// Written in the D programming language.
/** This module contains the $(LREF Complex) type, which is used to represent
_complex numbers, along with related mathematical operations and functions.
$(LREF Complex) will eventually
$(DDLINK deprecate, Deprecated Features, replace)
the built-in types $(D cfloat), $(D cdouble), $(D creal), $(D ifloat),
$(D idouble), and $(D ireal).
Authors: Lars Tandle Kyllingstad, Don Clugston
Copyright: Copyright (c) 2010, Lars T. Kyllingstad.
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0)
Source: $(PHOBOSSRC std/_complex.d)
*/
module std.complex;
import std.traits;
/** Helper function that returns a _complex number with the specified
real and imaginary parts.
Params:
R = (template parameter) type of real part of complex number
I = (template parameter) type of imaginary part of complex number
re = real part of complex number to be constructed
im = (optional) imaginary part of complex number, 0 if omitted.
Returns:
$(D Complex) instance with real and imaginary parts set
to the values provided as input. If neither $(D re) nor
$(D im) are floating-point numbers, the return type will
be $(D Complex!double). Otherwise, the return type is
deduced using $(D std.traits.CommonType!(R, I)).
*/
auto complex(R)(R re) @safe pure nothrow @nogc
if (is(R : double))
{
static if (isFloatingPoint!R)
return Complex!R(re, 0);
else
return Complex!double(re, 0);
}
/// ditto
auto complex(R, I)(R re, I im) @safe pure nothrow @nogc
if (is(R : double) && is(I : double))
{
static if (isFloatingPoint!R || isFloatingPoint!I)
return Complex!(CommonType!(R, I))(re, im);
else
return Complex!double(re, im);
}
///
@safe pure nothrow unittest
{
auto a = complex(1.0);
static assert(is(typeof(a) == Complex!double));
assert(a.re == 1.0);
assert(a.im == 0.0);
auto b = complex(2.0L);
static assert(is(typeof(b) == Complex!real));
assert(b.re == 2.0L);
assert(b.im == 0.0L);
auto c = complex(1.0, 2.0);
static assert(is(typeof(c) == Complex!double));
assert(c.re == 1.0);
assert(c.im == 2.0);
auto d = complex(3.0, 4.0L);
static assert(is(typeof(d) == Complex!real));
assert(d.re == 3.0);
assert(d.im == 4.0L);
auto e = complex(1);
static assert(is(typeof(e) == Complex!double));
assert(e.re == 1);
assert(e.im == 0);
auto f = complex(1L, 2);
static assert(is(typeof(f) == Complex!double));
assert(f.re == 1L);
assert(f.im == 2);
auto g = complex(3, 4.0L);
static assert(is(typeof(g) == Complex!real));
assert(g.re == 3);
assert(g.im == 4.0L);
}
/** A complex number parametrised by a type $(D T), which must be either
$(D float), $(D double) or $(D real).
*/
struct Complex(T)
if (isFloatingPoint!T)
{
import std.format : FormatSpec;
import std.range.primitives : isOutputRange;
/** The real part of the number. */
T re;
/** The imaginary part of the number. */
T im;
/** Converts the complex number to a string representation.
The second form of this function is usually not called directly;
instead, it is used via $(REF format, std,string), as shown in the examples
below. Supported format characters are 'e', 'f', 'g', 'a', and 's'.
See the $(MREF std, format) and $(REF format, std,string)
documentation for more information.
*/
string toString() const @safe /* TODO: pure nothrow */
{
import std.exception : assumeUnique;
char[] buf;
buf.reserve(100);
auto fmt = FormatSpec!char("%s");
toString((const(char)[] s) { buf ~= s; }, fmt);
static trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); }
return trustedAssumeUnique(buf);
}
static if (is(T == double))
///
@safe unittest
{
auto c = complex(1.2, 3.4);
// Vanilla toString formatting:
assert(c.toString() == "1.2+3.4i");
// Formatting with std.string.format specs: the precision and width
// specifiers apply to both the real and imaginary parts of the
// complex number.
import std.format : format;
assert(format("%.2f", c) == "1.20+3.40i");
assert(format("%4.1f", c) == " 1.2+ 3.4i");
}
/// ditto
void toString(Writer, Char)(scope Writer w,
FormatSpec!Char formatSpec) const
if (isOutputRange!(Writer, const(Char)[]))
{
import std.format : formatValue;
import std.math : signbit;
import std.range.primitives : put;
formatValue(w, re, formatSpec);
if (signbit(im) == 0)
put(w, "+");
formatValue(w, im, formatSpec);
put(w, "i");
}
@safe pure nothrow @nogc:
/** Construct a complex number with the specified real and
imaginary parts. In the case where a single argument is passed
that is not complex, the imaginary part of the result will be
zero.
*/
this(R : T)(Complex!R z)
{
re = z.re;
im = z.im;
}
/// ditto
this(Rx : T, Ry : T)(Rx x, Ry y)
{
re = x;
im = y;
}
/// ditto
this(R : T)(R r)
{
re = r;
im = 0;
}
// ASSIGNMENT OPERATORS
// this = complex
ref Complex opAssign(R : T)(Complex!R z)
{
re = z.re;
im = z.im;
return this;
}
// this = numeric
ref Complex opAssign(R : T)(R r)
{
re = r;
im = 0;
return this;
}
// COMPARISON OPERATORS
// this == complex
bool opEquals(R : T)(Complex!R z) const
{
return re == z.re && im == z.im;
}
// this == numeric
bool opEquals(R : T)(R r) const
{
return re == r && im == 0;
}
// UNARY OPERATORS
// +complex
Complex opUnary(string op)() const
if (op == "+")
{
return this;
}
// -complex
Complex opUnary(string op)() const
if (op == "-")
{
return Complex(-re, -im);
}
// BINARY OPERATORS
// complex op complex
Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const
{
alias C = typeof(return);
auto w = C(this.re, this.im);
return w.opOpAssign!(op)(z);
}
// complex op numeric
Complex!(CommonType!(T,R)) opBinary(string op, R)(R r) const
if (isNumeric!R)
{
alias C = typeof(return);
auto w = C(this.re, this.im);
return w.opOpAssign!(op)(r);
}
// numeric + complex, numeric * complex
Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
if ((op == "+" || op == "*") && (isNumeric!R))
{
return opBinary!(op)(r);
}
// numeric - complex
Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
if (op == "-" && isNumeric!R)
{
return Complex(r - re, -im);
}
// numeric / complex
Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
if (op == "/" && isNumeric!R)
{
import std.math : fabs;
typeof(return) w = void;
if (fabs(re) < fabs(im))
{
immutable ratio = re/im;
immutable rdivd = r/(re*ratio + im);
w.re = rdivd*ratio;
w.im = -rdivd;
}
else
{
immutable ratio = im/re;
immutable rdivd = r/(re + im*ratio);
w.re = rdivd;
w.im = -rdivd*ratio;
}
return w;
}
// numeric ^^ complex
Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R lhs) const
if (op == "^^" && isNumeric!R)
{
import std.math : cos, exp, log, sin, PI;
Unqual!(CommonType!(T, R)) ab = void, ar = void;
if (lhs >= 0)
{
// r = lhs
// theta = 0
ab = lhs ^^ this.re;
ar = log(lhs) * this.im;
}
else
{
// r = -lhs
// theta = PI
ab = (-lhs) ^^ this.re * exp(-PI * this.im);
ar = PI * this.re + log(-lhs) * this.im;
}
return typeof(return)(ab * cos(ar), ab * sin(ar));
}
// OP-ASSIGN OPERATORS
// complex += complex, complex -= complex
ref Complex opOpAssign(string op, C)(C z)
if ((op == "+" || op == "-") && is(C R == Complex!R))
{
mixin ("re "~op~"= z.re;");
mixin ("im "~op~"= z.im;");
return this;
}
// complex *= complex
ref Complex opOpAssign(string op, C)(C z)
if (op == "*" && is(C R == Complex!R))
{
auto temp = re*z.re - im*z.im;
im = im*z.re + re*z.im;
re = temp;
return this;
}
// complex /= complex
ref Complex opOpAssign(string op, C)(C z)
if (op == "/" && is(C R == Complex!R))
{
import std.math : fabs;
if (fabs(z.re) < fabs(z.im))
{
immutable ratio = z.re/z.im;
immutable denom = z.re*ratio + z.im;
immutable temp = (re*ratio + im)/denom;
im = (im*ratio - re)/denom;
re = temp;
}
else
{
immutable ratio = z.im/z.re;
immutable denom = z.re + z.im*ratio;
immutable temp = (re + im*ratio)/denom;
im = (im - re*ratio)/denom;
re = temp;
}
return this;
}
// complex ^^= complex
ref Complex opOpAssign(string op, C)(C z)
if (op == "^^" && is(C R == Complex!R))
{
import std.math : exp, log, cos, sin;
immutable r = abs(this);
immutable t = arg(this);
immutable ab = r^^z.re * exp(-t*z.im);
immutable ar = t*z.re + log(r)*z.im;
re = ab*cos(ar);
im = ab*sin(ar);
return this;
}
// complex += numeric, complex -= numeric
ref Complex opOpAssign(string op, U : T)(U a)
if (op == "+" || op == "-")
{
mixin ("re "~op~"= a;");
return this;
}
// complex *= numeric, complex /= numeric
ref Complex opOpAssign(string op, U : T)(U a)
if (op == "*" || op == "/")
{
mixin ("re "~op~"= a;");
mixin ("im "~op~"= a;");
return this;
}
// complex ^^= real
ref Complex opOpAssign(string op, R)(R r)
if (op == "^^" && isFloatingPoint!R)
{
import std.math : cos, sin;
immutable ab = abs(this)^^r;
immutable ar = arg(this)*r;
re = ab*cos(ar);
im = ab*sin(ar);
return this;
}
// complex ^^= int
ref Complex opOpAssign(string op, U)(U i)
if (op == "^^" && isIntegral!U)
{
switch (i)
{
case 0:
re = 1.0;
im = 0.0;
break;
case 1:
// identity; do nothing
break;
case 2:
this *= this;
break;
case 3:
auto z = this;
this *= z;
this *= z;
break;
default:
this ^^= cast(real) i;
}
return this;
}
}
@safe pure nothrow unittest
{
import std.complex;
import std.math;
enum EPS = double.epsilon;
auto c1 = complex(1.0, 1.0);
// Check unary operations.
auto c2 = Complex!double(0.5, 2.0);
assert(c2 == +c2);
assert((-c2).re == -(c2.re));
assert((-c2).im == -(c2.im));
assert(c2 == -(-c2));
// Check complex-complex operations.
auto cpc = c1 + c2;
assert(cpc.re == c1.re + c2.re);
assert(cpc.im == c1.im + c2.im);
auto cmc = c1 - c2;
assert(cmc.re == c1.re - c2.re);
assert(cmc.im == c1.im - c2.im);
auto ctc = c1 * c2;
assert(approxEqual(abs(ctc), abs(c1)*abs(c2), EPS));
assert(approxEqual(arg(ctc), arg(c1)+arg(c2), EPS));
auto cdc = c1 / c2;
assert(approxEqual(abs(cdc), abs(c1)/abs(c2), EPS));
assert(approxEqual(arg(cdc), arg(c1)-arg(c2), EPS));
auto cec = c1^^c2;
assert(approxEqual(cec.re, 0.11524131979943839881, EPS));
assert(approxEqual(cec.im, 0.21870790452746026696, EPS));
// Check complex-real operations.
double a = 123.456;
auto cpr = c1 + a;
assert(cpr.re == c1.re + a);
assert(cpr.im == c1.im);
auto cmr = c1 - a;
assert(cmr.re == c1.re - a);
assert(cmr.im == c1.im);
auto ctr = c1 * a;
assert(ctr.re == c1.re*a);
assert(ctr.im == c1.im*a);
auto cdr = c1 / a;
assert(approxEqual(abs(cdr), abs(c1)/a, EPS));
assert(approxEqual(arg(cdr), arg(c1), EPS));
auto cer = c1^^3.0;
assert(approxEqual(abs(cer), abs(c1)^^3, EPS));
assert(approxEqual(arg(cer), arg(c1)*3, EPS));
auto rpc = a + c1;
assert(rpc == cpr);
auto rmc = a - c1;
assert(rmc.re == a-c1.re);
assert(rmc.im == -c1.im);
auto rtc = a * c1;
assert(rtc == ctr);
auto rdc = a / c1;
assert(approxEqual(abs(rdc), a/abs(c1), EPS));
assert(approxEqual(arg(rdc), -arg(c1), EPS));
rdc = a / c2;
assert(approxEqual(abs(rdc), a/abs(c2), EPS));
assert(approxEqual(arg(rdc), -arg(c2), EPS));
auto rec1a = 1.0 ^^ c1;
assert(rec1a.re == 1.0);
assert(rec1a.im == 0.0);
auto rec2a = 1.0 ^^ c2;
assert(rec2a.re == 1.0);
assert(rec2a.im == 0.0);
auto rec1b = (-1.0) ^^ c1;
assert(approxEqual(abs(rec1b), std.math.exp(-PI * c1.im), EPS));
auto arg1b = arg(rec1b);
/* The argument _should_ be PI, but floating-point rounding error
* means that in fact the imaginary part is very slightly negative.
*/
assert(approxEqual(arg1b, PI, EPS) || approxEqual(arg1b, -PI, EPS));
auto rec2b = (-1.0) ^^ c2;
assert(approxEqual(abs(rec2b), std.math.exp(-2 * PI), EPS));
assert(approxEqual(arg(rec2b), PI_2, EPS));
auto rec3a = 0.79 ^^ complex(6.8, 5.7);
auto rec3b = complex(0.79, 0.0) ^^ complex(6.8, 5.7);
assert(approxEqual(rec3a.re, rec3b.re, EPS));
assert(approxEqual(rec3a.im, rec3b.im, EPS));
auto rec4a = (-0.79) ^^ complex(6.8, 5.7);
auto rec4b = complex(-0.79, 0.0) ^^ complex(6.8, 5.7);
assert(approxEqual(rec4a.re, rec4b.re, EPS));
assert(approxEqual(rec4a.im, rec4b.im, EPS));
auto rer = a ^^ complex(2.0, 0.0);
auto rcheck = a ^^ 2.0;
static assert(is(typeof(rcheck) == double));
assert(feqrel(rer.re, rcheck) == double.mant_dig);
assert(isIdentical(rer.re, rcheck));
assert(rer.im == 0.0);
auto rer2 = (-a) ^^ complex(2.0, 0.0);
rcheck = (-a) ^^ 2.0;
assert(feqrel(rer2.re, rcheck) == double.mant_dig);
assert(isIdentical(rer2.re, rcheck));
assert(approxEqual(rer2.im, 0.0, EPS));
auto rer3 = (-a) ^^ complex(-2.0, 0.0);
rcheck = (-a) ^^ (-2.0);
assert(feqrel(rer3.re, rcheck) == double.mant_dig);
assert(isIdentical(rer3.re, rcheck));
assert(approxEqual(rer3.im, 0.0, EPS));
auto rer4 = a ^^ complex(-2.0, 0.0);
rcheck = a ^^ (-2.0);
assert(feqrel(rer4.re, rcheck) == double.mant_dig);
assert(isIdentical(rer4.re, rcheck));
assert(rer4.im == 0.0);
// Check Complex-int operations.
foreach (i; 0 .. 6)
{
auto cei = c1^^i;
assert(approxEqual(abs(cei), abs(c1)^^i, EPS));
// Use cos() here to deal with arguments that go outside
// the (-pi,pi] interval (only an issue for i>3).
assert(approxEqual(std.math.cos(arg(cei)), std.math.cos(arg(c1)*i), EPS));
}
// Check operations between different complex types.
auto cf = Complex!float(1.0, 1.0);
auto cr = Complex!real(1.0, 1.0);
auto c1pcf = c1 + cf;
auto c1pcr = c1 + cr;
static assert(is(typeof(c1pcf) == Complex!double));
static assert(is(typeof(c1pcr) == Complex!real));
assert(c1pcf.re == c1pcr.re);
assert(c1pcf.im == c1pcr.im);
auto c1c = c1;
auto c2c = c2;
c1c /= c1;
assert(approxEqual(c1c.re, 1.0, EPS));
assert(approxEqual(c1c.im, 0.0, EPS));
c1c = c1;
c1c /= c2;
assert(approxEqual(c1c.re, 0.588235, EPS));
assert(approxEqual(c1c.im, -0.352941, EPS));
c2c /= c1;
assert(approxEqual(c2c.re, 1.25, EPS));
assert(approxEqual(c2c.im, 0.75, EPS));
c2c = c2;
c2c /= c2;
assert(approxEqual(c2c.re, 1.0, EPS));
assert(approxEqual(c2c.im, 0.0, EPS));
}
@safe pure nothrow unittest
{
// Initialization
Complex!double a = 1;
assert(a.re == 1 && a.im == 0);
Complex!double b = 1.0;
assert(b.re == 1.0 && b.im == 0);
Complex!double c = Complex!real(1.0, 2);
assert(c.re == 1.0 && c.im == 2);
}
@safe pure nothrow unittest
{
// Assignments and comparisons
Complex!double z;
z = 1;
assert(z == 1);
assert(z.re == 1.0 && z.im == 0.0);
z = 2.0;
assert(z == 2.0);
assert(z.re == 2.0 && z.im == 0.0);
z = 1.0L;
assert(z == 1.0L);
assert(z.re == 1.0 && z.im == 0.0);
auto w = Complex!real(1.0, 1.0);
z = w;
assert(z == w);
assert(z.re == 1.0 && z.im == 1.0);
auto c = Complex!float(2.0, 2.0);
z = c;
assert(z == c);
assert(z.re == 2.0 && z.im == 2.0);
}
/* Makes Complex!(Complex!T) fold to Complex!T.
The rationale for this is that just like the real line is a
subspace of the complex plane, the complex plane is a subspace
of itself. Example of usage:
---
Complex!T addI(T)(T x)
{
return x + Complex!T(0.0, 1.0);
}
---
The above will work if T is both real and complex.
*/
template Complex(T)
if (is(T R == Complex!R))
{
alias Complex = T;
}
@safe pure nothrow unittest
{
static assert(is(Complex!(Complex!real) == Complex!real));
Complex!T addI(T)(T x)
{
return x + Complex!T(0.0, 1.0);
}
auto z1 = addI(1.0);
assert(z1.re == 1.0 && z1.im == 1.0);
enum one = Complex!double(1.0, 0.0);
auto z2 = addI(one);
assert(z1 == z2);
}
/**
Params: z = A complex number.
Returns: The absolute value (or modulus) of `z`.
*/
T abs(T)(Complex!T z) @safe pure nothrow @nogc
{
import std.math : hypot;
return hypot(z.re, z.im);
}
///
@safe pure nothrow unittest
{
static import std.math;
assert(abs(complex(1.0)) == 1.0);
assert(abs(complex(0.0, 1.0)) == 1.0);
assert(abs(complex(1.0L, -2.0L)) == std.math.sqrt(5.0L));
}
/++
Params:
z = A complex number.
x = A real number.
Returns: The squared modulus of `z`.
For genericity, if called on a real number, returns its square.
+/
T sqAbs(T)(Complex!T z) @safe pure nothrow @nogc
{
return z.re*z.re + z.im*z.im;
}
///
@safe pure nothrow unittest
{
import std.math;
assert(sqAbs(complex(0.0)) == 0.0);
assert(sqAbs(complex(1.0)) == 1.0);
assert(sqAbs(complex(0.0, 1.0)) == 1.0);
assert(approxEqual(sqAbs(complex(1.0L, -2.0L)), 5.0L));
assert(approxEqual(sqAbs(complex(-3.0L, 1.0L)), 10.0L));
assert(approxEqual(sqAbs(complex(1.0f,-1.0f)), 2.0f));
}
/// ditto
T sqAbs(T)(T x) @safe pure nothrow @nogc
if (isFloatingPoint!T)
{
return x*x;
}
@safe pure nothrow unittest
{
import std.math;
assert(sqAbs(0.0) == 0.0);
assert(sqAbs(-1.0) == 1.0);
assert(approxEqual(sqAbs(-3.0L), 9.0L));
assert(approxEqual(sqAbs(-5.0f), 25.0f));
}
/**
Params: z = A complex number.
Returns: The argument (or phase) of `z`.
*/
T arg(T)(Complex!T z) @safe pure nothrow @nogc
{
import std.math : atan2;
return atan2(z.im, z.re);
}
///
@safe pure nothrow unittest
{
import std.math;
assert(arg(complex(1.0)) == 0.0);
assert(arg(complex(0.0L, 1.0L)) == PI_2);
assert(arg(complex(1.0L, 1.0L)) == PI_4);
}
/**
Params: z = A complex number.
Returns: The complex conjugate of `z`.
*/
Complex!T conj(T)(Complex!T z) @safe pure nothrow @nogc
{
return Complex!T(z.re, -z.im);
}
///
@safe pure nothrow unittest
{
assert(conj(complex(1.0)) == complex(1.0));
assert(conj(complex(1.0, 2.0)) == complex(1.0, -2.0));
}
/**
Constructs a complex number given its absolute value and argument.
Params:
modulus = The modulus
argument = The argument
Returns: The complex number with the given modulus and argument.
*/
Complex!(CommonType!(T, U)) fromPolar(T, U)(T modulus, U argument)
@safe pure nothrow @nogc
{
import std.math : sin, cos;
return Complex!(CommonType!(T,U))
(modulus*cos(argument), modulus*sin(argument));
}
///
@safe pure nothrow unittest
{
import std.math;
auto z = fromPolar(std.math.sqrt(2.0), PI_4);
assert(approxEqual(z.re, 1.0L, real.epsilon));
assert(approxEqual(z.im, 1.0L, real.epsilon));
}
/**
Trigonometric functions on complex numbers.
Params: z = A complex number.
Returns: The sine and cosine of `z`, respectively.
*/
Complex!T sin(T)(Complex!T z) @safe pure nothrow @nogc
{
import std.math : expi, coshisinh;
auto cs = expi(z.re);
auto csh = coshisinh(z.im);
return typeof(return)(cs.im * csh.re, cs.re * csh.im);
}
///
@safe pure nothrow unittest
{
static import std.math;
assert(sin(complex(0.0)) == 0.0);
assert(sin(complex(2.0L, 0)) == std.math.sin(2.0L));
}
/// ditto
Complex!T cos(T)(Complex!T z) @safe pure nothrow @nogc
{
import std.math : expi, coshisinh;
auto cs = expi(z.re);
auto csh = coshisinh(z.im);
return typeof(return)(cs.re * csh.re, - cs.im * csh.im);
}
///
@safe pure nothrow unittest
{
import std.complex;
import std.math;
assert(cos(complex(0.0)) == 1.0);
assert(cos(complex(1.3L)) == std.math.cos(1.3L));
auto c1 = cos(complex(0, 5.2L));
auto c2 = cosh(5.2L);
assert(feqrel(c1.re, c2.re) >= real.mant_dig - 1 &&
feqrel(c1.im, c2.im) >= real.mant_dig - 1);
}
/**
Params: y = A real number.
Returns: The value of cos(y) + i sin(y).
Note:
$(D expi) is included here for convenience and for easy migration of code
that uses $(REF _expi, std,math). Unlike $(REF _expi, std,math), which uses the
x87 $(I fsincos) instruction when possible, this function is no faster
than calculating cos(y) and sin(y) separately.
*/
Complex!real expi(real y) @trusted pure nothrow @nogc
{
import std.math : cos, sin;
return Complex!real(cos(y), sin(y));
}
///
@safe pure nothrow unittest
{
static import std.math;
assert(expi(1.3e5L) == complex(std.math.cos(1.3e5L), std.math.sin(1.3e5L)));
assert(expi(0.0L) == 1.0L);
auto z1 = expi(1.234);
auto z2 = std.math.expi(1.234);
assert(z1.re == z2.re && z1.im == z2.im);
}
/**
Params: z = A complex number.
Returns: The square root of `z`.
*/
Complex!T sqrt(T)(Complex!T z) @safe pure nothrow @nogc
{
static import std.math;
typeof(return) c;
real x,y,w,r;
if (z == 0)
{
c = typeof(return)(0, 0);
}
else
{
real z_re = z.re;
real z_im = z.im;
x = std.math.fabs(z_re);
y = std.math.fabs(z_im);
if (x >= y)
{
r = y / x;
w = std.math.sqrt(x)
* std.math.sqrt(0.5 * (1 + std.math.sqrt(1 + r * r)));
}
else
{
r = x / y;
w = std.math.sqrt(y)
* std.math.sqrt(0.5 * (r + std.math.sqrt(1 + r * r)));
}
if (z_re >= 0)
{
c = typeof(return)(w, z_im / (w + w));
}
else
{
if (z_im < 0)
w = -w;
c = typeof(return)(z_im / (w + w), w);
}
}
return c;
}
///
@safe pure nothrow unittest
{
static import std.math;
assert(sqrt(complex(0.0)) == 0.0);
assert(sqrt(complex(1.0L, 0)) == std.math.sqrt(1.0L));
assert(sqrt(complex(-1.0L, 0)) == complex(0, 1.0L));
}
@safe pure nothrow unittest
{
import std.math : approxEqual;
auto c1 = complex(1.0, 1.0);
auto c2 = Complex!double(0.5, 2.0);
auto c1s = sqrt(c1);
assert(approxEqual(c1s.re, 1.09868411));
assert(approxEqual(c1s.im, 0.45508986));
auto c2s = sqrt(c2);
assert(approxEqual(c2s.re, 1.1317134));
assert(approxEqual(c2s.im, 0.8836155));
}
// Issue 10881: support %f formatting of complex numbers
@safe unittest
{
import std.format : format;
auto x = complex(1.2, 3.4);
assert(format("%.2f", x) == "1.20+3.40i");
auto y = complex(1.2, -3.4);
assert(format("%.2f", y) == "1.20-3.40i");
}
@safe unittest
{
// Test wide string formatting
import std.format;
wstring wformat(T)(string format, Complex!T c)
{
import std.array : appender;
auto w = appender!wstring();
auto n = formattedWrite(w, format, c);
return w.data;
}
auto x = complex(1.2, 3.4);
assert(wformat("%.2f", x) == "1.20+3.40i"w);
}
@safe unittest
{
// Test ease of use (vanilla toString() should be supported)
assert(complex(1.2, 3.4).toString() == "1.2+3.4i");
}