/* Optimize and expand sanitizer functions.
Copyright (C) 2014-2020 Free Software Foundation, Inc.
Contributed by Marek Polacek <polacek@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "tree-pass.h"
#include "tree-ssa-operands.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "ubsan.h"
#include "tree-hash-traits.h"
#include "gimple-ssa.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "cfghooks.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "varasm.h"
/* This is used to carry information about basic blocks. It is
attached to the AUX field of the standard CFG block. */
struct sanopt_info
{
/* True if this BB might call (directly or indirectly) free/munmap
or similar operation. */
bool has_freeing_call_p;
/* True if HAS_FREEING_CALL_P flag has been computed. */
bool has_freeing_call_computed_p;
/* True if there is a block with HAS_FREEING_CALL_P flag set
on any path between an immediate dominator of BB, denoted
imm(BB), and BB. */
bool imm_dom_path_with_freeing_call_p;
/* True if IMM_DOM_PATH_WITH_FREEING_CALL_P has been computed. */
bool imm_dom_path_with_freeing_call_computed_p;
/* Number of possibly freeing calls encountered in this bb
(so far). */
uint64_t freeing_call_events;
/* True if BB is currently being visited during computation
of IMM_DOM_PATH_WITH_FREEING_CALL_P flag. */
bool being_visited_p;
/* True if this BB has been visited in the dominator walk. */
bool visited_p;
};
/* If T has a single definition of form T = T2, return T2. */
static tree
maybe_get_single_definition (tree t)
{
if (TREE_CODE (t) == SSA_NAME)
{
gimple *g = SSA_NAME_DEF_STMT (t);
if (gimple_assign_single_p (g))
return gimple_assign_rhs1 (g);
}
return NULL_TREE;
}
/* Tree triplet for vptr_check_map. */
struct sanopt_tree_triplet
{
tree t1, t2, t3;
};
/* Traits class for tree triplet hash maps below. */
struct sanopt_tree_triplet_hash : typed_noop_remove <sanopt_tree_triplet>
{
typedef sanopt_tree_triplet value_type;
typedef sanopt_tree_triplet compare_type;
static hashval_t
hash (const sanopt_tree_triplet &ref)
{
inchash::hash hstate (0);
inchash::add_expr (ref.t1, hstate);
inchash::add_expr (ref.t2, hstate);
inchash::add_expr (ref.t3, hstate);
return hstate.end ();
}
static bool
equal (const sanopt_tree_triplet &ref1, const sanopt_tree_triplet &ref2)
{
return operand_equal_p (ref1.t1, ref2.t1, 0)
&& operand_equal_p (ref1.t2, ref2.t2, 0)
&& operand_equal_p (ref1.t3, ref2.t3, 0);
}
static void
mark_deleted (sanopt_tree_triplet &ref)
{
ref.t1 = reinterpret_cast<tree> (1);
}
static const bool empty_zero_p = true;
static void
mark_empty (sanopt_tree_triplet &ref)
{
ref.t1 = NULL;
}
static bool
is_deleted (const sanopt_tree_triplet &ref)
{
return ref.t1 == reinterpret_cast<tree> (1);
}
static bool
is_empty (const sanopt_tree_triplet &ref)
{
return ref.t1 == NULL;
}
};
/* Tree couple for ptr_check_map. */
struct sanopt_tree_couple
{
tree ptr;
bool pos_p;
};
/* Traits class for tree triplet hash maps below. */
struct sanopt_tree_couple_hash : typed_noop_remove <sanopt_tree_couple>
{
typedef sanopt_tree_couple value_type;
typedef sanopt_tree_couple compare_type;
static hashval_t
hash (const sanopt_tree_couple &ref)
{
inchash::hash hstate (0);
inchash::add_expr (ref.ptr, hstate);
hstate.add_int (ref.pos_p);
return hstate.end ();
}
static bool
equal (const sanopt_tree_couple &ref1, const sanopt_tree_couple &ref2)
{
return operand_equal_p (ref1.ptr, ref2.ptr, 0)
&& ref1.pos_p == ref2.pos_p;
}
static void
mark_deleted (sanopt_tree_couple &ref)
{
ref.ptr = reinterpret_cast<tree> (1);
}
static const bool empty_zero_p = true;
static void
mark_empty (sanopt_tree_couple &ref)
{
ref.ptr = NULL;
}
static bool
is_deleted (const sanopt_tree_couple &ref)
{
return ref.ptr == reinterpret_cast<tree> (1);
}
static bool
is_empty (const sanopt_tree_couple &ref)
{
return ref.ptr == NULL;
}
};
/* This is used to carry various hash maps and variables used
in sanopt_optimize_walker. */
class sanopt_ctx
{
public:
/* This map maps a pointer (the first argument of UBSAN_NULL) to
a vector of UBSAN_NULL call statements that check this pointer. */
hash_map<tree, auto_vec<gimple *> > null_check_map;
/* This map maps a pointer (the second argument of ASAN_CHECK) to
a vector of ASAN_CHECK call statements that check the access. */
hash_map<tree_operand_hash, auto_vec<gimple *> > asan_check_map;
/* This map maps a tree triplet (the first, second and fourth argument
of UBSAN_VPTR) to a vector of UBSAN_VPTR call statements that check
that virtual table pointer. */
hash_map<sanopt_tree_triplet_hash, auto_vec<gimple *> > vptr_check_map;
/* This map maps a couple (tree and boolean) to a vector of UBSAN_PTR
call statements that check that pointer overflow. */
hash_map<sanopt_tree_couple_hash, auto_vec<gimple *> > ptr_check_map;
/* Number of IFN_ASAN_CHECK statements. */
int asan_num_accesses;
/* True when the current functions constains an ASAN_MARK. */
bool contains_asan_mark;
};
/* Return true if there might be any call to free/munmap operation
on any path in between DOM (which should be imm(BB)) and BB. */
static bool
imm_dom_path_with_freeing_call (basic_block bb, basic_block dom)
{
sanopt_info *info = (sanopt_info *) bb->aux;
edge e;
edge_iterator ei;
if (info->imm_dom_path_with_freeing_call_computed_p)
return info->imm_dom_path_with_freeing_call_p;
info->being_visited_p = true;
FOR_EACH_EDGE (e, ei, bb->preds)
{
sanopt_info *pred_info = (sanopt_info *) e->src->aux;
if (e->src == dom)
continue;
if ((pred_info->imm_dom_path_with_freeing_call_computed_p
&& pred_info->imm_dom_path_with_freeing_call_p)
|| (pred_info->has_freeing_call_computed_p
&& pred_info->has_freeing_call_p))
{
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = true;
info->being_visited_p = false;
return true;
}
}
FOR_EACH_EDGE (e, ei, bb->preds)
{
sanopt_info *pred_info = (sanopt_info *) e->src->aux;
if (e->src == dom)
continue;
if (pred_info->has_freeing_call_computed_p)
continue;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (e->src); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
gasm *asm_stmt;
if ((is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
|| ((asm_stmt = dyn_cast <gasm *> (stmt))
&& (gimple_asm_clobbers_memory_p (asm_stmt)
|| gimple_asm_volatile_p (asm_stmt))))
{
pred_info->has_freeing_call_p = true;
break;
}
}
pred_info->has_freeing_call_computed_p = true;
if (pred_info->has_freeing_call_p)
{
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = true;
info->being_visited_p = false;
return true;
}
}
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->src == dom)
continue;
basic_block src;
for (src = e->src; src != dom; )
{
sanopt_info *pred_info = (sanopt_info *) src->aux;
if (pred_info->being_visited_p)
break;
basic_block imm = get_immediate_dominator (CDI_DOMINATORS, src);
if (imm_dom_path_with_freeing_call (src, imm))
{
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = true;
info->being_visited_p = false;
return true;
}
src = imm;
}
}
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = false;
info->being_visited_p = false;
return false;
}
/* Get the first dominating check from the list of stored checks.
Non-dominating checks are silently dropped. */
static gimple *
maybe_get_dominating_check (auto_vec<gimple *> &v)
{
for (; !v.is_empty (); v.pop ())
{
gimple *g = v.last ();
sanopt_info *si = (sanopt_info *) gimple_bb (g)->aux;
if (!si->visited_p)
/* At this point we shouldn't have any statements
that aren't dominating the current BB. */
return g;
}
return NULL;
}
/* Optimize away redundant UBSAN_NULL calls. */
static bool
maybe_optimize_ubsan_null_ifn (class sanopt_ctx *ctx, gimple *stmt)
{
gcc_assert (gimple_call_num_args (stmt) == 3);
tree ptr = gimple_call_arg (stmt, 0);
tree cur_align = gimple_call_arg (stmt, 2);
gcc_assert (TREE_CODE (cur_align) == INTEGER_CST);
bool remove = false;
auto_vec<gimple *> &v = ctx->null_check_map.get_or_insert (ptr);
gimple *g = maybe_get_dominating_check (v);
if (!g)
{
/* For this PTR we don't have any UBSAN_NULL stmts recorded, so there's
nothing to optimize yet. */
v.safe_push (stmt);
return false;
}
/* We already have recorded a UBSAN_NULL check for this pointer. Perhaps we
can drop this one. But only if this check doesn't specify stricter
alignment. */
tree align = gimple_call_arg (g, 2);
int kind = tree_to_shwi (gimple_call_arg (g, 1));
/* If this is a NULL pointer check where we had segv anyway, we can
remove it. */
if (integer_zerop (align)
&& (kind == UBSAN_LOAD_OF
|| kind == UBSAN_STORE_OF
|| kind == UBSAN_MEMBER_ACCESS))
remove = true;
/* Otherwise remove the check in non-recovering mode, or if the
stmts have same location. */
else if (integer_zerop (align))
remove = (flag_sanitize_recover & SANITIZE_NULL) == 0
|| flag_sanitize_undefined_trap_on_error
|| gimple_location (g) == gimple_location (stmt);
else if (tree_int_cst_le (cur_align, align))
remove = (flag_sanitize_recover & SANITIZE_ALIGNMENT) == 0
|| flag_sanitize_undefined_trap_on_error
|| gimple_location (g) == gimple_location (stmt);
if (!remove && gimple_bb (g) == gimple_bb (stmt)
&& tree_int_cst_compare (cur_align, align) == 0)
v.pop ();
if (!remove)
v.safe_push (stmt);
return remove;
}
/* Return true when pointer PTR for a given CUR_OFFSET is already sanitized
in a given sanitization context CTX. */
static bool
has_dominating_ubsan_ptr_check (sanopt_ctx *ctx, tree ptr,
offset_int &cur_offset)
{
bool pos_p = !wi::neg_p (cur_offset);
sanopt_tree_couple couple;
couple.ptr = ptr;
couple.pos_p = pos_p;
auto_vec<gimple *> &v = ctx->ptr_check_map.get_or_insert (couple);
gimple *g = maybe_get_dominating_check (v);
if (!g)
return false;
/* We already have recorded a UBSAN_PTR check for this pointer. Perhaps we
can drop this one. But only if this check doesn't specify larger offset.
*/
tree offset = gimple_call_arg (g, 1);
gcc_assert (TREE_CODE (offset) == INTEGER_CST);
offset_int ooffset = wi::sext (wi::to_offset (offset), POINTER_SIZE);
if (pos_p)
{
if (wi::les_p (cur_offset, ooffset))
return true;
}
else if (!pos_p && wi::les_p (ooffset, cur_offset))
return true;
return false;
}
/* Record UBSAN_PTR check of given context CTX. Register pointer PTR on
a given OFFSET that it's handled by GIMPLE STMT. */
static void
record_ubsan_ptr_check_stmt (sanopt_ctx *ctx, gimple *stmt, tree ptr,
const offset_int &offset)
{
sanopt_tree_couple couple;
couple.ptr = ptr;
couple.pos_p = !wi::neg_p (offset);
auto_vec<gimple *> &v = ctx->ptr_check_map.get_or_insert (couple);
v.safe_push (stmt);
}
/* Optimize away redundant UBSAN_PTR calls. */
static bool
maybe_optimize_ubsan_ptr_ifn (sanopt_ctx *ctx, gimple *stmt)
{
poly_int64 bitsize, pbitpos;
machine_mode mode;
int volatilep = 0, reversep, unsignedp = 0;
tree offset;
gcc_assert (gimple_call_num_args (stmt) == 2);
tree ptr = gimple_call_arg (stmt, 0);
tree off = gimple_call_arg (stmt, 1);
if (TREE_CODE (off) != INTEGER_CST)
return false;
if (integer_zerop (off))
return true;
offset_int cur_offset = wi::sext (wi::to_offset (off), POINTER_SIZE);
if (has_dominating_ubsan_ptr_check (ctx, ptr, cur_offset))
return true;
tree base = ptr;
if (TREE_CODE (base) == ADDR_EXPR)
{
base = TREE_OPERAND (base, 0);
HOST_WIDE_INT bitpos;
base = get_inner_reference (base, &bitsize, &pbitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if ((offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
&& DECL_P (base)
&& ((!VAR_P (base)
&& TREE_CODE (base) != PARM_DECL
&& TREE_CODE (base) != RESULT_DECL)
|| !DECL_REGISTER (base))
&& pbitpos.is_constant (&bitpos))
{
offset_int expr_offset;
if (offset)
expr_offset = wi::to_offset (offset) + bitpos / BITS_PER_UNIT;
else
expr_offset = bitpos / BITS_PER_UNIT;
expr_offset = wi::sext (expr_offset, POINTER_SIZE);
offset_int total_offset = expr_offset + cur_offset;
if (total_offset != wi::sext (total_offset, POINTER_SIZE))
{
record_ubsan_ptr_check_stmt (ctx, stmt, ptr, cur_offset);
return false;
}
/* If BASE is a fixed size automatic variable or
global variable defined in the current TU, we don't have
to instrument anything if offset is within address
of the variable. */
if ((VAR_P (base)
|| TREE_CODE (base) == PARM_DECL
|| TREE_CODE (base) == RESULT_DECL)
&& DECL_SIZE_UNIT (base)
&& TREE_CODE (DECL_SIZE_UNIT (base)) == INTEGER_CST
&& (!is_global_var (base) || decl_binds_to_current_def_p (base)))
{
offset_int base_size = wi::to_offset (DECL_SIZE_UNIT (base));
if (!wi::neg_p (expr_offset)
&& wi::les_p (total_offset, base_size))
{
if (!wi::neg_p (total_offset)
&& wi::les_p (total_offset, base_size))
return true;
}
}
/* Following expression: UBSAN_PTR (&MEM_REF[ptr + x], y) can be
handled as follows:
1) sign (x) == sign (y), then check for dominating check of (x + y)
2) sign (x) != sign (y), then first check if we have a dominating
check for ptr + x. If so, then we have 2 situations:
a) sign (x) == sign (x + y), here we are done, example:
UBSAN_PTR (&MEM_REF[ptr + 100], -50)
b) check for dominating check of ptr + x + y.
*/
bool sign_cur_offset = !wi::neg_p (cur_offset);
bool sign_expr_offset = !wi::neg_p (expr_offset);
tree base_addr
= build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (base)), base);
bool add = false;
if (sign_cur_offset == sign_expr_offset)
{
if (has_dominating_ubsan_ptr_check (ctx, base_addr, total_offset))
return true;
else
add = true;
}
else
{
if (!has_dominating_ubsan_ptr_check (ctx, base_addr, expr_offset))
; /* Don't record base_addr + expr_offset, it's not a guarding
check. */
else
{
bool sign_total_offset = !wi::neg_p (total_offset);
if (sign_expr_offset == sign_total_offset)
return true;
else
{
if (has_dominating_ubsan_ptr_check (ctx, base_addr,
total_offset))
return true;
else
add = true;
}
}
}
/* Record a new dominating check for base_addr + total_offset. */
if (add && !operand_equal_p (base, base_addr, 0))
record_ubsan_ptr_check_stmt (ctx, stmt, base_addr,
total_offset);
}
}
/* For this PTR we don't have any UBSAN_PTR stmts recorded, so there's
nothing to optimize yet. */
record_ubsan_ptr_check_stmt (ctx, stmt, ptr, cur_offset);
return false;
}
/* Optimize away redundant UBSAN_VPTR calls. The second argument
is the value loaded from the virtual table, so rely on FRE to find out
when we can actually optimize. */
static bool
maybe_optimize_ubsan_vptr_ifn (class sanopt_ctx *ctx, gimple *stmt)
{
gcc_assert (gimple_call_num_args (stmt) == 5);
sanopt_tree_triplet triplet;
triplet.t1 = gimple_call_arg (stmt, 0);
triplet.t2 = gimple_call_arg (stmt, 1);
triplet.t3 = gimple_call_arg (stmt, 3);
auto_vec<gimple *> &v = ctx->vptr_check_map.get_or_insert (triplet);
gimple *g = maybe_get_dominating_check (v);
if (!g)
{
/* For this PTR we don't have any UBSAN_VPTR stmts recorded, so there's
nothing to optimize yet. */
v.safe_push (stmt);
return false;
}
return true;
}
/* Returns TRUE if ASan check of length LEN in block BB can be removed
if preceded by checks in V. */
static bool
can_remove_asan_check (auto_vec<gimple *> &v, tree len, basic_block bb)
{
unsigned int i;
gimple *g;
gimple *to_pop = NULL;
bool remove = false;
basic_block last_bb = bb;
bool cleanup = false;
FOR_EACH_VEC_ELT_REVERSE (v, i, g)
{
basic_block gbb = gimple_bb (g);
sanopt_info *si = (sanopt_info *) gbb->aux;
if (gimple_uid (g) < si->freeing_call_events)
{
/* If there is a potentially freeing call after g in gbb, we should
remove it from the vector, can't use in optimization. */
cleanup = true;
continue;
}
tree glen = gimple_call_arg (g, 2);
gcc_assert (TREE_CODE (glen) == INTEGER_CST);
/* If we've checked only smaller length than we want to check now,
we can't remove the current stmt. If g is in the same basic block,
we want to remove it though, as the current stmt is better. */
if (tree_int_cst_lt (glen, len))
{
if (gbb == bb)
{
to_pop = g;
cleanup = true;
}
continue;
}
while (last_bb != gbb)
{
/* Paths from last_bb to bb have been checked before.
gbb is necessarily a dominator of last_bb, but not necessarily
immediate dominator. */
if (((sanopt_info *) last_bb->aux)->freeing_call_events)
break;
basic_block imm = get_immediate_dominator (CDI_DOMINATORS, last_bb);
gcc_assert (imm);
if (imm_dom_path_with_freeing_call (last_bb, imm))
break;
last_bb = imm;
}
if (last_bb == gbb)
remove = true;
break;
}
if (cleanup)
{
unsigned int j = 0, l = v.length ();
for (i = 0; i < l; i++)
if (v[i] != to_pop
&& (gimple_uid (v[i])
== ((sanopt_info *)
gimple_bb (v[i])->aux)->freeing_call_events))
{
if (i != j)
v[j] = v[i];
j++;
}
v.truncate (j);
}
return remove;
}
/* Optimize away redundant ASAN_CHECK calls. */
static bool
maybe_optimize_asan_check_ifn (class sanopt_ctx *ctx, gimple *stmt)
{
gcc_assert (gimple_call_num_args (stmt) == 4);
tree ptr = gimple_call_arg (stmt, 1);
tree len = gimple_call_arg (stmt, 2);
basic_block bb = gimple_bb (stmt);
sanopt_info *info = (sanopt_info *) bb->aux;
if (TREE_CODE (len) != INTEGER_CST)
return false;
if (integer_zerop (len))
return false;
gimple_set_uid (stmt, info->freeing_call_events);
auto_vec<gimple *> *ptr_checks = &ctx->asan_check_map.get_or_insert (ptr);
tree base_addr = maybe_get_single_definition (ptr);
auto_vec<gimple *> *base_checks = NULL;
if (base_addr)
{
base_checks = &ctx->asan_check_map.get_or_insert (base_addr);
/* Original pointer might have been invalidated. */
ptr_checks = ctx->asan_check_map.get (ptr);
}
gimple *g = maybe_get_dominating_check (*ptr_checks);
gimple *g2 = NULL;
if (base_checks)
/* Try with base address as well. */
g2 = maybe_get_dominating_check (*base_checks);
if (g == NULL && g2 == NULL)
{
/* For this PTR we don't have any ASAN_CHECK stmts recorded, so there's
nothing to optimize yet. */
ptr_checks->safe_push (stmt);
if (base_checks)
base_checks->safe_push (stmt);
return false;
}
bool remove = false;
if (ptr_checks)
remove = can_remove_asan_check (*ptr_checks, len, bb);
if (!remove && base_checks)
/* Try with base address as well. */
remove = can_remove_asan_check (*base_checks, len, bb);
if (!remove)
{
ptr_checks->safe_push (stmt);
if (base_checks)
base_checks->safe_push (stmt);
}
return remove;
}
/* Try to optimize away redundant UBSAN_NULL and ASAN_CHECK calls.
We walk blocks in the CFG via a depth first search of the dominator
tree; we push unique UBSAN_NULL or ASAN_CHECK statements into a vector
in the NULL_CHECK_MAP or ASAN_CHECK_MAP hash maps as we enter the
blocks. When leaving a block, we mark the block as visited; then
when checking the statements in the vector, we ignore statements that
are coming from already visited blocks, because these cannot dominate
anything anymore. CTX is a sanopt context. */
static void
sanopt_optimize_walker (basic_block bb, class sanopt_ctx *ctx)
{
basic_block son;
gimple_stmt_iterator gsi;
sanopt_info *info = (sanopt_info *) bb->aux;
bool asan_check_optimize = (flag_sanitize & SANITIZE_ADDRESS) != 0;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
bool remove = false;
if (!is_gimple_call (stmt))
{
/* Handle asm volatile or asm with "memory" clobber
the same as potentionally freeing call. */
gasm *asm_stmt = dyn_cast <gasm *> (stmt);
if (asm_stmt
&& asan_check_optimize
&& (gimple_asm_clobbers_memory_p (asm_stmt)
|| gimple_asm_volatile_p (asm_stmt)))
info->freeing_call_events++;
gsi_next (&gsi);
continue;
}
if (asan_check_optimize && !nonfreeing_call_p (stmt))
info->freeing_call_events++;
/* If __asan_before_dynamic_init ("module"); is followed by
__asan_after_dynamic_init (); without intervening memory loads/stores,
there is nothing to guard, so optimize both away. */
if (asan_check_optimize
&& gimple_call_builtin_p (stmt, BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT))
{
use_operand_p use;
gimple *use_stmt;
if (single_imm_use (gimple_vdef (stmt), &use, &use_stmt))
{
if (is_gimple_call (use_stmt)
&& gimple_call_builtin_p (use_stmt,
BUILT_IN_ASAN_AFTER_DYNAMIC_INIT))
{
unlink_stmt_vdef (use_stmt);
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
gsi_remove (&gsi2, true);
remove = true;
}
}
}
if (gimple_call_internal_p (stmt))
switch (gimple_call_internal_fn (stmt))
{
case IFN_UBSAN_NULL:
remove = maybe_optimize_ubsan_null_ifn (ctx, stmt);
break;
case IFN_UBSAN_VPTR:
remove = maybe_optimize_ubsan_vptr_ifn (ctx, stmt);
break;
case IFN_UBSAN_PTR:
remove = maybe_optimize_ubsan_ptr_ifn (ctx, stmt);
break;
case IFN_ASAN_CHECK:
if (asan_check_optimize)
remove = maybe_optimize_asan_check_ifn (ctx, stmt);
if (!remove)
ctx->asan_num_accesses++;
break;
case IFN_ASAN_MARK:
ctx->contains_asan_mark = true;
break;
default:
break;
}
if (remove)
{
/* Drop this check. */
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Optimizing out: ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
}
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
}
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Leaving: ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
}
gsi_next (&gsi);
}
}
if (asan_check_optimize)
{
info->has_freeing_call_p = info->freeing_call_events != 0;
info->has_freeing_call_computed_p = true;
}
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
sanopt_optimize_walker (son, ctx);
/* We're leaving this BB, so mark it to that effect. */
info->visited_p = true;
}
/* Try to remove redundant sanitizer checks in function FUN. */
static int
sanopt_optimize (function *fun, bool *contains_asan_mark)
{
class sanopt_ctx ctx;
ctx.asan_num_accesses = 0;
ctx.contains_asan_mark = false;
/* Set up block info for each basic block. */
alloc_aux_for_blocks (sizeof (sanopt_info));
/* We're going to do a dominator walk, so ensure that we have
dominance information. */
calculate_dominance_info (CDI_DOMINATORS);
/* Recursively walk the dominator tree optimizing away
redundant checks. */
sanopt_optimize_walker (ENTRY_BLOCK_PTR_FOR_FN (fun), &ctx);
free_aux_for_blocks ();
*contains_asan_mark = ctx.contains_asan_mark;
return ctx.asan_num_accesses;
}
/* Perform optimization of sanitize functions. */
namespace {
const pass_data pass_data_sanopt =
{
GIMPLE_PASS, /* type */
"sanopt", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_sanopt : public gimple_opt_pass
{
public:
pass_sanopt (gcc::context *ctxt)
: gimple_opt_pass (pass_data_sanopt, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_sanitize; }
virtual unsigned int execute (function *);
}; // class pass_sanopt
/* Sanitize all ASAN_MARK unpoison calls that are not reachable by a BB
that contains an ASAN_MARK poison. All these ASAN_MARK unpoison call
can be removed as all variables are unpoisoned in a function prologue. */
static void
sanitize_asan_mark_unpoison (void)
{
/* 1) Find all BBs that contain an ASAN_MARK poison call. */
auto_sbitmap with_poison (last_basic_block_for_fn (cfun) + 1);
bitmap_clear (with_poison);
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
if (bitmap_bit_p (with_poison, bb->index))
continue;
gimple_stmt_iterator gsi;
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (asan_mark_p (stmt, ASAN_MARK_POISON))
{
bitmap_set_bit (with_poison, bb->index);
break;
}
}
}
auto_sbitmap poisoned (last_basic_block_for_fn (cfun) + 1);
bitmap_clear (poisoned);
auto_sbitmap worklist (last_basic_block_for_fn (cfun) + 1);
bitmap_copy (worklist, with_poison);
/* 2) Propagate the information to all reachable blocks. */
while (!bitmap_empty_p (worklist))
{
unsigned i = bitmap_first_set_bit (worklist);
bitmap_clear_bit (worklist, i);
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
gcc_assert (bb);
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!bitmap_bit_p (poisoned, e->dest->index))
{
bitmap_set_bit (poisoned, e->dest->index);
bitmap_set_bit (worklist, e->dest->index);
}
}
/* 3) Iterate all BBs not included in POISONED BBs and remove unpoison
ASAN_MARK preceding an ASAN_MARK poison (which can still happen). */
FOR_EACH_BB_FN (bb, cfun)
{
if (bitmap_bit_p (poisoned, bb->index))
continue;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_call_internal_p (stmt, IFN_ASAN_MARK))
{
if (asan_mark_p (stmt, ASAN_MARK_POISON))
break;
else
{
if (dump_file)
fprintf (dump_file, "Removing ASAN_MARK unpoison\n");
unlink_stmt_vdef (stmt);
release_defs (stmt);
gsi_remove (&gsi, true);
continue;
}
}
gsi_next (&gsi);
}
}
}
/* Return true when STMT is either ASAN_CHECK call or a call of a function
that can contain an ASAN_CHECK. */
static bool
maybe_contains_asan_check (gimple *stmt)
{
if (is_gimple_call (stmt))
{
if (gimple_call_internal_p (stmt, IFN_ASAN_MARK))
return false;
else
return !(gimple_call_flags (stmt) & ECF_CONST);
}
else if (is_a<gasm *> (stmt))
return true;
return false;
}
/* Sanitize all ASAN_MARK poison calls that are not followed by an ASAN_CHECK
call. These calls can be removed. */
static void
sanitize_asan_mark_poison (void)
{
/* 1) Find all BBs that possibly contain an ASAN_CHECK. */
auto_sbitmap with_check (last_basic_block_for_fn (cfun) + 1);
bitmap_clear (with_check);
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (maybe_contains_asan_check (stmt))
{
bitmap_set_bit (with_check, bb->index);
break;
}
}
}
auto_sbitmap can_reach_check (last_basic_block_for_fn (cfun) + 1);
bitmap_clear (can_reach_check);
auto_sbitmap worklist (last_basic_block_for_fn (cfun) + 1);
bitmap_copy (worklist, with_check);
/* 2) Propagate the information to all definitions blocks. */
while (!bitmap_empty_p (worklist))
{
unsigned i = bitmap_first_set_bit (worklist);
bitmap_clear_bit (worklist, i);
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
gcc_assert (bb);
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!bitmap_bit_p (can_reach_check, e->src->index))
{
bitmap_set_bit (can_reach_check, e->src->index);
bitmap_set_bit (worklist, e->src->index);
}
}
/* 3) Iterate all BBs not included in CAN_REACH_CHECK BBs and remove poison
ASAN_MARK not followed by a call to function having an ASAN_CHECK. */
FOR_EACH_BB_FN (bb, cfun)
{
if (bitmap_bit_p (can_reach_check, bb->index))
continue;
gimple_stmt_iterator gsi;
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (maybe_contains_asan_check (stmt))
break;
else if (asan_mark_p (stmt, ASAN_MARK_POISON))
{
if (dump_file)
fprintf (dump_file, "Removing ASAN_MARK poison\n");
unlink_stmt_vdef (stmt);
release_defs (stmt);
gimple_stmt_iterator gsi2 = gsi;
gsi_prev (&gsi);
gsi_remove (&gsi2, true);
continue;
}
gsi_prev (&gsi);
}
}
}
/* Rewrite all usages of tree OP which is a PARM_DECL with a VAR_DECL
that is it's DECL_VALUE_EXPR. */
static tree
rewrite_usage_of_param (tree *op, int *walk_subtrees, void *)
{
if (TREE_CODE (*op) == PARM_DECL && DECL_HAS_VALUE_EXPR_P (*op))
{
*op = DECL_VALUE_EXPR (*op);
*walk_subtrees = 0;
}
return NULL;
}
/* For a given function FUN, rewrite all addressable parameters so that
a new automatic variable is introduced. Right after function entry
a parameter is assigned to the variable. */
static void
sanitize_rewrite_addressable_params (function *fun)
{
gimple *g;
gimple_seq stmts = NULL;
bool has_any_addressable_param = false;
auto_vec<tree> clear_value_expr_list;
for (tree arg = DECL_ARGUMENTS (current_function_decl);
arg; arg = DECL_CHAIN (arg))
{
tree type = TREE_TYPE (arg);
if (TREE_ADDRESSABLE (arg)
&& !TREE_ADDRESSABLE (type)
&& !TREE_THIS_VOLATILE (arg)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
{
TREE_ADDRESSABLE (arg) = 0;
/* The parameter is no longer addressable. */
has_any_addressable_param = true;
/* Create a new automatic variable. */
tree var = build_decl (DECL_SOURCE_LOCATION (arg),
VAR_DECL, DECL_NAME (arg), type);
TREE_ADDRESSABLE (var) = 1;
DECL_IGNORED_P (var) = 1;
gimple_add_tmp_var (var);
/* We skip parameters that have a DECL_VALUE_EXPR. */
if (DECL_HAS_VALUE_EXPR_P (arg))
continue;
if (dump_file)
{
fprintf (dump_file,
"Rewriting parameter whose address is taken: ");
print_generic_expr (dump_file, arg, dump_flags);
fputc ('\n', dump_file);
}
SET_DECL_PT_UID (var, DECL_PT_UID (arg));
/* Assign value of parameter to newly created variable. */
if ((TREE_CODE (type) == COMPLEX_TYPE
|| TREE_CODE (type) == VECTOR_TYPE))
{
/* We need to create a SSA name that will be used for the
assignment. */
DECL_GIMPLE_REG_P (arg) = 1;
tree tmp = get_or_create_ssa_default_def (cfun, arg);
g = gimple_build_assign (var, tmp);
gimple_set_location (g, DECL_SOURCE_LOCATION (arg));
gimple_seq_add_stmt (&stmts, g);
}
else
{
g = gimple_build_assign (var, arg);
gimple_set_location (g, DECL_SOURCE_LOCATION (arg));
gimple_seq_add_stmt (&stmts, g);
}
if (target_for_debug_bind (arg))
{
g = gimple_build_debug_bind (arg, var, NULL);
gimple_seq_add_stmt (&stmts, g);
clear_value_expr_list.safe_push (arg);
}
DECL_HAS_VALUE_EXPR_P (arg) = 1;
SET_DECL_VALUE_EXPR (arg, var);
}
}
if (!has_any_addressable_param)
return;
/* Replace all usages of PARM_DECLs with the newly
created variable VAR. */
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
gimple_stmt_iterator it = gsi_for_stmt (stmt);
walk_gimple_stmt (&it, NULL, rewrite_usage_of_param, NULL);
}
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = dyn_cast<gphi *> (gsi_stmt (gsi));
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
hash_set<tree> visited_nodes;
walk_tree (gimple_phi_arg_def_ptr (phi, i),
rewrite_usage_of_param, NULL, &visited_nodes);
}
}
}
/* Unset value expr for parameters for which we created debug bind
expressions. */
unsigned i;
tree arg;
FOR_EACH_VEC_ELT (clear_value_expr_list, i, arg)
{
DECL_HAS_VALUE_EXPR_P (arg) = 0;
SET_DECL_VALUE_EXPR (arg, NULL_TREE);
}
/* Insert default assignments at the beginning of a function. */
basic_block entry_bb = ENTRY_BLOCK_PTR_FOR_FN (fun);
entry_bb = split_edge (single_succ_edge (entry_bb));
gimple_stmt_iterator gsi = gsi_start_bb (entry_bb);
gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
}
unsigned int
pass_sanopt::execute (function *fun)
{
basic_block bb;
int asan_num_accesses = 0;
bool contains_asan_mark = false;
/* Try to remove redundant checks. */
if (optimize
&& (flag_sanitize
& (SANITIZE_NULL | SANITIZE_ALIGNMENT
| SANITIZE_ADDRESS | SANITIZE_VPTR | SANITIZE_POINTER_OVERFLOW)))
asan_num_accesses = sanopt_optimize (fun, &contains_asan_mark);
else if (flag_sanitize & SANITIZE_ADDRESS)
{
gimple_stmt_iterator gsi;
FOR_EACH_BB_FN (bb, fun)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_call_internal_p (stmt, IFN_ASAN_CHECK))
++asan_num_accesses;
else if (gimple_call_internal_p (stmt, IFN_ASAN_MARK))
contains_asan_mark = true;
}
}
if (contains_asan_mark)
{
sanitize_asan_mark_unpoison ();
sanitize_asan_mark_poison ();
}
if (asan_sanitize_stack_p ())
sanitize_rewrite_addressable_params (fun);
bool use_calls = param_asan_instrumentation_with_call_threshold < INT_MAX
&& asan_num_accesses >= param_asan_instrumentation_with_call_threshold;
hash_map<tree, tree> shadow_vars_mapping;
bool need_commit_edge_insert = false;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
{
gimple *stmt = gsi_stmt (gsi);
bool no_next = false;
if (!is_gimple_call (stmt))
{
gsi_next (&gsi);
continue;
}
if (gimple_call_internal_p (stmt))
{
enum internal_fn ifn = gimple_call_internal_fn (stmt);
switch (ifn)
{
case IFN_UBSAN_NULL:
no_next = ubsan_expand_null_ifn (&gsi);
break;
case IFN_UBSAN_BOUNDS:
no_next = ubsan_expand_bounds_ifn (&gsi);
break;
case IFN_UBSAN_OBJECT_SIZE:
no_next = ubsan_expand_objsize_ifn (&gsi);
break;
case IFN_UBSAN_PTR:
no_next = ubsan_expand_ptr_ifn (&gsi);
break;
case IFN_UBSAN_VPTR:
no_next = ubsan_expand_vptr_ifn (&gsi);
break;
case IFN_ASAN_CHECK:
no_next = asan_expand_check_ifn (&gsi, use_calls);
break;
case IFN_ASAN_MARK:
no_next = asan_expand_mark_ifn (&gsi);
break;
case IFN_ASAN_POISON:
no_next = asan_expand_poison_ifn (&gsi,
&need_commit_edge_insert,
shadow_vars_mapping);
break;
default:
break;
}
}
else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
tree callee = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_UNREACHABLE:
if (sanitize_flags_p (SANITIZE_UNREACHABLE))
no_next = ubsan_instrument_unreachable (&gsi);
break;
default:
break;
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Expanded: ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
}
if (!no_next)
gsi_next (&gsi);
}
}
if (need_commit_edge_insert)
gsi_commit_edge_inserts ();
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_sanopt (gcc::context *ctxt)
{
return new pass_sanopt (ctxt);
}