Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
// Written in the D programming language.

/** This module contains the $(LREF Complex) type, which is used to represent
    _complex numbers, along with related mathematical operations and functions.

    $(LREF Complex) will eventually
    $(DDLINK deprecate, Deprecated Features, replace)
    the built-in types $(D cfloat), $(D cdouble), $(D creal), $(D ifloat),
    $(D idouble), and $(D ireal).

    Authors:    Lars Tandle Kyllingstad, Don Clugston
    Copyright:  Copyright (c) 2010, Lars T. Kyllingstad.
    License:    $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0)
    Source:     $(PHOBOSSRC std/_complex.d)
*/
module std.complex;

import std.traits;

/** Helper function that returns a _complex number with the specified
    real and imaginary parts.

    Params:
        R = (template parameter) type of real part of complex number
        I = (template parameter) type of imaginary part of complex number

        re = real part of complex number to be constructed
        im = (optional) imaginary part of complex number, 0 if omitted.

    Returns:
        $(D Complex) instance with real and imaginary parts set
        to the values provided as input.  If neither $(D re) nor
        $(D im) are floating-point numbers, the return type will
        be $(D Complex!double).  Otherwise, the return type is
        deduced using $(D std.traits.CommonType!(R, I)).
*/
auto complex(R)(R re)  @safe pure nothrow @nogc
if (is(R : double))
{
    static if (isFloatingPoint!R)
        return Complex!R(re, 0);
    else
        return Complex!double(re, 0);
}

/// ditto
auto complex(R, I)(R re, I im)  @safe pure nothrow @nogc
if (is(R : double) && is(I : double))
{
    static if (isFloatingPoint!R || isFloatingPoint!I)
        return Complex!(CommonType!(R, I))(re, im);
    else
        return Complex!double(re, im);
}

///
@safe pure nothrow unittest
{
    auto a = complex(1.0);
    static assert(is(typeof(a) == Complex!double));
    assert(a.re == 1.0);
    assert(a.im == 0.0);

    auto b = complex(2.0L);
    static assert(is(typeof(b) == Complex!real));
    assert(b.re == 2.0L);
    assert(b.im == 0.0L);

    auto c = complex(1.0, 2.0);
    static assert(is(typeof(c) == Complex!double));
    assert(c.re == 1.0);
    assert(c.im == 2.0);

    auto d = complex(3.0, 4.0L);
    static assert(is(typeof(d) == Complex!real));
    assert(d.re == 3.0);
    assert(d.im == 4.0L);

    auto e = complex(1);
    static assert(is(typeof(e) == Complex!double));
    assert(e.re == 1);
    assert(e.im == 0);

    auto f = complex(1L, 2);
    static assert(is(typeof(f) == Complex!double));
    assert(f.re == 1L);
    assert(f.im == 2);

    auto g = complex(3, 4.0L);
    static assert(is(typeof(g) == Complex!real));
    assert(g.re == 3);
    assert(g.im == 4.0L);
}


/** A complex number parametrised by a type $(D T), which must be either
    $(D float), $(D double) or $(D real).
*/
struct Complex(T)
if (isFloatingPoint!T)
{
    import std.format : FormatSpec;
    import std.range.primitives : isOutputRange;

    /** The real part of the number. */
    T re;

    /** The imaginary part of the number. */
    T im;

    /** Converts the complex number to a string representation.

    The second form of this function is usually not called directly;
    instead, it is used via $(REF format, std,string), as shown in the examples
    below.  Supported format characters are 'e', 'f', 'g', 'a', and 's'.

    See the $(MREF std, format) and $(REF format, std,string)
    documentation for more information.
    */
    string toString() const @safe /* TODO: pure nothrow */
    {
        import std.exception : assumeUnique;
        char[] buf;
        buf.reserve(100);
        auto fmt = FormatSpec!char("%s");
        toString((const(char)[] s) { buf ~= s; }, fmt);
        static trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); }
        return trustedAssumeUnique(buf);
    }

    static if (is(T == double))
    ///
    @safe unittest
    {
        auto c = complex(1.2, 3.4);

        // Vanilla toString formatting:
        assert(c.toString() == "1.2+3.4i");

        // Formatting with std.string.format specs: the precision and width
        // specifiers apply to both the real and imaginary parts of the
        // complex number.
        import std.format : format;
        assert(format("%.2f", c)  == "1.20+3.40i");
        assert(format("%4.1f", c) == " 1.2+ 3.4i");
    }

    /// ditto
    void toString(Writer, Char)(scope Writer w,
                        FormatSpec!Char formatSpec) const
        if (isOutputRange!(Writer, const(Char)[]))
    {
        import std.format : formatValue;
        import std.math : signbit;
        import std.range.primitives : put;
        formatValue(w, re, formatSpec);
        if (signbit(im) == 0)
           put(w, "+");
        formatValue(w, im, formatSpec);
        put(w, "i");
    }

@safe pure nothrow @nogc:

    /** Construct a complex number with the specified real and
    imaginary parts. In the case where a single argument is passed
    that is not complex, the imaginary part of the result will be
    zero.
    */
    this(R : T)(Complex!R z)
    {
        re = z.re;
        im = z.im;
    }

    /// ditto
    this(Rx : T, Ry : T)(Rx x, Ry y)
    {
        re = x;
        im = y;
    }

    /// ditto
    this(R : T)(R r)
    {
        re = r;
        im = 0;
    }

    // ASSIGNMENT OPERATORS

    // this = complex
    ref Complex opAssign(R : T)(Complex!R z)
    {
        re = z.re;
        im = z.im;
        return this;
    }

    // this = numeric
    ref Complex opAssign(R : T)(R r)
    {
        re = r;
        im = 0;
        return this;
    }

    // COMPARISON OPERATORS

    // this == complex
    bool opEquals(R : T)(Complex!R z) const
    {
        return re == z.re && im == z.im;
    }

    // this == numeric
    bool opEquals(R : T)(R r) const
    {
        return re == r && im == 0;
    }

    // UNARY OPERATORS

    // +complex
    Complex opUnary(string op)() const
        if (op == "+")
    {
        return this;
    }

    // -complex
    Complex opUnary(string op)() const
        if (op == "-")
    {
        return Complex(-re, -im);
    }

    // BINARY OPERATORS

    // complex op complex
    Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const
    {
        alias C = typeof(return);
        auto w = C(this.re, this.im);
        return w.opOpAssign!(op)(z);
    }

    // complex op numeric
    Complex!(CommonType!(T,R)) opBinary(string op, R)(R r) const
        if (isNumeric!R)
    {
        alias C = typeof(return);
        auto w = C(this.re, this.im);
        return w.opOpAssign!(op)(r);
    }

    // numeric + complex,  numeric * complex
    Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
        if ((op == "+" || op == "*") && (isNumeric!R))
    {
        return opBinary!(op)(r);
    }

    // numeric - complex
    Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
        if (op == "-" && isNumeric!R)
    {
        return Complex(r - re, -im);
    }

    // numeric / complex
    Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
        if (op == "/" && isNumeric!R)
    {
        import std.math : fabs;
        typeof(return) w = void;
        if (fabs(re) < fabs(im))
        {
            immutable ratio = re/im;
            immutable rdivd = r/(re*ratio + im);

            w.re = rdivd*ratio;
            w.im = -rdivd;
        }
        else
        {
            immutable ratio = im/re;
            immutable rdivd = r/(re + im*ratio);

            w.re = rdivd;
            w.im = -rdivd*ratio;
        }

        return w;
    }

    // numeric ^^ complex
    Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R lhs) const
        if (op == "^^" && isNumeric!R)
    {
        import std.math : cos, exp, log, sin, PI;
        Unqual!(CommonType!(T, R)) ab = void, ar = void;

        if (lhs >= 0)
        {
            // r = lhs
            // theta = 0
            ab = lhs ^^ this.re;
            ar = log(lhs) * this.im;
        }
        else
        {
            // r = -lhs
            // theta = PI
            ab = (-lhs) ^^ this.re * exp(-PI * this.im);
            ar = PI * this.re + log(-lhs) * this.im;
        }

        return typeof(return)(ab * cos(ar), ab * sin(ar));
    }

    // OP-ASSIGN OPERATORS

    // complex += complex,  complex -= complex
    ref Complex opOpAssign(string op, C)(C z)
        if ((op == "+" || op == "-") && is(C R == Complex!R))
    {
        mixin ("re "~op~"= z.re;");
        mixin ("im "~op~"= z.im;");
        return this;
    }

    // complex *= complex
    ref Complex opOpAssign(string op, C)(C z)
        if (op == "*" && is(C R == Complex!R))
    {
        auto temp = re*z.re - im*z.im;
        im = im*z.re + re*z.im;
        re = temp;
        return this;
    }

    // complex /= complex
    ref Complex opOpAssign(string op, C)(C z)
        if (op == "/" && is(C R == Complex!R))
    {
        import std.math : fabs;
        if (fabs(z.re) < fabs(z.im))
        {
            immutable ratio = z.re/z.im;
            immutable denom = z.re*ratio + z.im;

            immutable temp = (re*ratio + im)/denom;
            im = (im*ratio - re)/denom;
            re = temp;
        }
        else
        {
            immutable ratio = z.im/z.re;
            immutable denom = z.re + z.im*ratio;

            immutable temp = (re + im*ratio)/denom;
            im = (im - re*ratio)/denom;
            re = temp;
        }
        return this;
    }

    // complex ^^= complex
    ref Complex opOpAssign(string op, C)(C z)
        if (op == "^^" && is(C R == Complex!R))
    {
        import std.math : exp, log, cos, sin;
        immutable r = abs(this);
        immutable t = arg(this);
        immutable ab = r^^z.re * exp(-t*z.im);
        immutable ar = t*z.re + log(r)*z.im;

        re = ab*cos(ar);
        im = ab*sin(ar);
        return this;
    }

    // complex += numeric,  complex -= numeric
    ref Complex opOpAssign(string op, U : T)(U a)
        if (op == "+" || op == "-")
    {
        mixin ("re "~op~"= a;");
        return this;
    }

    // complex *= numeric,  complex /= numeric
    ref Complex opOpAssign(string op, U : T)(U a)
        if (op == "*" || op == "/")
    {
        mixin ("re "~op~"= a;");
        mixin ("im "~op~"= a;");
        return this;
    }

    // complex ^^= real
    ref Complex opOpAssign(string op, R)(R r)
        if (op == "^^" && isFloatingPoint!R)
    {
        import std.math : cos, sin;
        immutable ab = abs(this)^^r;
        immutable ar = arg(this)*r;
        re = ab*cos(ar);
        im = ab*sin(ar);
        return this;
    }

    // complex ^^= int
    ref Complex opOpAssign(string op, U)(U i)
        if (op == "^^" && isIntegral!U)
    {
        switch (i)
        {
        case 0:
            re = 1.0;
            im = 0.0;
            break;
        case 1:
            // identity; do nothing
            break;
        case 2:
            this *= this;
            break;
        case 3:
            auto z = this;
            this *= z;
            this *= z;
            break;
        default:
            this ^^= cast(real) i;
        }
        return this;
    }
}

@safe pure nothrow unittest
{
    import std.complex;
    import std.math;

    enum EPS = double.epsilon;
    auto c1 = complex(1.0, 1.0);

    // Check unary operations.
    auto c2 = Complex!double(0.5, 2.0);

    assert(c2 == +c2);

    assert((-c2).re == -(c2.re));
    assert((-c2).im == -(c2.im));
    assert(c2 == -(-c2));

    // Check complex-complex operations.
    auto cpc = c1 + c2;
    assert(cpc.re == c1.re + c2.re);
    assert(cpc.im == c1.im + c2.im);

    auto cmc = c1 - c2;
    assert(cmc.re == c1.re - c2.re);
    assert(cmc.im == c1.im - c2.im);

    auto ctc = c1 * c2;
    assert(approxEqual(abs(ctc), abs(c1)*abs(c2), EPS));
    assert(approxEqual(arg(ctc), arg(c1)+arg(c2), EPS));

    auto cdc = c1 / c2;
    assert(approxEqual(abs(cdc), abs(c1)/abs(c2), EPS));
    assert(approxEqual(arg(cdc), arg(c1)-arg(c2), EPS));

    auto cec = c1^^c2;
    assert(approxEqual(cec.re, 0.11524131979943839881, EPS));
    assert(approxEqual(cec.im, 0.21870790452746026696, EPS));

    // Check complex-real operations.
    double a = 123.456;

    auto cpr = c1 + a;
    assert(cpr.re == c1.re + a);
    assert(cpr.im == c1.im);

    auto cmr = c1 - a;
    assert(cmr.re == c1.re - a);
    assert(cmr.im == c1.im);

    auto ctr = c1 * a;
    assert(ctr.re == c1.re*a);
    assert(ctr.im == c1.im*a);

    auto cdr = c1 / a;
    assert(approxEqual(abs(cdr), abs(c1)/a, EPS));
    assert(approxEqual(arg(cdr), arg(c1), EPS));

    auto cer = c1^^3.0;
    assert(approxEqual(abs(cer), abs(c1)^^3, EPS));
    assert(approxEqual(arg(cer), arg(c1)*3, EPS));

    auto rpc = a + c1;
    assert(rpc == cpr);

    auto rmc = a - c1;
    assert(rmc.re == a-c1.re);
    assert(rmc.im == -c1.im);

    auto rtc = a * c1;
    assert(rtc == ctr);

    auto rdc = a / c1;
    assert(approxEqual(abs(rdc), a/abs(c1), EPS));
    assert(approxEqual(arg(rdc), -arg(c1), EPS));

    rdc = a / c2;
    assert(approxEqual(abs(rdc), a/abs(c2), EPS));
    assert(approxEqual(arg(rdc), -arg(c2), EPS));

    auto rec1a = 1.0 ^^ c1;
    assert(rec1a.re == 1.0);
    assert(rec1a.im == 0.0);

    auto rec2a = 1.0 ^^ c2;
    assert(rec2a.re == 1.0);
    assert(rec2a.im == 0.0);

    auto rec1b = (-1.0) ^^ c1;
    assert(approxEqual(abs(rec1b), std.math.exp(-PI * c1.im), EPS));
    auto arg1b = arg(rec1b);
    /* The argument _should_ be PI, but floating-point rounding error
     * means that in fact the imaginary part is very slightly negative.
     */
    assert(approxEqual(arg1b, PI, EPS) || approxEqual(arg1b, -PI, EPS));

    auto rec2b = (-1.0) ^^ c2;
    assert(approxEqual(abs(rec2b), std.math.exp(-2 * PI), EPS));
    assert(approxEqual(arg(rec2b), PI_2, EPS));

    auto rec3a = 0.79 ^^ complex(6.8, 5.7);
    auto rec3b = complex(0.79, 0.0) ^^ complex(6.8, 5.7);
    assert(approxEqual(rec3a.re, rec3b.re, EPS));
    assert(approxEqual(rec3a.im, rec3b.im, EPS));

    auto rec4a = (-0.79) ^^ complex(6.8, 5.7);
    auto rec4b = complex(-0.79, 0.0) ^^ complex(6.8, 5.7);
    assert(approxEqual(rec4a.re, rec4b.re, EPS));
    assert(approxEqual(rec4a.im, rec4b.im, EPS));

    auto rer = a ^^ complex(2.0, 0.0);
    auto rcheck = a ^^ 2.0;
    static assert(is(typeof(rcheck) == double));
    assert(feqrel(rer.re, rcheck) == double.mant_dig);
    assert(isIdentical(rer.re, rcheck));
    assert(rer.im == 0.0);

    auto rer2 = (-a) ^^ complex(2.0, 0.0);
    rcheck = (-a) ^^ 2.0;
    assert(feqrel(rer2.re, rcheck) == double.mant_dig);
    assert(isIdentical(rer2.re, rcheck));
    assert(approxEqual(rer2.im, 0.0, EPS));

    auto rer3 = (-a) ^^ complex(-2.0, 0.0);
    rcheck = (-a) ^^ (-2.0);
    assert(feqrel(rer3.re, rcheck) == double.mant_dig);
    assert(isIdentical(rer3.re, rcheck));
    assert(approxEqual(rer3.im, 0.0, EPS));

    auto rer4 = a ^^ complex(-2.0, 0.0);
    rcheck = a ^^ (-2.0);
    assert(feqrel(rer4.re, rcheck) == double.mant_dig);
    assert(isIdentical(rer4.re, rcheck));
    assert(rer4.im == 0.0);

    // Check Complex-int operations.
    foreach (i; 0 .. 6)
    {
        auto cei = c1^^i;
        assert(approxEqual(abs(cei), abs(c1)^^i, EPS));
        // Use cos() here to deal with arguments that go outside
        // the (-pi,pi] interval (only an issue for i>3).
        assert(approxEqual(std.math.cos(arg(cei)), std.math.cos(arg(c1)*i), EPS));
    }

    // Check operations between different complex types.
    auto cf = Complex!float(1.0, 1.0);
    auto cr = Complex!real(1.0, 1.0);
    auto c1pcf = c1 + cf;
    auto c1pcr = c1 + cr;
    static assert(is(typeof(c1pcf) == Complex!double));
    static assert(is(typeof(c1pcr) == Complex!real));
    assert(c1pcf.re == c1pcr.re);
    assert(c1pcf.im == c1pcr.im);

    auto c1c = c1;
    auto c2c = c2;

    c1c /= c1;
    assert(approxEqual(c1c.re, 1.0, EPS));
    assert(approxEqual(c1c.im, 0.0, EPS));

    c1c = c1;
    c1c /= c2;
    assert(approxEqual(c1c.re, 0.588235, EPS));
    assert(approxEqual(c1c.im, -0.352941, EPS));

    c2c /= c1;
    assert(approxEqual(c2c.re, 1.25, EPS));
    assert(approxEqual(c2c.im, 0.75, EPS));

    c2c = c2;
    c2c /= c2;
    assert(approxEqual(c2c.re, 1.0, EPS));
    assert(approxEqual(c2c.im, 0.0, EPS));
}

@safe pure nothrow unittest
{
    // Initialization
    Complex!double a = 1;
    assert(a.re == 1 && a.im == 0);
    Complex!double b = 1.0;
    assert(b.re == 1.0 && b.im == 0);
    Complex!double c = Complex!real(1.0, 2);
    assert(c.re == 1.0 && c.im == 2);
}

@safe pure nothrow unittest
{
    // Assignments and comparisons
    Complex!double z;

    z = 1;
    assert(z == 1);
    assert(z.re == 1.0  &&  z.im == 0.0);

    z = 2.0;
    assert(z == 2.0);
    assert(z.re == 2.0  &&  z.im == 0.0);

    z = 1.0L;
    assert(z == 1.0L);
    assert(z.re == 1.0  &&  z.im == 0.0);

    auto w = Complex!real(1.0, 1.0);
    z = w;
    assert(z == w);
    assert(z.re == 1.0  &&  z.im == 1.0);

    auto c = Complex!float(2.0, 2.0);
    z = c;
    assert(z == c);
    assert(z.re == 2.0  &&  z.im == 2.0);
}


/*  Makes Complex!(Complex!T) fold to Complex!T.

    The rationale for this is that just like the real line is a
    subspace of the complex plane, the complex plane is a subspace
    of itself.  Example of usage:
    ---
    Complex!T addI(T)(T x)
    {
        return x + Complex!T(0.0, 1.0);
    }
    ---
    The above will work if T is both real and complex.
*/
template Complex(T)
if (is(T R == Complex!R))
{
    alias Complex = T;
}

@safe pure nothrow unittest
{
    static assert(is(Complex!(Complex!real) == Complex!real));

    Complex!T addI(T)(T x)
    {
        return x + Complex!T(0.0, 1.0);
    }

    auto z1 = addI(1.0);
    assert(z1.re == 1.0 && z1.im == 1.0);

    enum one = Complex!double(1.0, 0.0);
    auto z2 = addI(one);
    assert(z1 == z2);
}


/**
   Params: z = A complex number.
   Returns: The absolute value (or modulus) of `z`.
*/
T abs(T)(Complex!T z) @safe pure nothrow @nogc
{
    import std.math : hypot;
    return hypot(z.re, z.im);
}

///
@safe pure nothrow unittest
{
    static import std.math;
    assert(abs(complex(1.0)) == 1.0);
    assert(abs(complex(0.0, 1.0)) == 1.0);
    assert(abs(complex(1.0L, -2.0L)) == std.math.sqrt(5.0L));
}


/++
   Params:
    z = A complex number.
    x = A real number.
   Returns: The squared modulus of `z`.
   For genericity, if called on a real number, returns its square.
+/
T sqAbs(T)(Complex!T z) @safe pure nothrow @nogc
{
    return z.re*z.re + z.im*z.im;
}

///
@safe pure nothrow unittest
{
    import std.math;
    assert(sqAbs(complex(0.0)) == 0.0);
    assert(sqAbs(complex(1.0)) == 1.0);
    assert(sqAbs(complex(0.0, 1.0)) == 1.0);
    assert(approxEqual(sqAbs(complex(1.0L, -2.0L)), 5.0L));
    assert(approxEqual(sqAbs(complex(-3.0L, 1.0L)), 10.0L));
    assert(approxEqual(sqAbs(complex(1.0f,-1.0f)), 2.0f));
}

/// ditto
T sqAbs(T)(T x) @safe pure nothrow @nogc
if (isFloatingPoint!T)
{
    return x*x;
}

@safe pure nothrow unittest
{
    import std.math;
    assert(sqAbs(0.0) == 0.0);
    assert(sqAbs(-1.0) == 1.0);
    assert(approxEqual(sqAbs(-3.0L), 9.0L));
    assert(approxEqual(sqAbs(-5.0f), 25.0f));
}


/**
 Params: z = A complex number.
 Returns: The argument (or phase) of `z`.
 */
T arg(T)(Complex!T z) @safe pure nothrow @nogc
{
    import std.math : atan2;
    return atan2(z.im, z.re);
}

///
@safe pure nothrow unittest
{
    import std.math;
    assert(arg(complex(1.0)) == 0.0);
    assert(arg(complex(0.0L, 1.0L)) == PI_2);
    assert(arg(complex(1.0L, 1.0L)) == PI_4);
}


/**
  Params: z = A complex number.
  Returns: The complex conjugate of `z`.
*/
Complex!T conj(T)(Complex!T z) @safe pure nothrow @nogc
{
    return Complex!T(z.re, -z.im);
}

///
@safe pure nothrow unittest
{
    assert(conj(complex(1.0)) == complex(1.0));
    assert(conj(complex(1.0, 2.0)) == complex(1.0, -2.0));
}


/**
  Constructs a complex number given its absolute value and argument.
  Params:
    modulus = The modulus
    argument = The argument
  Returns: The complex number with the given modulus and argument.
*/
Complex!(CommonType!(T, U)) fromPolar(T, U)(T modulus, U argument)
    @safe pure nothrow @nogc
{
    import std.math : sin, cos;
    return Complex!(CommonType!(T,U))
        (modulus*cos(argument), modulus*sin(argument));
}

///
@safe pure nothrow unittest
{
    import std.math;
    auto z = fromPolar(std.math.sqrt(2.0), PI_4);
    assert(approxEqual(z.re, 1.0L, real.epsilon));
    assert(approxEqual(z.im, 1.0L, real.epsilon));
}


/**
    Trigonometric functions on complex numbers.

    Params: z = A complex number.
    Returns: The sine and cosine of `z`, respectively.
*/
Complex!T sin(T)(Complex!T z)  @safe pure nothrow @nogc
{
    import std.math : expi, coshisinh;
    auto cs = expi(z.re);
    auto csh = coshisinh(z.im);
    return typeof(return)(cs.im * csh.re, cs.re * csh.im);
}

///
@safe pure nothrow unittest
{
    static import std.math;
    assert(sin(complex(0.0)) == 0.0);
    assert(sin(complex(2.0L, 0)) == std.math.sin(2.0L));
}


/// ditto
Complex!T cos(T)(Complex!T z)  @safe pure nothrow @nogc
{
    import std.math : expi, coshisinh;
    auto cs = expi(z.re);
    auto csh = coshisinh(z.im);
    return typeof(return)(cs.re * csh.re, - cs.im * csh.im);
}

///
@safe pure nothrow unittest
{
    import std.complex;
    import std.math;
    assert(cos(complex(0.0)) == 1.0);
    assert(cos(complex(1.3L)) == std.math.cos(1.3L));
    auto c1 = cos(complex(0, 5.2L));
    auto c2 = cosh(5.2L);
    assert(feqrel(c1.re, c2.re) >= real.mant_dig - 1 &&
        feqrel(c1.im, c2.im) >= real.mant_dig - 1);
}


/**
    Params: y = A real number.
    Returns: The value of cos(y) + i sin(y).

    Note:
    $(D expi) is included here for convenience and for easy migration of code
    that uses $(REF _expi, std,math).  Unlike $(REF _expi, std,math), which uses the
    x87 $(I fsincos) instruction when possible, this function is no faster
    than calculating cos(y) and sin(y) separately.
*/
Complex!real expi(real y)  @trusted pure nothrow @nogc
{
    import std.math : cos, sin;
    return Complex!real(cos(y), sin(y));
}

///
@safe pure nothrow unittest
{
    static import std.math;

    assert(expi(1.3e5L) == complex(std.math.cos(1.3e5L), std.math.sin(1.3e5L)));
    assert(expi(0.0L) == 1.0L);
    auto z1 = expi(1.234);
    auto z2 = std.math.expi(1.234);
    assert(z1.re == z2.re && z1.im == z2.im);
}


/**
    Params: z = A complex number.
    Returns: The square root of `z`.
*/
Complex!T sqrt(T)(Complex!T z)  @safe pure nothrow @nogc
{
    static import std.math;
    typeof(return) c;
    real x,y,w,r;

    if (z == 0)
    {
        c = typeof(return)(0, 0);
    }
    else
    {
        real z_re = z.re;
        real z_im = z.im;

        x = std.math.fabs(z_re);
        y = std.math.fabs(z_im);
        if (x >= y)
        {
            r = y / x;
            w = std.math.sqrt(x)
                * std.math.sqrt(0.5 * (1 + std.math.sqrt(1 + r * r)));
        }
        else
        {
            r = x / y;
            w = std.math.sqrt(y)
                * std.math.sqrt(0.5 * (r + std.math.sqrt(1 + r * r)));
        }

        if (z_re >= 0)
        {
            c = typeof(return)(w, z_im / (w + w));
        }
        else
        {
            if (z_im < 0)
                w = -w;
            c = typeof(return)(z_im / (w + w), w);
        }
    }
    return c;
}

///
@safe pure nothrow unittest
{
    static import std.math;
    assert(sqrt(complex(0.0)) == 0.0);
    assert(sqrt(complex(1.0L, 0)) == std.math.sqrt(1.0L));
    assert(sqrt(complex(-1.0L, 0)) == complex(0, 1.0L));
}

@safe pure nothrow unittest
{
    import std.math : approxEqual;

    auto c1 = complex(1.0, 1.0);
    auto c2 = Complex!double(0.5, 2.0);

    auto c1s = sqrt(c1);
    assert(approxEqual(c1s.re, 1.09868411));
    assert(approxEqual(c1s.im, 0.45508986));

    auto c2s = sqrt(c2);
    assert(approxEqual(c2s.re, 1.1317134));
    assert(approxEqual(c2s.im, 0.8836155));
}

// Issue 10881: support %f formatting of complex numbers
@safe unittest
{
    import std.format : format;

    auto x = complex(1.2, 3.4);
    assert(format("%.2f", x) == "1.20+3.40i");

    auto y = complex(1.2, -3.4);
    assert(format("%.2f", y) == "1.20-3.40i");
}

@safe unittest
{
    // Test wide string formatting
    import std.format;
    wstring wformat(T)(string format, Complex!T c)
    {
        import std.array : appender;
        auto w = appender!wstring();
        auto n = formattedWrite(w, format, c);
        return w.data;
    }

    auto x = complex(1.2, 3.4);
    assert(wformat("%.2f", x) == "1.20+3.40i"w);
}

@safe unittest
{
    // Test ease of use (vanilla toString() should be supported)
    assert(complex(1.2, 3.4).toString() == "1.2+3.4i");
}