/*
* Copyright: 2014 by Digital Mars
* License: $(LINK2 http://boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: Walter Bright
* Source: $(PHOBOSSRC std/internal/_scopebuffer.d)
*/
module std.internal.scopebuffer;
//debug=ScopeBuffer;
import core.stdc.stdlib : realloc;
import std.traits;
/**************************************
* ScopeBuffer encapsulates using a local array as a temporary buffer.
* It is initialized with a local array that should be large enough for
* most uses. If the need exceeds that size, ScopeBuffer will reallocate
* the data using its `realloc` function.
*
* ScopeBuffer cannot contain more than `(uint.max-16)/2` elements.
*
* ScopeBuffer is an Output Range.
*
* Since ScopeBuffer may store elements of type `T` in `malloc`'d memory,
* those elements are not scanned when the GC collects. This can cause
* memory corruption. Do not use ScopeBuffer when elements of type `T` point
* to the GC heap, except when a `realloc` function is provided which supports this.
*
* Example:
---
import core.stdc.stdio;
import std.internal.scopebuffer;
void main()
{
char[2] buf = void;
auto textbuf = ScopeBuffer!char(buf);
scope(exit) textbuf.free(); // necessary for cleanup
// Put characters and strings into textbuf, verify they got there
textbuf.put('a');
textbuf.put('x');
textbuf.put("abc");
assert(textbuf.length == 5);
assert(textbuf[1 .. 3] == "xa");
assert(textbuf[3] == 'b');
// Can shrink it
textbuf.length = 3;
assert(textbuf[0 .. textbuf.length] == "axa");
assert(textbuf[textbuf.length - 1] == 'a');
assert(textbuf[1 .. 3] == "xa");
textbuf.put('z');
assert(textbuf[] == "axaz");
// Can shrink it to 0 size, and reuse same memory
textbuf.length = 0;
}
---
* It is invalid to access ScopeBuffer's contents when ScopeBuffer goes out of scope.
* Hence, copying the contents are necessary to keep them around:
---
import std.internal.scopebuffer;
string cat(string s1, string s2)
{
char[10] tmpbuf = void;
auto textbuf = ScopeBuffer!char(tmpbuf);
scope(exit) textbuf.free();
textbuf.put(s1);
textbuf.put(s2);
textbuf.put("even more");
return textbuf[].idup;
}
---
* ScopeBuffer is intended for high performance usages in $(D @system) and $(D @trusted) code.
* It is designed to fit into two 64 bit registers, again for high performance use.
* If used incorrectly, memory leaks and corruption can result. Be sure to use
* $(D scope(exit) textbuf.free();) for proper cleanup, and do not refer to a ScopeBuffer
* instance's contents after $(D ScopeBuffer.free()) has been called.
*
* The `realloc` parameter defaults to C's `realloc()`. Another can be supplied to override it.
*
* ScopeBuffer instances may be copied, as in:
---
textbuf = doSomething(textbuf, args);
---
* which can be very efficent, but these must be regarded as a move rather than a copy.
* Additionally, the code between passing and returning the instance must not throw
* exceptions, otherwise when `ScopeBuffer.free()` is called, memory may get corrupted.
*/
@system
struct ScopeBuffer(T, alias realloc = /*core.stdc.stdlib*/.realloc)
if (isAssignable!T &&
!hasElaborateDestructor!T &&
!hasElaborateCopyConstructor!T &&
!hasElaborateAssign!T)
{
import core.exception : onOutOfMemoryError;
import core.stdc.string : memcpy;
/**************************
* Initialize with buf to use as scratch buffer space.
* Params:
* buf = Scratch buffer space, must have length that is even
* Example:
* ---
* ubyte[10] tmpbuf = void;
* auto sbuf = ScopeBuffer!ubyte(tmpbuf);
* ---
* Note:
* If buf was created by the same `realloc` passed as a parameter
* to `ScopeBuffer`, then the contents of `ScopeBuffer` can be extracted without needing
* to copy them, and `ScopeBuffer.free()` will not need to be called.
*/
this(T[] buf)
in
{
assert(!(buf.length & wasResized)); // assure even length of scratch buffer space
assert(buf.length <= uint.max); // because we cast to uint later
}
body
{
this.buf = buf.ptr;
this.bufLen = cast(uint) buf.length;
}
@system unittest
{
ubyte[10] tmpbuf = void;
auto sbuf = ScopeBuffer!ubyte(tmpbuf);
}
/**************************
* Releases any memory used.
* This will invalidate any references returned by the `[]` operator.
* A destructor is not used, because that would make it not POD
* (Plain Old Data) and it could not be placed in registers.
*/
void free()
{
debug(ScopeBuffer) buf[0 .. bufLen] = 0;
if (bufLen & wasResized)
realloc(buf, 0);
buf = null;
bufLen = 0;
used = 0;
}
/************************
* Append element c to the buffer.
* This member function makes `ScopeBuffer` an Output Range.
*/
void put(T c)
{
/* j will get enregistered, while used will not because resize() may change used
*/
const j = used;
if (j == bufLen)
{
assert(j <= (uint.max - 16) / 2);
resize(j * 2 + 16);
}
buf[j] = c;
used = j + 1;
}
/************************
* Append array s to the buffer.
*
* If $(D const(T)) can be converted to $(D T), then put will accept
* $(D const(T)[]) as input. It will accept a $(D T[]) otherwise.
*/
package alias CT = Select!(is(const(T) : T), const(T), T);
/// ditto
void put(CT[] s)
{
const newlen = used + s.length;
assert((cast(ulong) used + s.length) <= uint.max);
const len = bufLen;
if (newlen > len)
{
assert(len <= uint.max / 2);
resize(newlen <= len * 2 ? len * 2 : newlen);
}
buf[used .. newlen] = s[];
used = cast(uint) newlen;
}
/******
* Returns:
* A slice into the temporary buffer.
* Warning:
* The result is only valid until the next `put()` or `ScopeBuffer` goes out of scope.
*/
@system inout(T)[] opSlice(size_t lower, size_t upper) inout
in
{
assert(lower <= bufLen);
assert(upper <= bufLen);
assert(lower <= upper);
}
body
{
return buf[lower .. upper];
}
/// ditto
@system inout(T)[] opSlice() inout
{
assert(used <= bufLen);
return buf[0 .. used];
}
/*******
* Returns:
* The element at index i.
*/
ref inout(T) opIndex(size_t i) inout
{
assert(i < bufLen);
return buf[i];
}
/***
* Returns:
* The number of elements in the `ScopeBuffer`.
*/
@property size_t length() const
{
return used;
}
/***
* Used to shrink the length of the buffer,
* typically to `0` so the buffer can be reused.
* Cannot be used to extend the length of the buffer.
*/
@property void length(size_t i)
in
{
assert(i <= this.used);
}
body
{
this.used = cast(uint) i;
}
alias opDollar = length;
private:
T* buf;
// Using uint instead of size_t so the struct fits in 2 registers in 64 bit code
uint bufLen;
enum wasResized = 1; // this bit is set in bufLen if we control the memory
uint used;
void resize(size_t newsize)
in
{
assert(newsize <= uint.max);
}
body
{
//writefln("%s: oldsize %s newsize %s", id, buf.length, newsize);
newsize |= wasResized;
void *newBuf = realloc((bufLen & wasResized) ? buf : null, newsize * T.sizeof);
if (!newBuf)
onOutOfMemoryError();
if (!(bufLen & wasResized))
{
memcpy(newBuf, buf, used * T.sizeof);
debug(ScopeBuffer) buf[0 .. bufLen] = 0;
}
buf = cast(T*) newBuf;
bufLen = cast(uint) newsize;
/* This function is called only rarely,
* inlining results in poorer register allocation.
*/
version (DigitalMars)
/* With dmd, a fake loop will prevent inlining.
* Using a hack until a language enhancement is implemented.
*/
while (1) { break; }
}
}
@system unittest
{
import core.stdc.stdio;
import std.range;
char[2] tmpbuf = void;
{
// Exercise all the lines of code except for assert(0)'s
auto textbuf = ScopeBuffer!char(tmpbuf);
scope(exit) textbuf.free();
static assert(isOutputRange!(ScopeBuffer!char, char));
textbuf.put('a');
textbuf.put('x');
textbuf.put("abc"); // tickle put([])'s resize
assert(textbuf.length == 5);
assert(textbuf[1 .. 3] == "xa");
assert(textbuf[3] == 'b');
textbuf.length = textbuf.length - 1;
assert(textbuf[0 .. textbuf.length] == "axab");
textbuf.length = 3;
assert(textbuf[0 .. textbuf.length] == "axa");
assert(textbuf[textbuf.length - 1] == 'a');
assert(textbuf[1 .. 3] == "xa");
textbuf.put(cast(dchar)'z');
assert(textbuf[] == "axaz");
textbuf.length = 0; // reset for reuse
assert(textbuf.length == 0);
foreach (char c; "asdf;lasdlfaklsdjfalksdjfa;lksdjflkajsfdasdfkja;sdlfj")
{
textbuf.put(c); // tickle put(c)'s resize
}
assert(textbuf[] == "asdf;lasdlfaklsdjfalksdjfa;lksdjflkajsfdasdfkja;sdlfj");
} // run destructor on textbuf here
}
@system unittest
{
string cat(string s1, string s2)
{
char[10] tmpbuf = void;
auto textbuf = ScopeBuffer!char(tmpbuf);
scope(exit) textbuf.free();
textbuf.put(s1);
textbuf.put(s2);
textbuf.put("even more");
return textbuf[].idup;
}
auto s = cat("hello", "betty");
assert(s == "hellobettyeven more");
}
// const
@system unittest
{
char[10] tmpbuf = void;
auto textbuf = ScopeBuffer!char(tmpbuf);
scope(exit) textbuf.free();
foreach (i; 0 .. 10) textbuf.put('w');
const csb = textbuf;
const elem = csb[3];
const slice0 = csb[0 .. 5];
const slice1 = csb[];
}
/*********************************
* Creates a `ScopeBuffer` instance using type deduction - see
* $(LREF .ScopeBuffer.this) for details.
* Params:
* tmpbuf = the initial buffer to use
* Returns:
* An instance of `ScopeBuffer`.
*/
auto scopeBuffer(T)(T[] tmpbuf)
{
return ScopeBuffer!T(tmpbuf);
}
///
@system unittest
{
ubyte[10] tmpbuf = void;
auto sb = scopeBuffer(tmpbuf);
scope(exit) sb.free();
}
@system unittest
{
ScopeBuffer!(int*) b;
int*[] s;
b.put(s);
ScopeBuffer!char c;
string s1;
char[] s2;
c.put(s1);
c.put(s2);
}