Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
/* Header file for SSA dominator optimizations.
   Copyright (C) 2013-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "function.h"
#include "basic-block.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "tree-pretty-print.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "stor-layout.h"
#include "fold-const.h"
#include "tree-eh.h"
#include "internal-fn.h"
#include "tree-dfa.h"
#include "options.h"

static bool hashable_expr_equal_p (const struct hashable_expr *,
				   const struct hashable_expr *);

/* Initialize local stacks for this optimizer and record equivalences
   upon entry to BB.  Equivalences can come from the edge traversed to
   reach BB or they may come from PHI nodes at the start of BB.  */

/* Pop items off the unwinding stack, removing each from the hash table
   until a marker is encountered.  */

void
avail_exprs_stack::pop_to_marker ()
{
  /* Remove all the expressions made available in this block.  */
  while (m_stack.length () > 0)
    {
      std::pair<expr_hash_elt_t, expr_hash_elt_t> victim = m_stack.pop ();
      expr_hash_elt **slot;

      if (victim.first == NULL)
	break;

      /* This must precede the actual removal from the hash table,
         as ELEMENT and the table entry may share a call argument
         vector which will be freed during removal.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "<<<< ");
	  victim.first->print (dump_file);
        }

      slot = m_avail_exprs->find_slot (victim.first, NO_INSERT);
      gcc_assert (slot && *slot == victim.first);
      if (victim.second != NULL)
	{
	  delete *slot;
	  *slot = victim.second;
	}
      else
	m_avail_exprs->clear_slot (slot);
    }
}

/* Add <ELT1,ELT2> to the unwinding stack so they can be later removed
   from the hash table.  */

void
avail_exprs_stack::record_expr (class expr_hash_elt *elt1,
				class expr_hash_elt *elt2,
				char type)
{
  if (elt1 && dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "%c>>> ", type);
      elt1->print (dump_file);
    }

  m_stack.safe_push (std::pair<expr_hash_elt_t, expr_hash_elt_t> (elt1, elt2));
}

/* Helper for walk_non_aliased_vuses.  Determine if we arrived at
   the desired memory state.  */

static void *
vuse_eq (ao_ref *, tree vuse1, void *data)
{
  tree vuse2 = (tree) data;
  if (vuse1 == vuse2)
    return data;

  return NULL;
}

/* We looked for STMT in the hash table, but did not find it.

   If STMT is an assignment from a binary operator, we may know something
   about the operands relationship to each other which would allow
   us to derive a constant value for the RHS of STMT.  */

tree
avail_exprs_stack::simplify_binary_operation (gimple *stmt,
					      class expr_hash_elt element)
{
  if (is_gimple_assign (stmt))
    {
      struct hashable_expr *expr = element.expr ();
      if (expr->kind == EXPR_BINARY)
	{
	  enum tree_code code = expr->ops.binary.op;

	  switch (code)
	    {
	    /* For these cases, if we know the operands
	       are equal, then we know the result.  */
	    case MIN_EXPR:
	    case MAX_EXPR:
	    case BIT_IOR_EXPR:
	    case BIT_AND_EXPR:
	    case BIT_XOR_EXPR:
	    case MINUS_EXPR:
	    case TRUNC_DIV_EXPR:
	    case CEIL_DIV_EXPR:
	    case FLOOR_DIV_EXPR:
	    case ROUND_DIV_EXPR:
	    case EXACT_DIV_EXPR:
	    case TRUNC_MOD_EXPR:
	    case CEIL_MOD_EXPR:
	    case FLOOR_MOD_EXPR:
	    case ROUND_MOD_EXPR:
	      {
		/* Build a simple equality expr and query the hash table
		   for it.  */
		struct hashable_expr expr;
		expr.type = boolean_type_node;
		expr.kind = EXPR_BINARY;
		expr.ops.binary.op = EQ_EXPR;
		expr.ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
		expr.ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
		class expr_hash_elt element2 (&expr, NULL_TREE);
		expr_hash_elt **slot
		  = m_avail_exprs->find_slot (&element2, NO_INSERT);
		tree result_type = TREE_TYPE (gimple_assign_lhs (stmt));

		/* If the query was successful and returned a nonzero
		   result, then we know that the operands of the binary
		   expression are the same.  In many cases this allows
		   us to compute a constant result of the expression
		   at compile time, even if we do not know the exact
		   values of the operands.  */
		if (slot && *slot && integer_onep ((*slot)->lhs ()))
		  {
		    switch (code)
		      {
		      case MIN_EXPR:
		      case MAX_EXPR:
		      case BIT_IOR_EXPR:
		      case BIT_AND_EXPR:
			return gimple_assign_rhs1 (stmt);

		      case MINUS_EXPR:
			/* This is unsafe for certain floats even in non-IEEE
			   formats.  In IEEE, it is unsafe because it does
			   wrong for NaNs.  */
			if (FLOAT_TYPE_P (result_type)
			    && HONOR_NANS (result_type))
			  break;
			/* FALLTHRU */
		      case BIT_XOR_EXPR:
		      case TRUNC_MOD_EXPR:
		      case CEIL_MOD_EXPR:
		      case FLOOR_MOD_EXPR:
		      case ROUND_MOD_EXPR:
			return build_zero_cst (result_type);

		      case TRUNC_DIV_EXPR:
		      case CEIL_DIV_EXPR:
		      case FLOOR_DIV_EXPR:
		      case ROUND_DIV_EXPR:
		      case EXACT_DIV_EXPR:
			/* Avoid _Fract types where we can't build 1.  */
			if (ALL_FRACT_MODE_P (TYPE_MODE (result_type)))
			  break;
			return build_one_cst (result_type);

		      default:
			gcc_unreachable ();
		      }
		  }
		break;
	      }

	    default:
	      break;
	    }
	}
    }
  return NULL_TREE;
}

/* Search for an existing instance of STMT in the AVAIL_EXPRS_STACK table.
   If found, return its LHS. Otherwise insert STMT in the table and
   return NULL_TREE.

   Also, when an expression is first inserted in the  table, it is also
   is also added to AVAIL_EXPRS_STACK, so that it can be removed when
   we finish processing this block and its children.  */

tree
avail_exprs_stack::lookup_avail_expr (gimple *stmt, bool insert, bool tbaa_p,
				      expr_hash_elt **elt)
{
  expr_hash_elt **slot;
  tree lhs;

  /* Get LHS of phi, assignment, or call; else NULL_TREE.  */
  if (gimple_code (stmt) == GIMPLE_PHI)
    lhs = gimple_phi_result (stmt);
  else
    lhs = gimple_get_lhs (stmt);

  class expr_hash_elt element (stmt, lhs);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "LKUP ");
      element.print (dump_file);
    }

  /* Don't bother remembering constant assignments and copy operations.
     Constants and copy operations are handled by the constant/copy propagator
     in optimize_stmt.  */
  if (element.expr()->kind == EXPR_SINGLE
      && (TREE_CODE (element.expr()->ops.single.rhs) == SSA_NAME
          || is_gimple_min_invariant (element.expr()->ops.single.rhs)))
    return NULL_TREE;

  /* Finally try to find the expression in the main expression hash table.  */
  slot = m_avail_exprs->find_slot (&element, (insert ? INSERT : NO_INSERT));
  if (slot == NULL)
    {
      return NULL_TREE;
    }
  else if (*slot == NULL)
    {
      /* If we did not find the expression in the hash table, we may still
	 be able to produce a result for some expressions.  */
      tree retval = avail_exprs_stack::simplify_binary_operation (stmt,
								  element);

      /* We have, in effect, allocated *SLOT for ELEMENT at this point.
	 We must initialize *SLOT to a real entry, even if we found a
	 way to prove ELEMENT was a constant after not finding ELEMENT
	 in the hash table.

	 An uninitialized or empty slot is an indication no prior objects
	 entered into the hash table had a hash collection with ELEMENT.

	 If we fail to do so and had such entries in the table, they
	 would become unreachable.  */
      class expr_hash_elt *element2 = new expr_hash_elt (element);
      *slot = element2;

      record_expr (element2, NULL, '2');
      return retval;
    }

  /* If we found a redundant memory operation do an alias walk to
     check if we can re-use it.  */
  if (gimple_vuse (stmt) != (*slot)->vop ())
    {
      tree vuse1 = (*slot)->vop ();
      tree vuse2 = gimple_vuse (stmt);
      /* If we have a load of a register and a candidate in the
	 hash with vuse1 then try to reach its stmt by walking
	 up the virtual use-def chain using walk_non_aliased_vuses.
	 But don't do this when removing expressions from the hash.  */
      ao_ref ref;
      unsigned limit = param_sccvn_max_alias_queries_per_access;
      if (!(vuse1 && vuse2
	    && gimple_assign_single_p (stmt)
	    && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
	    && (ao_ref_init (&ref, gimple_assign_rhs1 (stmt)),
		ref.base_alias_set = ref.ref_alias_set = tbaa_p ? -1 : 0, true)
	    && walk_non_aliased_vuses (&ref, vuse2, true, vuse_eq, NULL, NULL,
				       limit, vuse1) != NULL))
	{
	  if (insert)
	    {
	      class expr_hash_elt *element2 = new expr_hash_elt (element);

	      /* Insert the expr into the hash by replacing the current
		 entry and recording the value to restore in the
		 avail_exprs_stack.  */
	      record_expr (element2, *slot, '2');
	      *slot = element2;
	    }
	  return NULL_TREE;
	}
    }

  /* Extract the LHS of the assignment so that it can be used as the current
     definition of another variable.  */
  lhs = (*slot)->lhs ();
  if (elt)
    *elt = *slot;

  /* Valueize the result.  */
  if (TREE_CODE (lhs) == SSA_NAME)
    {
      tree tem = SSA_NAME_VALUE (lhs);
      if (tem)
	lhs = tem;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "FIND: ");
      print_generic_expr (dump_file, lhs);
      fprintf (dump_file, "\n");
    }

  return lhs;
}

/* Enter condition equivalence P into the hash table.

   This indicates that a conditional expression has a known
   boolean value.  */

void
avail_exprs_stack::record_cond (cond_equivalence *p)
{
  class expr_hash_elt *element = new expr_hash_elt (&p->cond, p->value);
  expr_hash_elt **slot;

  slot = m_avail_exprs->find_slot_with_hash (element, element->hash (), INSERT);
  if (*slot == NULL)
    {
      *slot = element;
      record_expr (element, NULL, '1');
    }
  else
    delete element;
}

/* Generate a hash value for a pair of expressions.  This can be used
   iteratively by passing a previous result in HSTATE.

   The same hash value is always returned for a given pair of expressions,
   regardless of the order in which they are presented.  This is useful in
   hashing the operands of commutative functions.  */

namespace inchash
{

static void
add_expr_commutative (const_tree t1, const_tree t2, hash &hstate)
{
  hash one, two;

  inchash::add_expr (t1, one);
  inchash::add_expr (t2, two);
  hstate.add_commutative (one, two);
}

/* Compute a hash value for a hashable_expr value EXPR and a
   previously accumulated hash value VAL.  If two hashable_expr
   values compare equal with hashable_expr_equal_p, they must
   hash to the same value, given an identical value of VAL.
   The logic is intended to follow inchash::add_expr in tree.c.  */

static void
add_hashable_expr (const struct hashable_expr *expr, hash &hstate)
{
  switch (expr->kind)
    {
    case EXPR_SINGLE:
      inchash::add_expr (expr->ops.single.rhs, hstate);
      break;

    case EXPR_UNARY:
      hstate.add_object (expr->ops.unary.op);

      /* Make sure to include signedness in the hash computation.
         Don't hash the type, that can lead to having nodes which
         compare equal according to operand_equal_p, but which
         have different hash codes.  */
      if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
          || expr->ops.unary.op == NON_LVALUE_EXPR)
        hstate.add_int (TYPE_UNSIGNED (expr->type));

      inchash::add_expr (expr->ops.unary.opnd, hstate);
      break;

    case EXPR_BINARY:
      hstate.add_object (expr->ops.binary.op);
      if (commutative_tree_code (expr->ops.binary.op))
	inchash::add_expr_commutative (expr->ops.binary.opnd0,
					  expr->ops.binary.opnd1, hstate);
      else
        {
          inchash::add_expr (expr->ops.binary.opnd0, hstate);
          inchash::add_expr (expr->ops.binary.opnd1, hstate);
        }
      break;

    case EXPR_TERNARY:
      hstate.add_object (expr->ops.ternary.op);
      if (commutative_ternary_tree_code (expr->ops.ternary.op))
	inchash::add_expr_commutative (expr->ops.ternary.opnd0,
					  expr->ops.ternary.opnd1, hstate);
      else
        {
          inchash::add_expr (expr->ops.ternary.opnd0, hstate);
          inchash::add_expr (expr->ops.ternary.opnd1, hstate);
        }
      inchash::add_expr (expr->ops.ternary.opnd2, hstate);
      break;

    case EXPR_CALL:
      {
        size_t i;
        enum tree_code code = CALL_EXPR;
        gcall *fn_from;

        hstate.add_object (code);
        fn_from = expr->ops.call.fn_from;
        if (gimple_call_internal_p (fn_from))
          hstate.merge_hash ((hashval_t) gimple_call_internal_fn (fn_from));
        else
          inchash::add_expr (gimple_call_fn (fn_from), hstate);
        for (i = 0; i < expr->ops.call.nargs; i++)
          inchash::add_expr (expr->ops.call.args[i], hstate);
      }
      break;

    case EXPR_PHI:
      {
        size_t i;

        for (i = 0; i < expr->ops.phi.nargs; i++)
          inchash::add_expr (expr->ops.phi.args[i], hstate);
      }
      break;

    default:
      gcc_unreachable ();
    }
}

}

/* Hashing and equality functions.  We compute a value number for expressions
   using the code of the expression and the SSA numbers of its operands.  */

static hashval_t
avail_expr_hash (class expr_hash_elt *p)
{
  const struct hashable_expr *expr = p->expr ();
  inchash::hash hstate;

  if (expr->kind == EXPR_SINGLE)
    {
      /* T could potentially be a switch index or a goto dest.  */
      tree t = expr->ops.single.rhs;
      if (TREE_CODE (t) == MEM_REF || handled_component_p (t))
	{
	  /* Make equivalent statements of both these kinds hash together.
	     Dealing with both MEM_REF and ARRAY_REF allows us not to care
	     about equivalence with other statements not considered here.  */
	  bool reverse;
	  poly_int64 offset, size, max_size;
	  tree base = get_ref_base_and_extent (t, &offset, &size, &max_size,
					       &reverse);
	  /* Strictly, we could try to normalize variable-sized accesses too,
	    but here we just deal with the common case.  */
	  if (known_size_p (max_size)
	      && known_eq (size, max_size))
	    {
	      enum tree_code code = MEM_REF;
	      hstate.add_object (code);
	      inchash::add_expr (base, hstate,
				 TREE_CODE (base) == MEM_REF 
				 ? OEP_ADDRESS_OF : 0);
	      hstate.add_object (offset);
	      hstate.add_object (size);
	      return hstate.end ();
	    }
	}
    }

  inchash::add_hashable_expr (expr, hstate);

  return hstate.end ();
}

/* Compares trees T0 and T1 to see if they are MEM_REF or ARRAY_REFs equivalent
   to each other.  (That is, they return the value of the same bit of memory.)

   Return TRUE if the two are so equivalent; FALSE if not (which could still
   mean the two are equivalent by other means).  */

static bool
equal_mem_array_ref_p (tree t0, tree t1)
{
  if (TREE_CODE (t0) != MEM_REF && ! handled_component_p (t0))
    return false;
  if (TREE_CODE (t1) != MEM_REF && ! handled_component_p (t1))
    return false;

  if (!types_compatible_p (TREE_TYPE (t0), TREE_TYPE (t1)))
    return false;
  bool rev0;
  poly_int64 off0, sz0, max0;
  tree base0 = get_ref_base_and_extent (t0, &off0, &sz0, &max0, &rev0);
  if (!known_size_p (max0)
      || maybe_ne (sz0, max0))
    return false;

  bool rev1;
  poly_int64 off1, sz1, max1;
  tree base1 = get_ref_base_and_extent (t1, &off1, &sz1, &max1, &rev1);
  if (!known_size_p (max1)
      || maybe_ne (sz1, max1))
    return false;

  if (rev0 != rev1 || maybe_ne (sz0, sz1) || maybe_ne (off0, off1))
    return false;

  return operand_equal_p (base0, base1,
			  (TREE_CODE (base0) == MEM_REF
			   || TREE_CODE (base0) == TARGET_MEM_REF)
			  && (TREE_CODE (base1) == MEM_REF
			      || TREE_CODE (base1) == TARGET_MEM_REF)
			  ? OEP_ADDRESS_OF : 0);
}

/* Compare two hashable_expr structures for equivalence.  They are
   considered equivalent when the expressions they denote must
   necessarily be equal.  The logic is intended to follow that of
   operand_equal_p in fold-const.c */

static bool
hashable_expr_equal_p (const struct hashable_expr *expr0,
		       const struct hashable_expr *expr1)
{
  tree type0 = expr0->type;
  tree type1 = expr1->type;

  /* If either type is NULL, there is nothing to check.  */
  if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
    return false;

  /* If both types don't have the same signedness, precision, and mode,
     then we can't consider  them equal.  */
  if (type0 != type1
      && (TREE_CODE (type0) == ERROR_MARK
	  || TREE_CODE (type1) == ERROR_MARK
	  || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
	  || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
	  || TYPE_MODE (type0) != TYPE_MODE (type1)))
    return false;

  if (expr0->kind != expr1->kind)
    return false;

  switch (expr0->kind)
    {
    case EXPR_SINGLE:
      return equal_mem_array_ref_p (expr0->ops.single.rhs,
				    expr1->ops.single.rhs)
	     || operand_equal_p (expr0->ops.single.rhs,
				 expr1->ops.single.rhs, 0);
    case EXPR_UNARY:
      if (expr0->ops.unary.op != expr1->ops.unary.op)
        return false;

      if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
           || expr0->ops.unary.op == NON_LVALUE_EXPR)
          && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
        return false;

      return operand_equal_p (expr0->ops.unary.opnd,
                              expr1->ops.unary.opnd, 0);

    case EXPR_BINARY:
      if (expr0->ops.binary.op != expr1->ops.binary.op)
	return false;

      if (operand_equal_p (expr0->ops.binary.opnd0,
			   expr1->ops.binary.opnd0, 0)
	  && operand_equal_p (expr0->ops.binary.opnd1,
			      expr1->ops.binary.opnd1, 0))
	return true;

      /* For commutative ops, allow the other order.  */
      return (commutative_tree_code (expr0->ops.binary.op)
	      && operand_equal_p (expr0->ops.binary.opnd0,
				  expr1->ops.binary.opnd1, 0)
	      && operand_equal_p (expr0->ops.binary.opnd1,
				  expr1->ops.binary.opnd0, 0));

    case EXPR_TERNARY:
      if (expr0->ops.ternary.op != expr1->ops.ternary.op
	  || !operand_equal_p (expr0->ops.ternary.opnd2,
			       expr1->ops.ternary.opnd2, 0))
	return false;

      /* BIT_INSERT_EXPR has an implict operand as the type precision
         of op1.  Need to check to make sure they are the same.  */
      if (expr0->ops.ternary.op == BIT_INSERT_EXPR
	  && TREE_CODE (expr0->ops.ternary.opnd1) == INTEGER_CST
          && TREE_CODE (expr1->ops.ternary.opnd1) == INTEGER_CST
          && TYPE_PRECISION (TREE_TYPE (expr0->ops.ternary.opnd1))
              != TYPE_PRECISION (TREE_TYPE (expr1->ops.ternary.opnd1)))
        return false;

      if (operand_equal_p (expr0->ops.ternary.opnd0,
			   expr1->ops.ternary.opnd0, 0)
	  && operand_equal_p (expr0->ops.ternary.opnd1,
			      expr1->ops.ternary.opnd1, 0))
	return true;

      /* For commutative ops, allow the other order.  */
      return (commutative_ternary_tree_code (expr0->ops.ternary.op)
	      && operand_equal_p (expr0->ops.ternary.opnd0,
				  expr1->ops.ternary.opnd1, 0)
	      && operand_equal_p (expr0->ops.ternary.opnd1,
				  expr1->ops.ternary.opnd0, 0));

    case EXPR_CALL:
      {
        size_t i;

        /* If the calls are to different functions, then they
           clearly cannot be equal.  */
        if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
                                        expr1->ops.call.fn_from))
          return false;

        if (! expr0->ops.call.pure)
          return false;

        if (expr0->ops.call.nargs !=  expr1->ops.call.nargs)
          return false;

        for (i = 0; i < expr0->ops.call.nargs; i++)
          if (! operand_equal_p (expr0->ops.call.args[i],
                                 expr1->ops.call.args[i], 0))
            return false;

	if (stmt_could_throw_p (cfun, expr0->ops.call.fn_from))
	  {
	    int lp0 = lookup_stmt_eh_lp (expr0->ops.call.fn_from);
	    int lp1 = lookup_stmt_eh_lp (expr1->ops.call.fn_from);
	    if ((lp0 > 0 || lp1 > 0) && lp0 != lp1)
	      return false;
	  }

        return true;
      }

    case EXPR_PHI:
      {
        size_t i;

        if (expr0->ops.phi.nargs !=  expr1->ops.phi.nargs)
          return false;

        for (i = 0; i < expr0->ops.phi.nargs; i++)
          if (! operand_equal_p (expr0->ops.phi.args[i],
                                 expr1->ops.phi.args[i], 0))
            return false;

        return true;
      }

    default:
      gcc_unreachable ();
    }
}

/* Given a statement STMT, construct a hash table element.  */

expr_hash_elt::expr_hash_elt (gimple *stmt, tree orig_lhs)
{
  enum gimple_code code = gimple_code (stmt);
  struct hashable_expr *expr = this->expr ();

  if (code == GIMPLE_ASSIGN)
    {
      enum tree_code subcode = gimple_assign_rhs_code (stmt);

      switch (get_gimple_rhs_class (subcode))
        {
        case GIMPLE_SINGLE_RHS:
	  expr->kind = EXPR_SINGLE;
	  expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
	  expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
	  break;
        case GIMPLE_UNARY_RHS:
	  expr->kind = EXPR_UNARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
	  if (CONVERT_EXPR_CODE_P (subcode))
	    subcode = NOP_EXPR;
	  expr->ops.unary.op = subcode;
	  expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
	  break;
        case GIMPLE_BINARY_RHS:
	  expr->kind = EXPR_BINARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
	  expr->ops.binary.op = subcode;
	  expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
	  expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
	  break;
        case GIMPLE_TERNARY_RHS:
	  expr->kind = EXPR_TERNARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
	  expr->ops.ternary.op = subcode;
	  expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
	  expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
	  expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
	  break;
        default:
          gcc_unreachable ();
        }
    }
  else if (code == GIMPLE_COND)
    {
      expr->type = boolean_type_node;
      expr->kind = EXPR_BINARY;
      expr->ops.binary.op = gimple_cond_code (stmt);
      expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
      expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
    }
  else if (gcall *call_stmt = dyn_cast <gcall *> (stmt))
    {
      size_t nargs = gimple_call_num_args (call_stmt);
      size_t i;

      gcc_assert (gimple_call_lhs (call_stmt));

      expr->type = TREE_TYPE (gimple_call_lhs (call_stmt));
      expr->kind = EXPR_CALL;
      expr->ops.call.fn_from = call_stmt;

      if (gimple_call_flags (call_stmt) & (ECF_CONST | ECF_PURE))
        expr->ops.call.pure = true;
      else
        expr->ops.call.pure = false;

      expr->ops.call.nargs = nargs;
      expr->ops.call.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        expr->ops.call.args[i] = gimple_call_arg (call_stmt, i);
    }
  else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
    {
      expr->type = TREE_TYPE (gimple_switch_index (swtch_stmt));
      expr->kind = EXPR_SINGLE;
      expr->ops.single.rhs = gimple_switch_index (swtch_stmt);
    }
  else if (code == GIMPLE_GOTO)
    {
      expr->type = TREE_TYPE (gimple_goto_dest (stmt));
      expr->kind = EXPR_SINGLE;
      expr->ops.single.rhs = gimple_goto_dest (stmt);
    }
  else if (code == GIMPLE_PHI)
    {
      size_t nargs = gimple_phi_num_args (stmt);
      size_t i;

      expr->type = TREE_TYPE (gimple_phi_result (stmt));
      expr->kind = EXPR_PHI;
      expr->ops.phi.nargs = nargs;
      expr->ops.phi.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
    }
  else
    gcc_unreachable ();

  m_lhs = orig_lhs;
  m_vop = gimple_vuse (stmt);
  m_hash = avail_expr_hash (this);
  m_stamp = this;
}

/* Given a hashable_expr expression ORIG and an ORIG_LHS,
   construct a hash table element.  */

expr_hash_elt::expr_hash_elt (struct hashable_expr *orig, tree orig_lhs)
{
  m_expr = *orig;
  m_lhs = orig_lhs;
  m_vop = NULL_TREE;
  m_hash = avail_expr_hash (this);
  m_stamp = this;
}

/* Copy constructor for a hash table element.  */

expr_hash_elt::expr_hash_elt (class expr_hash_elt &old_elt)
{
  m_expr = old_elt.m_expr;
  m_lhs = old_elt.m_lhs;
  m_vop = old_elt.m_vop;
  m_hash = old_elt.m_hash;
  m_stamp = this;

  /* Now deep copy the malloc'd space for CALL and PHI args.  */
  if (old_elt.m_expr.kind == EXPR_CALL)
    {
      size_t nargs = old_elt.m_expr.ops.call.nargs;
      size_t i;

      m_expr.ops.call.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        m_expr.ops.call.args[i] = old_elt.m_expr.ops.call.args[i];
    }
  else if (old_elt.m_expr.kind == EXPR_PHI)
    {
      size_t nargs = old_elt.m_expr.ops.phi.nargs;
      size_t i;

      m_expr.ops.phi.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        m_expr.ops.phi.args[i] = old_elt.m_expr.ops.phi.args[i];
    }
}

/* Calls and PHIs have a variable number of arguments that are allocated
   on the heap.  Thus we have to have a special dtor to release them.  */

expr_hash_elt::~expr_hash_elt ()
{
  if (m_expr.kind == EXPR_CALL)
    free (m_expr.ops.call.args);
  else if (m_expr.kind == EXPR_PHI)
    free (m_expr.ops.phi.args);
}

/* Print a diagnostic dump of an expression hash table entry.  */

void
expr_hash_elt::print (FILE *stream)
{
  fprintf (stream, "STMT ");

  if (m_lhs)
    {
      print_generic_expr (stream, m_lhs);
      fprintf (stream, " = ");
    }

  switch (m_expr.kind)
    {
      case EXPR_SINGLE:
	print_generic_expr (stream, m_expr.ops.single.rhs);
	break;

      case EXPR_UNARY:
	fprintf (stream, "%s ", get_tree_code_name (m_expr.ops.unary.op));
	print_generic_expr (stream, m_expr.ops.unary.opnd);
	break;

      case EXPR_BINARY:
	print_generic_expr (stream, m_expr.ops.binary.opnd0);
	fprintf (stream, " %s ", get_tree_code_name (m_expr.ops.binary.op));
	print_generic_expr (stream, m_expr.ops.binary.opnd1);
	break;

      case EXPR_TERNARY:
	fprintf (stream, " %s <", get_tree_code_name (m_expr.ops.ternary.op));
	print_generic_expr (stream, m_expr.ops.ternary.opnd0);
	fputs (", ", stream);
	print_generic_expr (stream, m_expr.ops.ternary.opnd1);
	fputs (", ", stream);
	print_generic_expr (stream, m_expr.ops.ternary.opnd2);
	fputs (">", stream);
	break;

      case EXPR_CALL:
        {
          size_t i;
          size_t nargs = m_expr.ops.call.nargs;
          gcall *fn_from;

          fn_from = m_expr.ops.call.fn_from;
          if (gimple_call_internal_p (fn_from))
	    fprintf (stream, ".%s",
		     internal_fn_name (gimple_call_internal_fn (fn_from)));
          else
	    print_generic_expr (stream, gimple_call_fn (fn_from));
          fprintf (stream, " (");
          for (i = 0; i < nargs; i++)
            {
	      print_generic_expr (stream, m_expr.ops.call.args[i]);
              if (i + 1 < nargs)
                fprintf (stream, ", ");
            }
          fprintf (stream, ")");
        }
        break;

      case EXPR_PHI:
        {
          size_t i;
          size_t nargs = m_expr.ops.phi.nargs;

          fprintf (stream, "PHI <");
          for (i = 0; i < nargs; i++)
            {
	      print_generic_expr (stream, m_expr.ops.phi.args[i]);
              if (i + 1 < nargs)
                fprintf (stream, ", ");
            }
          fprintf (stream, ">");
        }
        break;
    }

  if (m_vop)
    {
      fprintf (stream, " with ");
      print_generic_expr (stream, m_vop);
    }

  fprintf (stream, "\n");
}

/* Pop entries off the stack until we hit the NULL marker.
   For each entry popped, use the SRC/DEST pair to restore
   SRC to its prior value.  */

void
const_and_copies::pop_to_marker (void)
{
  while (m_stack.length () > 0)
    {
      tree prev_value, dest;

      dest = m_stack.pop ();

      /* A NULL value indicates we should stop unwinding, otherwise
	 pop off the next entry as they're recorded in pairs.  */
      if (dest == NULL)
	break;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "<<<< COPY ");
	  print_generic_expr (dump_file, dest);
	  fprintf (dump_file, " = ");
	  print_generic_expr (dump_file, SSA_NAME_VALUE (dest));
	  fprintf (dump_file, "\n");
	}

      prev_value = m_stack.pop ();
      set_ssa_name_value (dest, prev_value);
    }
}

/* Record that X has the value Y and that X's previous value is PREV_X. 

   This variant does not follow the value chain for Y.  */

void
const_and_copies::record_const_or_copy_raw (tree x, tree y, tree prev_x)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "0>>> COPY ");
      print_generic_expr (dump_file, x);
      fprintf (dump_file, " = ");
      print_generic_expr (dump_file, y);
      fprintf (dump_file, "\n");
    }

  set_ssa_name_value (x, y);
  m_stack.reserve (2);
  m_stack.quick_push (prev_x);
  m_stack.quick_push (x);
}

/* Record that X has the value Y.  */

void
const_and_copies::record_const_or_copy (tree x, tree y)
{
  record_const_or_copy (x, y, SSA_NAME_VALUE (x));
}

/* Record that X has the value Y and that X's previous value is PREV_X. 

   This variant follow's Y value chain.  */

void
const_and_copies::record_const_or_copy (tree x, tree y, tree prev_x)
{
  /* Y may be NULL if we are invalidating entries in the table.  */
  if (y && TREE_CODE (y) == SSA_NAME)
    {
      tree tmp = SSA_NAME_VALUE (y);
      y = tmp ? tmp : y;
    }

  record_const_or_copy_raw (x, y, prev_x);
}

bool
expr_elt_hasher::equal (const value_type &p1, const compare_type &p2)
{
  const struct hashable_expr *expr1 = p1->expr ();
  const class expr_hash_elt *stamp1 = p1->stamp ();
  const struct hashable_expr *expr2 = p2->expr ();
  const class expr_hash_elt *stamp2 = p2->stamp ();

  /* This case should apply only when removing entries from the table.  */
  if (stamp1 == stamp2)
    return true;

  if (p1->hash () != p2->hash ())
    return false;

  /* In case of a collision, both RHS have to be identical and have the
     same VUSE operands.  */
  if (hashable_expr_equal_p (expr1, expr2)
      && types_compatible_p (expr1->type, expr2->type))
    return true;

  return false;
}

/* Given a conditional expression COND as a tree, initialize
   a hashable_expr expression EXPR.  The conditional must be a
   comparison or logical negation.  A constant or a variable is
   not permitted.  */

void
initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
{
  expr->type = boolean_type_node;

  if (COMPARISON_CLASS_P (cond))
    {
      expr->kind = EXPR_BINARY;
      expr->ops.binary.op = TREE_CODE (cond);
      expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
      expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
    }
  else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
    {
      expr->kind = EXPR_UNARY;
      expr->ops.unary.op = TRUTH_NOT_EXPR;
      expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
    }
  else
    gcc_unreachable ();
}

/* Build a cond_equivalence record indicating that the comparison
   CODE holds between operands OP0 and OP1 and push it to **P.  */

static void
build_and_record_new_cond (enum tree_code code,
                           tree op0, tree op1,
                           vec<cond_equivalence> *p,
			   bool val = true)
{
  cond_equivalence c;
  struct hashable_expr *cond = &c.cond;

  gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);

  cond->type = boolean_type_node;
  cond->kind = EXPR_BINARY;
  cond->ops.binary.op = code;
  cond->ops.binary.opnd0 = op0;
  cond->ops.binary.opnd1 = op1;

  c.value = val ? boolean_true_node : boolean_false_node;
  p->safe_push (c);
}

/* Record that COND is true and INVERTED is false into the edge information
   structure.  Also record that any conditions dominated by COND are true
   as well.

   For example, if a < b is true, then a <= b must also be true.  */

void
record_conditions (vec<cond_equivalence> *p, tree cond, tree inverted)
{
  tree op0, op1;
  cond_equivalence c;

  if (!COMPARISON_CLASS_P (cond))
    return;

  op0 = TREE_OPERAND (cond, 0);
  op1 = TREE_OPERAND (cond, 1);

  switch (TREE_CODE (cond))
    {
    case LT_EXPR:
    case GT_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (op0)))
	{
	  build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
	  build_and_record_new_cond (LTGT_EXPR, op0, op1, p);
	}

      build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
				  ? LE_EXPR : GE_EXPR),
				 op0, op1, p);
      build_and_record_new_cond (NE_EXPR, op0, op1, p);
      build_and_record_new_cond (EQ_EXPR, op0, op1, p, false);
      break;

    case GE_EXPR:
    case LE_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (op0)))
	{
	  build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
	}
      break;

    case EQ_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (op0)))
	{
	  build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
	}
      build_and_record_new_cond (LE_EXPR, op0, op1, p);
      build_and_record_new_cond (GE_EXPR, op0, op1, p);
      break;

    case UNORDERED_EXPR:
      build_and_record_new_cond (NE_EXPR, op0, op1, p);
      build_and_record_new_cond (UNLE_EXPR, op0, op1, p);
      build_and_record_new_cond (UNGE_EXPR, op0, op1, p);
      build_and_record_new_cond (UNEQ_EXPR, op0, op1, p);
      build_and_record_new_cond (UNLT_EXPR, op0, op1, p);
      build_and_record_new_cond (UNGT_EXPR, op0, op1, p);
      break;

    case UNLT_EXPR:
    case UNGT_EXPR:
      build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
				  ? UNLE_EXPR : UNGE_EXPR),
				 op0, op1, p);
      build_and_record_new_cond (NE_EXPR, op0, op1, p);
      break;

    case UNEQ_EXPR:
      build_and_record_new_cond (UNLE_EXPR, op0, op1, p);
      build_and_record_new_cond (UNGE_EXPR, op0, op1, p);
      break;

    case LTGT_EXPR:
      build_and_record_new_cond (NE_EXPR, op0, op1, p);
      build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
      break;

    default:
      break;
    }

  /* Now store the original true and false conditions into the first
     two slots.  */
  initialize_expr_from_cond (cond, &c.cond);
  c.value = boolean_true_node;
  p->safe_push (c);

  /* It is possible for INVERTED to be the negation of a comparison,
     and not a valid RHS or GIMPLE_COND condition.  This happens because
     invert_truthvalue may return such an expression when asked to invert
     a floating-point comparison.  These comparisons are not assumed to
     obey the trichotomy law.  */
  initialize_expr_from_cond (inverted, &c.cond);
  c.value = boolean_false_node;
  p->safe_push (c);
}