *setter = maybe_get_stmt (term.expr);
  if (!setter)
    return false;

  class loop *wrt_loop = loop_containing_stmt (setter);
  if (!loop_outer (wrt_loop))
    return false;

  tree chrec = strip_casts (analyze_scalar_evolution (wrt_loop, term.expr));
  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, address.stmt,
			 "address term %T = %T\n", term.expr, chrec);

      /* Peel casts and accumulate constant multiplications, up to the
	 limit allowed by M_MAXIMUM_SCALE.  */
      tree stride = strip_casts (CHREC_RIGHT (chrec));
      while (TREE_CODE (stride) == MULT_EXPR
	     && multiply_term_by (term, TREE_OPERAND (stride, 1)))
	stride = strip_casts (TREE_OPERAND (stride, 0));

      gassign *assign;
      while ((assign = maybe_get_assign (stride))
	     && gimple_assign_rhs_code (assign) == MULT_EXPR
	     && multiply_term_by (term, gimple_assign_rhs2 (assign)))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, address.stmt,
			     "looking through %G", assign);
	  stride = strip_casts (gimple_assign_rhs1 (assign));
	}

      analyze_stride (address, term, stride, get_chrec_loop (chrec));
      return true;
    }

  return false;
}

/* Address term TERM is an arbitrary term that provides no versioning
   opportunities.  Analyze it to see whether it contains any likely
   inner strides, so that we don't mistakenly version for other
   (less likely) candidates.

   This copes with invariant innermost indices such as:

     x(i, :) = 100

   where the "i" component of the address is invariant in the loop
   but provides the real inner stride.

   ADDRESS is the address that contains TERM.  */

void
loop_versioning::analyze_arbitrary_term (address_info &address,
					 address_term_info &term)

{
  /* A multiplication offers two potential strides.  Pick the one that
     is most likely to be an innermost stride.  */
  tree expr = term.expr, alt = NULL_TREE;
  gassign *mult = maybe_get_assign (expr);
  if (mult && gimple_assign_rhs_code (mult) == MULT_EXPR)
    {
      expr = strip_casts (gimple_assign_rhs1 (mult));
      alt = strip_casts (gimple_assign_rhs2 (mult));
    }
  term.stride = expr;
  term.inner_likelihood = get_inner_likelihood (expr, term.multiplier);
  if (alt)
    {
      inner_likelihood alt_l = get_inner_likelihood (alt, term.multiplier);
      if (alt_l > term.inner_likelihood)
	{
	  term.stride = alt;
	  term.inner_likelihood = alt_l;
	}
    }
  if (dump_enabled_p ())
    dump_inner_likelihood (address, term);
}

/* Try to identify loop strides in ADDRESS and try to choose realistic
   versioning opportunities based on these strides.

   The main difficulty here isn't finding strides that could be used
   in a version check (that's pretty easy).  The problem instead is to
   avoid versioning for some stride S that is unlikely ever to be 1 at
   runtime.  Versioning for S == 1 on its own would lead to unnecessary
   code bloat, while adding S == 1 to more realistic version conditions
   would lose the optimisation opportunity offered by those other conditions.

   For example, versioning for a stride of 1 in the Fortran code:

     integer :: a(:,:)
     a(1,:) = 1

   is not usually a good idea, since the assignment is iterating over
   an outer dimension and is relatively unlikely to have a stride of 1.
   (It isn't impossible, since the inner dimension might be 1, or the
   array might be transposed.)  Similarly, in:

     integer :: a(:,:), b(:,:)
     b(:,1) = a(1,:)

   b(:,1) is relatively likely to have a stride of 1 while a(1,:) isn't.
   Versioning for when both strides are 1 would lose most of the benefit
   of versioning for b's access.

   The approach we take is as follows:

   - Analyze each term to see whether it has an identifiable stride,
     regardless of which loop applies the stride.

   - Evaluate the likelihood that each such stride is for the innermost
     dimension of an array, on the scale "likely", "don't know" or "unlikely".

   - If there is a single "likely" innermost stride, and that stride is
     applied in the loop that contains STMT, version the loop for when the
     stride is 1.  This deals with the cases in which we're fairly
     confident of doing the right thing, such as the b(:,1) reference above.

   - If there are no "likely" innermost strides, and the loop that contains
     STMT uses a stride that we rated as "don't know", version for when
     that stride is 1.  This is principally used for C code such as:

       for (int i = 0; i < n; ++i)
	 a[i * x] = ...;

     and:

       for (int j = 0; j < n; ++j)
	 for (int i = 0; i < n; ++i)
	   a[i * x + j * y] = ...;

     where nothing in the way "x" and "y" are set gives a hint as to
     whether "i" iterates over the innermost dimension of the array.
     In these situations it seems reasonable to assume the
     programmer has nested the loops appropriately (although of course
     there are examples like GEMM in which this assumption doesn't hold
     for all accesses in the loop).

     This case is also useful for the Fortran equivalent of the
     above C code.  */

void
loop_versioning::analyze_address_fragment (address_info &address)
{
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, address.stmt, "analyzing address fragment ");
      dump_address_info (MSG_NOTE, address);
      dump_printf (MSG_NOTE, "\n");
    }

  /* Analyze each component of the sum to see whether it involves an
     apparent stride.

     There is an overlap between the addresses that
     find_per_loop_multiplication and analyze_term_using_scevs can handle,
     but the former is much cheaper than SCEV analysis, so try it first.  */
  for (unsigned int i = 0; i < address.terms.length (); ++i)
    if (!find_per_loop_multiplication (address, address.terms[i])
	&& !analyze_term_using_scevs (address, address.terms[i])
	&& !POINTER_TYPE_P (TREE_TYPE (address.terms[i].expr)))
      analyze_arbitrary_term (address, address.terms[i]);

  /* Check for strides that are likely to be for the innermost dimension.

     1. If there is a single likely inner stride, if it is an SSA name,
	and if it is worth versioning the loop for when the SSA name
	equals 1, record that we want to do so.

     2. Otherwise, if there any likely inner strides, bail out.  This means
	one of:

	(a) There are multiple likely inner strides.  This suggests we're
	    confused and be can't be confident of doing the right thing.

	(b) There is a single likely inner stride and it is a constant
	    rather than an SSA name.  This can mean either that the access
	    is a natural one without any variable strides, such as:

	      for (int i = 0; i < n; ++i)
		a[i] += 1;

	    or that a variable stride is applied to an outer dimension,
	    such as:

	      for (int i = 0; i < n; ++i)
		for (int j = 0; j < n; ++j)
		  a[j * stride][i] += 1;

	(c) There is a single likely inner stride, and it is an SSA name,
	    but it isn't a worthwhile versioning opportunity.  This usually
	    means that the variable stride is applied by an outer loop,
	    such as:

	      for (int i = 0; i < n; ++i)
		for (int j = 0; j < n; ++j)
		  a[j][i * stride] += 1;

	    or (using an example with a more natural loop nesting):

	      for (int i = 0; i < n; ++i)
		for (int j = 0; j < n; ++j)
		  a[i][j] += b[i * stride];

	    in cases where b[i * stride] cannot (yet) be hoisted for
	    aliasing reasons.

     3. If there are no likely inner strides, fall through to the next
	set of checks.

     Pointer equality is enough to check for uniqueness in (1), since we
     only care about SSA names.  */
  tree chosen_stride = NULL_TREE;
  tree version_stride = NULL_TREE;
  for (unsigned int i = 0; i < address.terms.length (); ++i)
    if (chosen_stride != address.terms[i].stride
	&& address.terms[i].inner_likelihood == INNER_LIKELY)
      {
	if (chosen_stride)
	  return;
	chosen_stride = address.terms[i].stride;
	if (address.terms[i].versioning_opportunity_p)
	  version_stride = chosen_stride;
      }

  /* If there are no likely inner strides, see if there is a single
     versioning opportunity for a stride that was rated as INNER_DONT_KNOW.
     See the comment above the function for the cases that this code
     handles.  */
  if (!chosen_stride)
    for (unsigned int i = 0; i < address.terms.length (); ++i)
      if (version_stride != address.terms[i].stride
	  && address.terms[i].inner_likelihood == INNER_DONT_KNOW
	  && address.terms[i].versioning_opportunity_p)
	{
	  if (version_stride)
	    return;
	  version_stride = address.terms[i].stride;
	}

  if (version_stride)
    version_for_unity (address.stmt, version_stride);
}

/* Treat EXPR * MULTIPLIER + OFFSET as a fragment of an address that addresses
   TYPE_SIZE bytes and record this address fragment for later processing.
   STMT is the statement that contains the address.  */

void
loop_versioning::record_address_fragment (gimple *stmt,
					  unsigned HOST_WIDE_INT type_size,
					  tree expr,
					  unsigned HOST_WIDE_INT multiplier,
					  HOST_WIDE_INT offset)
{
  /* We're only interested in computed values.  */
  if (TREE_CODE (expr) != SSA_NAME)
    return;

  /* Quick exit if no part of the address is calculated in STMT's loop,
     since such addresses have no versioning opportunities.  */
  class loop *loop = loop_containing_stmt (stmt);
  if (expr_invariant_in_loop_p (loop, expr))
    return;

  /* Set up an address_info for EXPR * MULTIPLIER.  */
  address_info *address = XOBNEW (&m_obstack, address_info);
  new (address) address_info;
  address->stmt = stmt;
  address->loop = loop;
  address->base = NULL_TREE;
  address->terms.quick_grow (1);
  address->terms[0].expr = expr;
  address->terms[0].multiplier = multiplier;
  address->terms[0].stride = NULL_TREE;
  address->terms[0].inner_likelihood = INNER_UNLIKELY;
  address->terms[0].versioning_opportunity_p = false;
  address->min_offset = offset;

  /* Peel apart the expression into a sum of address_terms, where each
     term is multiplied by a constant.  Treat a + b and a - b the same,
     since it doesn't matter for our purposes whether an address is
     increasing or decreasing.  Distribute (a + b) * constant into
     a * constant + b * constant.

     We don't care which loop each term belongs to, since we want to
     examine as many candidate strides as possible when determining
     which is likely to be for the innermost dimension.  We therefore
     don't limit the search to statements in STMT's loop.  */
  for (unsigned int i = 0; i < address->terms.length (); )
    {
      if (gassign *assign = maybe_get_assign (address->terms[i].expr))
	{
	  tree_code code = gimple_assign_rhs_code (assign);
	  if (code == PLUS_EXPR
	      || code == POINTER_PLUS_EXPR
	      || code == MINUS_EXPR)
	    {
	      tree op1 = gimple_assign_rhs1 (assign);
	      tree op2 = gimple_assign_rhs2 (assign);
	      if (TREE_CODE (op2) == INTEGER_CST)
		{
		  address->terms[i].expr = strip_casts (op1);
		  /* This is heuristic only, so don't worry about truncation
		     or overflow.  */
		  address->min_offset += (TREE_INT_CST_LOW (op2)
					  * address->terms[i].multiplier);
		  continue;
		}
	      else if (address->terms.length () < address_info::MAX_TERMS)
		{
		  unsigned int j = address->terms.length ();
		  address->terms.quick_push (address->terms[i]);
		  address->terms[i].expr = strip_casts (op1);
		  address->terms[j].expr = strip_casts (op2);
		  continue;
		}
	    }
	  if (code == MULT_EXPR)
	    {
	      tree op1 = gimple_assign_rhs1 (assign);
	      tree op2 = gimple_assign_rhs2 (assign);
	      if (multiply_term_by (address->terms[i], op2))
		{
		  address->terms[i].expr = strip_casts (op1);
		  continue;
		}
	    }
	  if (CONVERT_EXPR_CODE_P (code))
	    {
	      tree op1 = gimple_assign_rhs1 (assign);
	      address->terms[i].expr = strip_casts (op1);
	      continue;
	    }
	}
      i += 1;
    }

  /* Peel off any symbolic pointer.  */
  if (TREE_CODE (address->terms[0].expr) != SSA_NAME
      && address->terms[0].multiplier == 1)
    {
      if (address->terms.length () == 1)
	{
	  obstack_free (&m_obstack, address);
	  return;
	}
      address->base = address->terms[0].expr;
      address->terms.ordered_remove (0);
    }

  /* Require all remaining terms to be SSA names.  (This could be false
     for unfolded statements, but they aren't worth dealing with.)  */
  for (unsigned int i = 0; i < address->terms.length (); ++i)
    if (TREE_CODE (address->terms[i].expr) != SSA_NAME)
      {
	obstack_free (&m_obstack, address);
	return;
      }

  /* The loop above set MIN_OFFSET based on the first byte of the
     referenced data.  Calculate the end + 1.  */
  address->max_offset = address->min_offset + type_size;

  /* Put the terms into a canonical order for the hash table lookup below.  */
  address->terms.qsort (compare_address_terms);

  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, stmt, "recording address fragment %T", expr);
      if (multiplier != 1)
	dump_printf (MSG_NOTE, " * %wd", multiplier);
      dump_printf (MSG_NOTE, " = ");
      dump_address_info (MSG_NOTE, *address);
      dump_printf (MSG_NOTE, "\n");
    }

  /* Pool address information with the same terms (but potentially
     different offsets).  */
  address_info **slot = m_address_table.find_slot (address, INSERT);
  if (address_info *old_address = *slot)
    {
      /* We've already seen an address with the same terms.  Extend the
	 offset range to account for this access.  Doing this can paper
	 over gaps, such as in:

	   a[i * stride * 4] + a[i * stride * 4 + 3];

	 where nothing references "+ 1" or "+ 2".  However, the vectorizer
	 handles such gapped accesses without problems, so it's not worth
	 trying to exclude them.  */
      if (old_address->min_offset > address->min_offset)
	old_address->min_offset = address->min_offset;
      if (old_address->max_offset < address->max_offset)
	old_address->max_offset = address->max_offset;
      obstack_free (&m_obstack, address);
    }
  else
    {
      /* This is the first time we've seen an address with these terms.  */
      *slot = address;
      m_address_list.safe_push (address);
    }
}

/* Analyze expression EXPR, which occurs in STMT.  */

void
loop_versioning::analyze_expr (gimple *stmt, tree expr)
{
  unsigned HOST_WIDE_INT type_size;

  while (handled_component_p (expr))
    {
      /* See whether we can use versioning to avoid a multiplication
	 in an array index.  */
      if (TREE_CODE (expr) == ARRAY_REF
	  && acceptable_type_p (TREE_TYPE (expr), &type_size))
	record_address_fragment (stmt, type_size,
				 TREE_OPERAND (expr, 1), type_size, 0);
      expr = TREE_OPERAND (expr, 0);
    }

  /* See whether we can use versioning to avoid a multiplication
     in the pointer calculation of a MEM_REF.  */
  if (TREE_CODE (expr) == MEM_REF
      && acceptable_type_p (TREE_TYPE (expr), &type_size))
    record_address_fragment (stmt, type_size, TREE_OPERAND (expr, 0), 1,
			     /* This is heuristic only, so don't worry
				about truncation or overflow.  */
			     TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));

  /* These would be easy to handle if they existed at this stage.  */
  gcc_checking_assert (TREE_CODE (expr) != TARGET_MEM_REF);
}

/* Analyze all the statements in BB looking for useful version checks.
   Return true on success, false if something prevents the block from
   being versioned.  */

bool
loop_versioning::analyze_block (basic_block bb)
{
  class loop *loop = bb->loop_father;
  loop_info &li = get_loop_info (loop);
  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      if (is_gimple_debug (stmt))
	continue;

      if (expensive_stmt_p (stmt))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, stmt, "expensive statement"
			     " prevents versioning: %G", stmt);
	  return false;
	}

      /* Only look for direct versioning opportunities in inner loops
	 since the benefit tends to be much smaller for outer loops.  */
      if (!loop->inner)
	{
	  unsigned int nops = gimple_num_ops (stmt);
	  for (unsigned int i = 0; i < nops; ++i)
	    if (tree op = gimple_op (stmt, i))
	      analyze_expr (stmt, op);
	}

      /* The point of the instruction limit is to prevent excessive
	 code growth, so this is a size-based estimate even though
	 the optimization is aimed at speed.  */
      li.num_insns += estimate_num_insns (stmt, &eni_size_weights);
    }

  return true;
}

/* Analyze all the blocks in the function, looking for useful version checks.
   Return true if we found one.  */

bool
loop_versioning::analyze_blocks ()
{
  AUTO_DUMP_SCOPE ("analyze_blocks",
		   dump_user_location_t::from_function_decl (m_fn->decl));

  /* For now we don't try to version the whole function, although
     versioning at that level could be useful in some cases.  */
  get_loop_info (get_loop (m_fn, 0)).rejected_p = true;

  class loop *loop;
  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
    {
      loop_info &linfo = get_loop_info (loop);

      /* Ignore cold loops.  */
      if (!optimize_loop_for_speed_p (loop))
	linfo.rejected_p = true;

      /* See whether an inner loop prevents versioning of this loop.  */
      if (!linfo.rejected_p)
	for (class loop *inner = loop->inner; inner; inner = inner->next)
	  if (get_loop_info (inner).rejected_p)
	    {
	      linfo.rejected_p = true;
	      break;
	    }

      /* If versioning the loop is still a possibility, examine the
	 statements in the loop to look for versioning opportunities.  */
      if (!linfo.rejected_p)
	{
	  void *start_point = obstack_alloc (&m_obstack, 0);

	  for (basic_block bb = linfo.block_list; bb;
	       bb = m_next_block_in_loop[bb->index])
	    if (!analyze_block (bb))
	      {
		linfo.rejected_p = true;
		break;
	    }

	  if (!linfo.rejected_p)
	    {
	      /* Process any queued address fragments, now that we have
		 complete grouping information.  */
	      address_info *address;
	      unsigned int i;
	      FOR_EACH_VEC_ELT (m_address_list, i, address)
		analyze_address_fragment (*address);
	    }

	  m_address_table.empty ();
	  m_address_list.truncate (0);
	  obstack_free (&m_obstack, start_point);
	}
    }

  return m_num_conditions != 0;
}

/* Use the ranges in VRS to remove impossible versioning conditions from
   LOOP.  */

void
loop_versioning::prune_loop_conditions (class loop *loop, vr_values *vrs)
{
  loop_info &li = get_loop_info (loop);

  int to_remove = -1;
  bitmap_iterator bi;
  unsigned int i;
  EXECUTE_IF_SET_IN_BITMAP (&li.unity_names, 0, i, bi)
    {
      tree name = ssa_name (i);
      const value_range_equiv *vr = vrs->get_value_range (name);
      if (vr && !vr->may_contain_p (build_one_cst (TREE_TYPE (name))))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, find_loop_location (loop),
			     "%T can never be 1 in this loop\n", name);

	  if (to_remove >= 0)
	    bitmap_clear_bit (&li.unity_names, to_remove);
	  to_remove = i;
	  m_num_conditions -= 1;
	}
    }
  if (to_remove >= 0)
    bitmap_clear_bit (&li.unity_names, to_remove);
}

/* Remove any scheduled loop version conditions that will never be true.
   Return true if any remain.  */

bool
loop_versioning::prune_conditions ()
{
  AUTO_DUMP_SCOPE ("prune_loop_conditions",
		   dump_user_location_t::from_function_decl (m_fn->decl));

  calculate_dominance_info (CDI_DOMINATORS);
  lv_dom_walker dom_walker (*this);
  dom_walker.walk (ENTRY_BLOCK_PTR_FOR_FN (m_fn));
  return m_num_conditions != 0;
}

/* Merge the version checks for INNER into immediately-enclosing loop
   OUTER.  */

void
loop_versioning::merge_loop_info (class loop *outer, class loop *inner)
{
  loop_info &inner_li = get_loop_info (inner);
  loop_info &outer_li = get_loop_info (outer);

  if (dump_enabled_p ())
    {
      bitmap_iterator bi;
      unsigned int i;
      EXECUTE_IF_SET_IN_BITMAP (&inner_li.unity_names, 0, i, bi)
	if (!bitmap_bit_p (&outer_li.unity_names, i))
	  dump_printf_loc (MSG_NOTE, find_loop_location (inner),
			   "hoisting check that %T == 1 to outer loop\n",
			   ssa_name (i));
    }

  bitmap_ior_into (&outer_li.unity_names, &inner_li.unity_names);
  if (loop_depth (outer_li.outermost) < loop_depth (inner_li.outermost))
    outer_li.outermost = inner_li.outermost;
}

/* Add LOOP to the queue of loops to version.  */

void
loop_versioning::add_loop_to_queue (class loop *loop)
{
  loop_info &li = get_loop_info (loop);

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, find_loop_location (loop),
		     "queuing this loop for versioning\n");
  m_loops_to_version.safe_push (loop);

  /* Don't try to version superloops.  */
  li.rejected_p = true;
}

/* Decide whether the cost model would allow us to version LOOP,
   either directly or as part of a parent loop, and return true if so.
   This does not imply that the loop is actually worth versioning in its
   own right, just that it would be valid to version it if something
   benefited.

   We have already made this decision for all inner loops of LOOP.  */

bool
loop_versioning::decide_whether_loop_is_versionable (class loop *loop)
{
  loop_info &li = get_loop_info (loop);

  if (li.rejected_p)
    return false;

  /* Examine the decisions made for inner loops.  */
  for (class loop *inner = loop->inner; inner; inner = inner->next)
    {
      loop_info &inner_li = get_loop_info (inner);
      if (inner_li.rejected_p)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, find_loop_location (loop),
			     "not versioning this loop because one of its"
			     " inner loops should not be versioned\n");
	  return false;
	}

      if (inner_li.worth_versioning_p ())
	li.subloops_benefit_p = true;

      /* Accumulate the number of instructions from subloops that are not
	 the innermost, or that don't benefit from versioning.  Only the
	 instructions from innermost loops that benefit from versioning
	 should be weighed against loop-versioning-max-inner-insns;
	 everything else should be weighed against
	 loop-versioning-max-outer-insns.  */
      if (!inner_li.worth_versioning_p () || inner->inner)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, find_loop_location (loop),
			     "counting %d instructions from this loop"
			     " against its parent loop\n", inner_li.num_insns);
	  li.num_insns += inner_li.num_insns;
	}
    }

  /* Enforce the size limits.  */
  if (li.worth_versioning_p ())
    {
      unsigned int max_num_insns = max_insns_for_loop (loop);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, find_loop_location (loop),
			 "this loop has %d instructions, against"
			 " a versioning limit of %d\n",
			 li.num_insns, max_num_insns);
      if (li.num_insns > max_num_insns)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION
			     | MSG_PRIORITY_USER_FACING,
			     find_loop_location (loop),
			     "this loop is too big to version");
	  return false;
	}
    }

  /* Hoist all version checks from subloops to this loop.  */
  for (class loop *subloop = loop->inner; subloop; subloop = subloop->next)
    merge_loop_info (loop, subloop);

  return true;
}

/* Decide which loops to version and add them to the versioning queue.
   Return true if there are any loops to version.  */

bool
loop_versioning::make_versioning_decisions ()
{
  AUTO_DUMP_SCOPE ("make_versioning_decisions",
		   dump_user_location_t::from_function_decl (m_fn->decl));

  class loop *loop;
  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
    {
      loop_info &linfo = get_loop_info (loop);
      if (decide_whether_loop_is_versionable (loop))
	{
	  /* Commit to versioning LOOP directly if we can't hoist the
	     version checks any further.  */
	  if (linfo.worth_versioning_p ()
	      && (loop_depth (loop) == 1 || linfo.outermost == loop))
	    add_loop_to_queue (loop);
	}
      else
	{
	  /* We can't version this loop, so individually version any
	     subloops that would benefit and haven't been versioned yet.  */
	  linfo.rejected_p = true;
	  for (class loop *subloop = loop->inner; subloop;
	       subloop = subloop->next)
	    if (get_loop_info (subloop).worth_versioning_p ())
	      add_loop_to_queue (subloop);
	}
    }

  return !m_loops_to_version.is_empty ();
}

/* Attempt to implement loop versioning for LOOP, using the information
   cached in the associated loop_info.  Return true on success.  */

bool
loop_versioning::version_loop (class loop *loop)
{
  loop_info &li = get_loop_info (loop);

  /* Build up a condition that selects the original loop instead of
     the simplified loop.  */
  tree cond = boolean_false_node;
  bitmap_iterator bi;
  unsigned int i;
  EXECUTE_IF_SET_IN_BITMAP (&li.unity_names, 0, i, bi)
    {
      tree name = ssa_name (i);
      tree ne_one = fold_build2 (NE_EXPR, boolean_type_node, name,
				 build_one_cst (TREE_TYPE (name)));
      cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, ne_one);
    }

  /* Convert the condition into a suitable gcond.  */
  gimple_seq stmts = NULL;
  cond = force_gimple_operand_1 (cond, &stmts, is_gimple_condexpr, NULL_TREE);

  /* Version the loop.  */
  initialize_original_copy_tables ();
  basic_block cond_bb;
  li.optimized_loop = loop_version (loop, cond, &cond_bb,
				    profile_probability::unlikely (),
				    profile_probability::likely (),
				    profile_probability::unlikely (),
				    profile_probability::likely (), true);
  free_original_copy_tables ();
  if (!li.optimized_loop)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, find_loop_location (loop),
			 "tried but failed to version this loop for when"
			 " certain strides are 1\n");
      return false;
    }

  if (dump_enabled_p ())
    dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, find_loop_location (loop),
		     "versioned this loop for when certain strides are 1\n");

  /* Insert the statements that feed COND.  */
  if (stmts)
    {
      gimple_stmt_iterator gsi = gsi_last_bb (cond_bb);
      gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
    }

  return true;
}

/* Attempt to version all loops in the versioning queue.  */

void
loop_versioning::implement_versioning_decisions ()
{
  /* No AUTO_DUMP_SCOPE here since all messages are top-level and
     user-facing at this point.  */

  bool any_succeeded_p = false;
  class loop *loop;
  unsigned int i;
  FOR_EACH_VEC_ELT (m_loops_to_version, i, loop)
    if (version_loop (loop))
      any_succeeded_p = true;
  if (!any_succeeded_p)
    return;

  update_ssa (TODO_update_ssa);

  /* Simplify the new loop, which is used when COND is false.  */
  FOR_EACH_VEC_ELT (m_loops_to_version, i, loop)
    {
      loop_info &linfo = get_loop_info (loop);
      if (linfo.optimized_loop)
	name_prop (linfo).substitute_and_fold (linfo.optimized_loop->header);
    }
}

/* Run the pass and return a set of TODO_* flags.  */

unsigned int
loop_versioning::run ()
{
  gcc_assert (scev_initialized_p ());

  if (analyze_blocks ()
      && prune_conditions ()
      && make_versioning_decisions ())
    implement_versioning_decisions ();

  return 0;
}

/* Loop versioning pass.  */

const pass_data pass_data_loop_versioning =
{
  GIMPLE_PASS, /* type */
  "lversion", /* name */
  OPTGROUP_LOOP, /* optinfo_flags */
  TV_LOOP_VERSIONING, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_loop_versioning : public gimple_opt_pass
{
public:
  pass_loop_versioning (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_loop_versioning, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return flag_version_loops_for_strides; }
  virtual unsigned int execute (function *);
};

unsigned int
pass_loop_versioning::execute (function *fn)
{
  if (number_of_loops (fn) <= 1)
    return 0;

  return loop_versioning (fn).run ();
}

} // anon namespace

gimple_opt_pass *
make_pass_loop_versioning (gcc::context *ctxt)
{
  return new pass_loop_versioning (ctxt);
}