// Written in the D programming language.
/**
This module implements a
$(HTTP erdani.org/publications/cuj-04-2002.html,discriminated union)
type (a.k.a.
$(HTTP en.wikipedia.org/wiki/Tagged_union,tagged union),
$(HTTP en.wikipedia.org/wiki/Algebraic_data_type,algebraic type)).
Such types are useful
for type-uniform binary interfaces, interfacing with scripting
languages, and comfortable exploratory programming.
A $(LREF Variant) object can hold a value of any type, with very few
restrictions (such as `shared` types and noncopyable types). Setting the value
is as immediate as assigning to the `Variant` object. To read back the value of
the appropriate type `T`, use the $(LREF get!T) call. To query whether a
`Variant` currently holds a value of type `T`, use $(LREF peek!T). To fetch the
exact type currently held, call $(LREF type), which returns the `TypeInfo` of
the current value.
In addition to $(LREF Variant), this module also defines the $(LREF Algebraic)
type constructor. Unlike `Variant`, `Algebraic` only allows a finite set of
types, which are specified in the instantiation (e.g. $(D Algebraic!(int,
string)) may only hold an `int` or a `string`).
Credits: Reviewed by Brad Roberts. Daniel Keep provided a detailed code review
prompting the following improvements: (1) better support for arrays; (2) support
for associative arrays; (3) friendlier behavior towards the garbage collector.
Copyright: Copyright Andrei Alexandrescu 2007 - 2015.
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP erdani.org, Andrei Alexandrescu)
Source: $(PHOBOSSRC std/_variant.d)
*/
module std.variant;
import std.meta, std.traits, std.typecons;
///
@system unittest
{
Variant a; // Must assign before use, otherwise exception ensues
// Initialize with an integer; make the type int
Variant b = 42;
assert(b.type == typeid(int));
// Peek at the value
assert(b.peek!(int) !is null && *b.peek!(int) == 42);
// Automatically convert per language rules
auto x = b.get!(real);
// Assign any other type, including other variants
a = b;
a = 3.14;
assert(a.type == typeid(double));
// Implicit conversions work just as with built-in types
assert(a < b);
// Check for convertibility
assert(!a.convertsTo!(int)); // double not convertible to int
// Strings and all other arrays are supported
a = "now I'm a string";
assert(a == "now I'm a string");
// can also assign arrays
a = new int[42];
assert(a.length == 42);
a[5] = 7;
assert(a[5] == 7);
// Can also assign class values
class Foo {}
auto foo = new Foo;
a = foo;
assert(*a.peek!(Foo) == foo); // and full type information is preserved
}
/++
Gives the $(D sizeof) the largest type given.
+/
template maxSize(T...)
{
static if (T.length == 1)
{
enum size_t maxSize = T[0].sizeof;
}
else
{
import std.algorithm.comparison : max;
enum size_t maxSize = max(T[0].sizeof, maxSize!(T[1 .. $]));
}
}
///
@safe unittest
{
static assert(maxSize!(int, long) == 8);
static assert(maxSize!(bool, byte) == 1);
struct Cat { int a, b, c; }
static assert(maxSize!(bool, Cat) == 12);
}
struct This;
private alias This2Variant(V, T...) = AliasSeq!(ReplaceType!(This, V, T));
/**
* Back-end type seldom used directly by user
* code. Two commonly-used types using $(D VariantN) are:
*
* $(OL $(LI $(LREF Algebraic): A closed discriminated union with a
* limited type universe (e.g., $(D Algebraic!(int, double,
* string)) only accepts these three types and rejects anything
* else).) $(LI $(LREF Variant): An open discriminated union allowing an
* unbounded set of types. If any of the types in the $(D Variant)
* are larger than the largest built-in type, they will automatically
* be boxed. This means that even large types will only be the size
* of a pointer within the $(D Variant), but this also implies some
* overhead. $(D Variant) can accommodate all primitive types and
* all user-defined types.))
*
* Both $(D Algebraic) and $(D Variant) share $(D
* VariantN)'s interface. (See their respective documentations below.)
*
* $(D VariantN) is a discriminated union type parameterized
* with the largest size of the types stored ($(D maxDataSize))
* and with the list of allowed types ($(D AllowedTypes)). If
* the list is empty, then any type up of size up to $(D
* maxDataSize) (rounded up for alignment) can be stored in a
* $(D VariantN) object without being boxed (types larger
* than this will be boxed).
*
*/
struct VariantN(size_t maxDataSize, AllowedTypesParam...)
{
/**
The list of allowed types. If empty, any type is allowed.
*/
alias AllowedTypes = This2Variant!(VariantN, AllowedTypesParam);
private:
// Compute the largest practical size from maxDataSize
struct SizeChecker
{
int function() fptr;
ubyte[maxDataSize] data;
}
enum size = SizeChecker.sizeof - (int function()).sizeof;
/** Tells whether a type $(D T) is statically _allowed for
* storage inside a $(D VariantN) object by looking
* $(D T) up in $(D AllowedTypes).
*/
public template allowed(T)
{
enum bool allowed
= is(T == VariantN)
||
//T.sizeof <= size &&
(AllowedTypes.length == 0 || staticIndexOf!(T, AllowedTypes) >= 0);
}
// Each internal operation is encoded with an identifier. See
// the "handler" function below.
enum OpID { getTypeInfo, get, compare, equals, testConversion, toString,
index, indexAssign, catAssign, copyOut, length,
apply, postblit, destruct }
// state
ptrdiff_t function(OpID selector, ubyte[size]* store, void* data) fptr
= &handler!(void);
union
{
ubyte[size] store;
// conservatively mark the region as pointers
static if (size >= (void*).sizeof)
void*[size / (void*).sizeof] p;
}
// internals
// Handler for an uninitialized value
static ptrdiff_t handler(A : void)(OpID selector, ubyte[size]*, void* parm)
{
switch (selector)
{
case OpID.getTypeInfo:
*cast(TypeInfo *) parm = typeid(A);
break;
case OpID.copyOut:
auto target = cast(VariantN *) parm;
target.fptr = &handler!(A);
// no need to copy the data (it's garbage)
break;
case OpID.compare:
case OpID.equals:
auto rhs = cast(const VariantN *) parm;
return rhs.peek!(A)
? 0 // all uninitialized are equal
: ptrdiff_t.min; // uninitialized variant is not comparable otherwise
case OpID.toString:
string * target = cast(string*) parm;
*target = "<Uninitialized VariantN>";
break;
case OpID.postblit:
case OpID.destruct:
break;
case OpID.get:
case OpID.testConversion:
case OpID.index:
case OpID.indexAssign:
case OpID.catAssign:
case OpID.length:
throw new VariantException(
"Attempt to use an uninitialized VariantN");
default: assert(false, "Invalid OpID");
}
return 0;
}
// Handler for all of a type's operations
static ptrdiff_t handler(A)(OpID selector, ubyte[size]* pStore, void* parm)
{
import std.conv : to;
static A* getPtr(void* untyped)
{
if (untyped)
{
static if (A.sizeof <= size)
return cast(A*) untyped;
else
return *cast(A**) untyped;
}
return null;
}
static ptrdiff_t compare(A* rhsPA, A* zis, OpID selector)
{
static if (is(typeof(*rhsPA == *zis)))
{
if (*rhsPA == *zis)
{
return 0;
}
static if (is(typeof(*zis < *rhsPA)))
{
// Many types (such as any using the default Object opCmp)
// will throw on an invalid opCmp, so do it only
// if the caller requests it.
if (selector == OpID.compare)
return *zis < *rhsPA ? -1 : 1;
else
return ptrdiff_t.min;
}
else
{
// Not equal, and type does not support ordering
// comparisons.
return ptrdiff_t.min;
}
}
else
{
// Type does not support comparisons at all.
return ptrdiff_t.min;
}
}
auto zis = getPtr(pStore);
// Input: TypeInfo object
// Output: target points to a copy of *me, if me was not null
// Returns: true iff the A can be converted to the type represented
// by the incoming TypeInfo
static bool tryPutting(A* src, TypeInfo targetType, void* target)
{
alias UA = Unqual!A;
alias MutaTypes = AliasSeq!(UA, ImplicitConversionTargets!UA);
alias ConstTypes = staticMap!(ConstOf, MutaTypes);
alias SharedTypes = staticMap!(SharedOf, MutaTypes);
alias SharedConstTypes = staticMap!(SharedConstOf, MutaTypes);
alias ImmuTypes = staticMap!(ImmutableOf, MutaTypes);
static if (is(A == immutable))
alias AllTypes = AliasSeq!(ImmuTypes, ConstTypes, SharedConstTypes);
else static if (is(A == shared))
{
static if (is(A == const))
alias AllTypes = SharedConstTypes;
else
alias AllTypes = AliasSeq!(SharedTypes, SharedConstTypes);
}
else
{
static if (is(A == const))
alias AllTypes = ConstTypes;
else
alias AllTypes = AliasSeq!(MutaTypes, ConstTypes);
}
foreach (T ; AllTypes)
{
if (targetType != typeid(T))
continue;
static if (is(typeof(*cast(T*) target = *src)) ||
is(T == const(U), U) ||
is(T == shared(U), U) ||
is(T == shared const(U), U) ||
is(T == immutable(U), U))
{
import std.conv : emplaceRef;
auto zat = cast(T*) target;
if (src)
{
static if (T.sizeof > 0)
assert(target, "target must be non-null");
emplaceRef(*cast(Unqual!T*) zat, *cast(UA*) src);
}
}
else
{
// type T is not constructible from A
if (src)
assert(false, A.stringof);
}
return true;
}
return false;
}
switch (selector)
{
case OpID.getTypeInfo:
*cast(TypeInfo *) parm = typeid(A);
break;
case OpID.copyOut:
auto target = cast(VariantN *) parm;
assert(target);
static if (target.size < A.sizeof)
{
if (target.type.tsize < A.sizeof)
*cast(A**)&target.store = new A;
}
tryPutting(zis, typeid(A), cast(void*) getPtr(&target.store))
|| assert(false);
target.fptr = &handler!(A);
break;
case OpID.get:
auto t = * cast(Tuple!(TypeInfo, void*)*) parm;
return !tryPutting(zis, t[0], t[1]);
case OpID.testConversion:
return !tryPutting(null, *cast(TypeInfo*) parm, null);
case OpID.compare:
case OpID.equals:
auto rhsP = cast(VariantN *) parm;
auto rhsType = rhsP.type;
// Are we the same?
if (rhsType == typeid(A))
{
// cool! Same type!
auto rhsPA = getPtr(&rhsP.store);
return compare(rhsPA, zis, selector);
}
else if (rhsType == typeid(void))
{
// No support for ordering comparisons with
// uninitialized vars
return ptrdiff_t.min;
}
VariantN temp;
// Do I convert to rhs?
if (tryPutting(zis, rhsType, &temp.store))
{
// cool, I do; temp's store contains my data in rhs's type!
// also fix up its fptr
temp.fptr = rhsP.fptr;
// now lhsWithRhsType is a full-blown VariantN of rhs's type
if (selector == OpID.compare)
return temp.opCmp(*rhsP);
else
return temp.opEquals(*rhsP) ? 0 : 1;
}
// Does rhs convert to zis?
auto t = tuple(typeid(A), &temp.store);
if (rhsP.fptr(OpID.get, &rhsP.store, &t) == 0)
{
// cool! Now temp has rhs in my type!
auto rhsPA = getPtr(&temp.store);
return compare(rhsPA, zis, selector);
}
return ptrdiff_t.min; // dunno
case OpID.toString:
auto target = cast(string*) parm;
static if (is(typeof(to!(string)(*zis))))
{
*target = to!(string)(*zis);
break;
}
// TODO: The following test evaluates to true for shared objects.
// Use __traits for now until this is sorted out.
// else static if (is(typeof((*zis).toString)))
else static if (__traits(compiles, {(*zis).toString();}))
{
*target = (*zis).toString();
break;
}
else
{
throw new VariantException(typeid(A), typeid(string));
}
case OpID.index:
auto result = cast(Variant*) parm;
static if (isArray!(A) && !is(Unqual!(typeof(A.init[0])) == void))
{
// array type; input and output are the same VariantN
size_t index = result.convertsTo!(int)
? result.get!(int) : result.get!(size_t);
*result = (*zis)[index];
break;
}
else static if (isAssociativeArray!(A))
{
*result = (*zis)[result.get!(typeof(A.init.keys[0]))];
break;
}
else
{
throw new VariantException(typeid(A), result[0].type);
}
case OpID.indexAssign:
// array type; result comes first, index comes second
auto args = cast(Variant*) parm;
static if (isArray!(A) && is(typeof((*zis)[0] = (*zis)[0])))
{
size_t index = args[1].convertsTo!(int)
? args[1].get!(int) : args[1].get!(size_t);
(*zis)[index] = args[0].get!(typeof((*zis)[0]));
break;
}
else static if (isAssociativeArray!(A))
{
(*zis)[args[1].get!(typeof(A.init.keys[0]))]
= args[0].get!(typeof(A.init.values[0]));
break;
}
else
{
throw new VariantException(typeid(A), args[0].type);
}
case OpID.catAssign:
static if (!is(Unqual!(typeof((*zis)[0])) == void) && is(typeof((*zis)[0])) && is(typeof((*zis) ~= *zis)))
{
// array type; parm is the element to append
auto arg = cast(Variant*) parm;
alias E = typeof((*zis)[0]);
if (arg[0].convertsTo!(E))
{
// append one element to the array
(*zis) ~= [ arg[0].get!(E) ];
}
else
{
// append a whole array to the array
(*zis) ~= arg[0].get!(A);
}
break;
}
else
{
throw new VariantException(typeid(A), typeid(void[]));
}
case OpID.length:
static if (isArray!(A) || isAssociativeArray!(A))
{
return zis.length;
}
else
{
throw new VariantException(typeid(A), typeid(void[]));
}
case OpID.apply:
static if (!isFunctionPointer!A && !isDelegate!A)
{
import std.conv : text;
import std.exception : enforce;
enforce(0, text("Cannot apply `()' to a value of type `",
A.stringof, "'."));
}
else
{
import std.conv : text;
import std.exception : enforce;
alias ParamTypes = Parameters!A;
auto p = cast(Variant*) parm;
auto argCount = p.get!size_t;
// To assign the tuple we need to use the unqualified version,
// otherwise we run into issues such as with const values.
// We still get the actual type from the Variant though
// to ensure that we retain const correctness.
Tuple!(staticMap!(Unqual, ParamTypes)) t;
enforce(t.length == argCount,
text("Argument count mismatch: ",
A.stringof, " expects ", t.length,
" argument(s), not ", argCount, "."));
auto variantArgs = p[1 .. argCount + 1];
foreach (i, T; ParamTypes)
{
t[i] = cast() variantArgs[i].get!T;
}
auto args = cast(Tuple!(ParamTypes))t;
static if (is(ReturnType!A == void))
{
(*zis)(args.expand);
*p = Variant.init; // void returns uninitialized Variant.
}
else
{
*p = (*zis)(args.expand);
}
}
break;
case OpID.postblit:
static if (hasElaborateCopyConstructor!A)
{
typeid(A).postblit(zis);
}
break;
case OpID.destruct:
static if (hasElaborateDestructor!A)
{
typeid(A).destroy(zis);
}
break;
default: assert(false);
}
return 0;
}
enum doUnittest = is(VariantN == Variant);
public:
/** Constructs a $(D VariantN) value given an argument of a
* generic type. Statically rejects disallowed types.
*/
this(T)(T value)
{
static assert(allowed!(T), "Cannot store a " ~ T.stringof
~ " in a " ~ VariantN.stringof);
opAssign(value);
}
/// Allows assignment from a subset algebraic type
this(T : VariantN!(tsize, Types), size_t tsize, Types...)(T value)
if (!is(T : VariantN) && Types.length > 0 && allSatisfy!(allowed, Types))
{
opAssign(value);
}
static if (!AllowedTypes.length || anySatisfy!(hasElaborateCopyConstructor, AllowedTypes))
{
this(this)
{
fptr(OpID.postblit, &store, null);
}
}
static if (!AllowedTypes.length || anySatisfy!(hasElaborateDestructor, AllowedTypes))
{
~this()
{
fptr(OpID.destruct, &store, null);
}
}
/** Assigns a $(D VariantN) from a generic
* argument. Statically rejects disallowed types. */
VariantN opAssign(T)(T rhs)
{
//writeln(typeid(rhs));
static assert(allowed!(T), "Cannot store a " ~ T.stringof
~ " in a " ~ VariantN.stringof ~ ". Valid types are "
~ AllowedTypes.stringof);
static if (is(T : VariantN))
{
rhs.fptr(OpID.copyOut, &rhs.store, &this);
}
else static if (is(T : const(VariantN)))
{
static assert(false,
"Assigning Variant objects from const Variant"~
" objects is currently not supported.");
}
else
{
static if (!AllowedTypes.length || anySatisfy!(hasElaborateDestructor, AllowedTypes))
{
// Assignment should destruct previous value
fptr(OpID.destruct, &store, null);
}
static if (T.sizeof <= size)
{
import core.stdc.string : memcpy;
// If T is a class we're only copying the reference, so it
// should be safe to cast away shared so the memcpy will work.
//
// TODO: If a shared class has an atomic reference then using
// an atomic load may be more correct. Just make sure
// to use the fastest approach for the load op.
static if (is(T == class) && is(T == shared))
memcpy(&store, cast(const(void*)) &rhs, rhs.sizeof);
else
memcpy(&store, &rhs, rhs.sizeof);
static if (hasElaborateCopyConstructor!T)
{
typeid(T).postblit(&store);
}
}
else
{
import core.stdc.string : memcpy;
static if (__traits(compiles, {new T(T.init);}))
{
auto p = new T(rhs);
}
else
{
auto p = new T;
*p = rhs;
}
memcpy(&store, &p, p.sizeof);
}
fptr = &handler!(T);
}
return this;
}
// Allow assignment from another variant which is a subset of this one
VariantN opAssign(T : VariantN!(tsize, Types), size_t tsize, Types...)(T rhs)
if (!is(T : VariantN) && Types.length > 0 && allSatisfy!(allowed, Types))
{
// discover which type rhs is actually storing
foreach (V; T.AllowedTypes)
if (rhs.type == typeid(V))
return this = rhs.get!V;
assert(0, T.AllowedTypes.stringof);
}
Variant opCall(P...)(auto ref P params)
{
Variant[P.length + 1] pack;
pack[0] = P.length;
foreach (i, _; params)
{
pack[i + 1] = params[i];
}
fptr(OpID.apply, &store, &pack);
return pack[0];
}
/** Returns true if and only if the $(D VariantN) object
* holds a valid value (has been initialized with, or assigned
* from, a valid value).
*/
@property bool hasValue() const pure nothrow
{
// @@@BUG@@@ in compiler, the cast shouldn't be needed
return cast(typeof(&handler!(void))) fptr != &handler!(void);
}
///
static if (doUnittest)
@system unittest
{
Variant a;
assert(!a.hasValue);
Variant b;
a = b;
assert(!a.hasValue); // still no value
a = 5;
assert(a.hasValue);
}
/**
* If the $(D VariantN) object holds a value of the
* $(I exact) type $(D T), returns a pointer to that
* value. Otherwise, returns $(D null). In cases
* where $(D T) is statically disallowed, $(D
* peek) will not compile.
*/
@property inout(T)* peek(T)() inout
{
static if (!is(T == void))
static assert(allowed!(T), "Cannot store a " ~ T.stringof
~ " in a " ~ VariantN.stringof);
if (type != typeid(T))
return null;
static if (T.sizeof <= size)
return cast(inout T*)&store;
else
return *cast(inout T**)&store;
}
///
static if (doUnittest)
@system unittest
{
Variant a = 5;
auto b = a.peek!(int);
assert(b !is null);
*b = 6;
assert(a == 6);
}
/**
* Returns the $(D typeid) of the currently held value.
*/
@property TypeInfo type() const nothrow @trusted
{
scope(failure) assert(0);
TypeInfo result;
fptr(OpID.getTypeInfo, null, &result);
return result;
}
/**
* Returns $(D true) if and only if the $(D VariantN)
* object holds an object implicitly convertible to type `T`.
* Implicit convertibility is defined as per
* $(REF_ALTTEXT ImplicitConversionTargets, ImplicitConversionTargets, std,traits).
*/
@property bool convertsTo(T)() const
{
TypeInfo info = typeid(T);
return fptr(OpID.testConversion, null, &info) == 0;
}
/**
Returns the value stored in the `VariantN` object, either by specifying the
needed type or the index in the list of allowed types. The latter overload
only applies to bounded variants (e.g. $(LREF Algebraic)).
Params:
T = The requested type. The currently stored value must implicitly convert
to the requested type, in fact `DecayStaticToDynamicArray!T`. If an
implicit conversion is not possible, throws a `VariantException`.
index = The index of the type among `AllowedTypesParam`, zero-based.
*/
@property inout(T) get(T)() inout
{
inout(T) result = void;
static if (is(T == shared))
alias R = shared Unqual!T;
else
alias R = Unqual!T;
auto buf = tuple(typeid(T), cast(R*)&result);
if (fptr(OpID.get, cast(ubyte[size]*) &store, &buf))
{
throw new VariantException(type, typeid(T));
}
return result;
}
/// Ditto
@property auto get(uint index)() inout
if (index < AllowedTypes.length)
{
foreach (i, T; AllowedTypes)
{
static if (index == i) return get!T;
}
assert(0);
}
/**
* Returns the value stored in the $(D VariantN) object,
* explicitly converted (coerced) to the requested type $(D
* T). If $(D T) is a string type, the value is formatted as
* a string. If the $(D VariantN) object is a string, a
* parse of the string to type $(D T) is attempted. If a
* conversion is not possible, throws a $(D
* VariantException).
*/
@property T coerce(T)()
{
import std.conv : to, text;
static if (isNumeric!T || isBoolean!T)
{
if (convertsTo!real)
{
// maybe optimize this fella; handle ints separately
return to!T(get!real);
}
else if (convertsTo!(const(char)[]))
{
return to!T(get!(const(char)[]));
}
// I'm not sure why this doesn't convert to const(char),
// but apparently it doesn't (probably a deeper bug).
//
// Until that is fixed, this quick addition keeps a common
// function working. "10".coerce!int ought to work.
else if (convertsTo!(immutable(char)[]))
{
return to!T(get!(immutable(char)[]));
}
else
{
import std.exception : enforce;
enforce(false, text("Type ", type, " does not convert to ",
typeid(T)));
assert(0);
}
}
else static if (is(T : Object))
{
return to!(T)(get!(Object));
}
else static if (isSomeString!(T))
{
return to!(T)(toString());
}
else
{
// Fix for bug 1649
static assert(false, "unsupported type for coercion");
}
}
/**
* Formats the stored value as a string.
*/
string toString()
{
string result;
fptr(OpID.toString, &store, &result) == 0 || assert(false);
return result;
}
/**
* Comparison for equality used by the "==" and "!=" operators.
*/
// returns 1 if the two are equal
bool opEquals(T)(auto ref T rhs) const
if (allowed!T || is(Unqual!T == VariantN))
{
static if (is(Unqual!T == VariantN))
alias temp = rhs;
else
auto temp = VariantN(rhs);
return !fptr(OpID.equals, cast(ubyte[size]*) &store,
cast(void*) &temp);
}
// workaround for bug 10567 fix
int opCmp(ref const VariantN rhs) const
{
return (cast() this).opCmp!(VariantN)(cast() rhs);
}
/**
* Ordering comparison used by the "<", "<=", ">", and ">="
* operators. In case comparison is not sensible between the held
* value and $(D rhs), an exception is thrown.
*/
int opCmp(T)(T rhs)
if (allowed!T) // includes T == VariantN
{
static if (is(T == VariantN))
alias temp = rhs;
else
auto temp = VariantN(rhs);
auto result = fptr(OpID.compare, &store, &temp);
if (result == ptrdiff_t.min)
{
throw new VariantException(type, temp.type);
}
assert(result >= -1 && result <= 1); // Should be true for opCmp.
return cast(int) result;
}
/**
* Computes the hash of the held value.
*/
size_t toHash() const nothrow @safe
{
return type.getHash(&store);
}
private VariantN opArithmetic(T, string op)(T other)
{
static if (isInstanceOf!(.VariantN, T))
{
string tryUseType(string tp)
{
import std.format : format;
return q{
static if (allowed!%1$s && T.allowed!%1$s)
if (convertsTo!%1$s && other.convertsTo!%1$s)
return VariantN(get!%1$s %2$s other.get!%1$s);
}.format(tp, op);
}
mixin(tryUseType("uint"));
mixin(tryUseType("int"));
mixin(tryUseType("ulong"));
mixin(tryUseType("long"));
mixin(tryUseType("float"));
mixin(tryUseType("double"));
mixin(tryUseType("real"));
}
else
{
static if (allowed!T)
if (auto pv = peek!T) return VariantN(mixin("*pv " ~ op ~ " other"));
static if (allowed!uint && is(typeof(T.max) : uint) && isUnsigned!T)
if (convertsTo!uint) return VariantN(mixin("get!(uint) " ~ op ~ " other"));
static if (allowed!int && is(typeof(T.max) : int) && !isUnsigned!T)
if (convertsTo!int) return VariantN(mixin("get!(int) " ~ op ~ " other"));
static if (allowed!ulong && is(typeof(T.max) : ulong) && isUnsigned!T)
if (convertsTo!ulong) return VariantN(mixin("get!(ulong) " ~ op ~ " other"));
static if (allowed!long && is(typeof(T.max) : long) && !isUnsigned!T)
if (convertsTo!long) return VariantN(mixin("get!(long) " ~ op ~ " other"));
static if (allowed!float && is(T : float))
if (convertsTo!float) return VariantN(mixin("get!(float) " ~ op ~ " other"));
static if (allowed!double && is(T : double))
if (convertsTo!double) return VariantN(mixin("get!(double) " ~ op ~ " other"));
static if (allowed!real && is (T : real))
if (convertsTo!real) return VariantN(mixin("get!(real) " ~ op ~ " other"));
}
throw new VariantException("No possible match found for VariantN "~op~" "~T.stringof);
}
private VariantN opLogic(T, string op)(T other)
{
VariantN result;
static if (is(T == VariantN))
{
if (convertsTo!(uint) && other.convertsTo!(uint))
result = mixin("get!(uint) " ~ op ~ " other.get!(uint)");
else if (convertsTo!(int) && other.convertsTo!(int))
result = mixin("get!(int) " ~ op ~ " other.get!(int)");
else if (convertsTo!(ulong) && other.convertsTo!(ulong))
result = mixin("get!(ulong) " ~ op ~ " other.get!(ulong)");
else
result = mixin("get!(long) " ~ op ~ " other.get!(long)");
}
else
{
if (is(typeof(T.max) : uint) && T.min == 0 && convertsTo!(uint))
result = mixin("get!(uint) " ~ op ~ " other");
else if (is(typeof(T.max) : int) && T.min < 0 && convertsTo!(int))
result = mixin("get!(int) " ~ op ~ " other");
else if (is(typeof(T.max) : ulong) && T.min == 0
&& convertsTo!(ulong))
result = mixin("get!(ulong) " ~ op ~ " other");
else
result = mixin("get!(long) " ~ op ~ " other");
}
return result;
}
/**
* Arithmetic between $(D VariantN) objects and numeric
* values. All arithmetic operations return a $(D VariantN)
* object typed depending on the types of both values
* involved. The conversion rules mimic D's built-in rules for
* arithmetic conversions.
*/
// Adapted from http://www.prowiki.org/wiki4d/wiki.cgi?DanielKeep/Variant
// arithmetic
VariantN opAdd(T)(T rhs) { return opArithmetic!(T, "+")(rhs); }
///ditto
VariantN opSub(T)(T rhs) { return opArithmetic!(T, "-")(rhs); }
// Commenteed all _r versions for now because of ambiguities
// arising when two Variants are used
// ///ditto
// VariantN opSub_r(T)(T lhs)
// {
// return VariantN(lhs).opArithmetic!(VariantN, "-")(this);
// }
///ditto
VariantN opMul(T)(T rhs) { return opArithmetic!(T, "*")(rhs); }
///ditto
VariantN opDiv(T)(T rhs) { return opArithmetic!(T, "/")(rhs); }
// ///ditto
// VariantN opDiv_r(T)(T lhs)
// {
// return VariantN(lhs).opArithmetic!(VariantN, "/")(this);
// }
///ditto
VariantN opMod(T)(T rhs) { return opArithmetic!(T, "%")(rhs); }
// ///ditto
// VariantN opMod_r(T)(T lhs)
// {
// return VariantN(lhs).opArithmetic!(VariantN, "%")(this);
// }
///ditto
VariantN opAnd(T)(T rhs) { return opLogic!(T, "&")(rhs); }
///ditto
VariantN opOr(T)(T rhs) { return opLogic!(T, "|")(rhs); }
///ditto
VariantN opXor(T)(T rhs) { return opLogic!(T, "^")(rhs); }
///ditto
VariantN opShl(T)(T rhs) { return opLogic!(T, "<<")(rhs); }
// ///ditto
// VariantN opShl_r(T)(T lhs)
// {
// return VariantN(lhs).opLogic!(VariantN, "<<")(this);
// }
///ditto
VariantN opShr(T)(T rhs) { return opLogic!(T, ">>")(rhs); }
// ///ditto
// VariantN opShr_r(T)(T lhs)
// {
// return VariantN(lhs).opLogic!(VariantN, ">>")(this);
// }
///ditto
VariantN opUShr(T)(T rhs) { return opLogic!(T, ">>>")(rhs); }
// ///ditto
// VariantN opUShr_r(T)(T lhs)
// {
// return VariantN(lhs).opLogic!(VariantN, ">>>")(this);
// }
///ditto
VariantN opCat(T)(T rhs)
{
auto temp = this;
temp ~= rhs;
return temp;
}
// ///ditto
// VariantN opCat_r(T)(T rhs)
// {
// VariantN temp = rhs;
// temp ~= this;
// return temp;
// }
///ditto
VariantN opAddAssign(T)(T rhs) { return this = this + rhs; }
///ditto
VariantN opSubAssign(T)(T rhs) { return this = this - rhs; }
///ditto
VariantN opMulAssign(T)(T rhs) { return this = this * rhs; }
///ditto
VariantN opDivAssign(T)(T rhs) { return this = this / rhs; }
///ditto
VariantN opModAssign(T)(T rhs) { return this = this % rhs; }
///ditto
VariantN opAndAssign(T)(T rhs) { return this = this & rhs; }
///ditto
VariantN opOrAssign(T)(T rhs) { return this = this | rhs; }
///ditto
VariantN opXorAssign(T)(T rhs) { return this = this ^ rhs; }
///ditto
VariantN opShlAssign(T)(T rhs) { return this = this << rhs; }
///ditto
VariantN opShrAssign(T)(T rhs) { return this = this >> rhs; }
///ditto
VariantN opUShrAssign(T)(T rhs) { return this = this >>> rhs; }
///ditto
VariantN opCatAssign(T)(T rhs)
{
auto toAppend = Variant(rhs);
fptr(OpID.catAssign, &store, &toAppend) == 0 || assert(false);
return this;
}
/**
* Array and associative array operations. If a $(D
* VariantN) contains an (associative) array, it can be indexed
* into. Otherwise, an exception is thrown.
*/
inout(Variant) opIndex(K)(K i) inout
{
auto result = Variant(i);
fptr(OpID.index, cast(ubyte[size]*) &store, &result) == 0 || assert(false);
return result;
}
///
static if (doUnittest)
@system unittest
{
Variant a = new int[10];
a[5] = 42;
assert(a[5] == 42);
a[5] += 8;
assert(a[5] == 50);
int[int] hash = [ 42:24 ];
a = hash;
assert(a[42] == 24);
a[42] /= 2;
assert(a[42] == 12);
}
/// ditto
Variant opIndexAssign(T, N)(T value, N i)
{
static if (AllowedTypes.length && !isInstanceOf!(.VariantN, T))
{
enum canAssign(U) = __traits(compiles, (U u){ u[i] = value; });
static assert(anySatisfy!(canAssign, AllowedTypes),
"Cannot assign " ~ T.stringof ~ " to " ~ VariantN.stringof ~
" indexed with " ~ N.stringof);
}
Variant[2] args = [ Variant(value), Variant(i) ];
fptr(OpID.indexAssign, &store, &args) == 0 || assert(false);
return args[0];
}
/// ditto
Variant opIndexOpAssign(string op, T, N)(T value, N i)
{
return opIndexAssign(mixin(`opIndex(i)` ~ op ~ `value`), i);
}
/** If the $(D VariantN) contains an (associative) array,
* returns the _length of that array. Otherwise, throws an
* exception.
*/
@property size_t length()
{
return cast(size_t) fptr(OpID.length, &store, null);
}
/**
If the $(D VariantN) contains an array, applies $(D dg) to each
element of the array in turn. Otherwise, throws an exception.
*/
int opApply(Delegate)(scope Delegate dg) if (is(Delegate == delegate))
{
alias A = Parameters!(Delegate)[0];
if (type == typeid(A[]))
{
auto arr = get!(A[]);
foreach (ref e; arr)
{
if (dg(e)) return 1;
}
}
else static if (is(A == VariantN))
{
foreach (i; 0 .. length)
{
// @@@TODO@@@: find a better way to not confuse
// clients who think they change values stored in the
// Variant when in fact they are only changing tmp.
auto tmp = this[i];
debug scope(exit) assert(tmp == this[i]);
if (dg(tmp)) return 1;
}
}
else
{
import std.conv : text;
import std.exception : enforce;
enforce(false, text("Variant type ", type,
" not iterable with values of type ",
A.stringof));
}
return 0;
}
}
@system unittest
{
import std.conv : to;
Variant v;
int foo() { return 42; }
v = &foo;
assert(v() == 42);
static int bar(string s) { return to!int(s); }
v = &bar;
assert(v("43") == 43);
}
@system unittest
{
int[int] hash = [ 42:24 ];
Variant v = hash;
assert(v[42] == 24);
v[42] = 5;
assert(v[42] == 5);
}
// opIndex with static arrays, issue 12771
@system unittest
{
int[4] elements = [0, 1, 2, 3];
Variant v = elements;
assert(v == elements);
assert(v[2] == 2);
assert(v[3] == 3);
v[2] = 6;
assert(v[2] == 6);
assert(v != elements);
}
@system unittest
{
import std.exception : assertThrown;
Algebraic!(int[]) v = [2, 2];
assert(v == [2, 2]);
v[0] = 1;
assert(v[0] == 1);
assert(v != [2, 2]);
// opIndexAssign from Variant
v[1] = v[0];
assert(v[1] == 1);
static assert(!__traits(compiles, (v[1] = null)));
assertThrown!VariantException(v[1] = Variant(null));
}
//Issue# 8195
@system unittest
{
struct S
{
int a;
long b;
string c;
real d = 0.0;
bool e;
}
static assert(S.sizeof >= Variant.sizeof);
alias Types = AliasSeq!(string, int, S);
alias MyVariant = VariantN!(maxSize!Types, Types);
auto v = MyVariant(S.init);
assert(v == S.init);
}
// Issue #10961
@system unittest
{
// Primarily test that we can assign a void[] to a Variant.
void[] elements = cast(void[])[1, 2, 3];
Variant v = elements;
void[] returned = v.get!(void[]);
assert(returned == elements);
}
// Issue #13352
@system unittest
{
alias TP = Algebraic!(long);
auto a = TP(1L);
auto b = TP(2L);
assert(!TP.allowed!ulong);
assert(a + b == 3L);
assert(a + 2 == 3L);
assert(1 + b == 3L);
alias TP2 = Algebraic!(long, string);
auto c = TP2(3L);
assert(a + c == 4L);
}
// Issue #13354
@system unittest
{
alias A = Algebraic!(string[]);
A a = ["a", "b"];
assert(a[0] == "a");
assert(a[1] == "b");
a[1] = "c";
assert(a[1] == "c");
alias AA = Algebraic!(int[string]);
AA aa = ["a": 1, "b": 2];
assert(aa["a"] == 1);
assert(aa["b"] == 2);
aa["b"] = 3;
assert(aa["b"] == 3);
}
// Issue #14198
@system unittest
{
Variant a = true;
assert(a.type == typeid(bool));
}
// Issue #14233
@system unittest
{
alias Atom = Algebraic!(string, This[]);
Atom[] values = [];
auto a = Atom(values);
}
pure nothrow @nogc
@system unittest
{
Algebraic!(int, double) a;
a = 100;
a = 1.0;
}
// Issue 14457
@system unittest
{
alias A = Algebraic!(int, float, double);
alias B = Algebraic!(int, float);
A a = 1;
B b = 6f;
a = b;
assert(a.type == typeid(float));
assert(a.get!float == 6f);
}
// Issue 14585
@system unittest
{
static struct S
{
int x = 42;
~this() {assert(x == 42);}
}
Variant(S()).get!S;
}
// Issue 14586
@system unittest
{
const Variant v = new immutable Object;
v.get!(immutable Object);
}
@system unittest
{
static struct S
{
T opCast(T)() {assert(false);}
}
Variant v = S();
v.get!S;
}
/**
_Algebraic data type restricted to a closed set of possible
types. It's an alias for $(LREF VariantN) with an
appropriately-constructed maximum size. `Algebraic` is
useful when it is desirable to restrict what a discriminated type
could hold to the end of defining simpler and more efficient
manipulation.
*/
template Algebraic(T...)
{
alias Algebraic = VariantN!(maxSize!T, T);
}
///
@system unittest
{
auto v = Algebraic!(int, double, string)(5);
assert(v.peek!(int));
v = 3.14;
assert(v.peek!(double));
// auto x = v.peek!(long); // won't compile, type long not allowed
// v = '1'; // won't compile, type char not allowed
}
/**
$(H4 Self-Referential Types)
A useful and popular use of algebraic data structures is for defining $(LUCKY
self-referential data structures), i.e. structures that embed references to
values of their own type within.
This is achieved with `Algebraic` by using `This` as a placeholder whenever a
reference to the type being defined is needed. The `Algebraic` instantiation
will perform $(LINK2 https://en.wikipedia.org/wiki/Name_resolution_(programming_languages)#Alpha_renaming_to_make_name_resolution_trivial,
alpha renaming) on its constituent types, replacing `This`
with the self-referenced type. The structure of the type involving `This` may
be arbitrarily complex.
*/
@system unittest
{
import std.typecons : Tuple, tuple;
// A tree is either a leaf or a branch of two other trees
alias Tree(Leaf) = Algebraic!(Leaf, Tuple!(This*, This*));
Tree!int tree = tuple(new Tree!int(42), new Tree!int(43));
Tree!int* right = tree.get!1[1];
assert(*right == 43);
// An object is a double, a string, or a hash of objects
alias Obj = Algebraic!(double, string, This[string]);
Obj obj = "hello";
assert(obj.get!1 == "hello");
obj = 42.0;
assert(obj.get!0 == 42);
obj = ["customer": Obj("John"), "paid": Obj(23.95)];
assert(obj.get!2["customer"] == "John");
}
/**
Alias for $(LREF VariantN) instantiated with the largest size of `creal`,
`char[]`, and `void delegate()`. This ensures that `Variant` is large enough
to hold all of D's predefined types unboxed, including all numeric types,
pointers, delegates, and class references. You may want to use
$(D VariantN) directly with a different maximum size either for
storing larger types unboxed, or for saving memory.
*/
alias Variant = VariantN!(maxSize!(creal, char[], void delegate()));
/**
* Returns an array of variants constructed from $(D args).
*
* This is by design. During construction the $(D Variant) needs
* static type information about the type being held, so as to store a
* pointer to function for fast retrieval.
*/
Variant[] variantArray(T...)(T args)
{
Variant[] result;
foreach (arg; args)
{
result ~= Variant(arg);
}
return result;
}
///
@system unittest
{
auto a = variantArray(1, 3.14, "Hi!");
assert(a[1] == 3.14);
auto b = Variant(a); // variant array as variant
assert(b[1] == 3.14);
}
/**
* Thrown in three cases:
*
* $(OL $(LI An uninitialized `Variant` is used in any way except
* assignment and $(D hasValue);) $(LI A $(D get) or
* $(D coerce) is attempted with an incompatible target type;)
* $(LI A comparison between $(D Variant) objects of
* incompatible types is attempted.))
*
*/
// @@@ BUG IN COMPILER. THE 'STATIC' BELOW SHOULD NOT COMPILE
static class VariantException : Exception
{
/// The source type in the conversion or comparison
TypeInfo source;
/// The target type in the conversion or comparison
TypeInfo target;
this(string s)
{
super(s);
}
this(TypeInfo source, TypeInfo target)
{
super("Variant: attempting to use incompatible types "
~ source.toString()
~ " and " ~ target.toString());
this.source = source;
this.target = target;
}
}
@system unittest
{
alias W1 = This2Variant!(char, int, This[int]);
alias W2 = AliasSeq!(int, char[int]);
static assert(is(W1 == W2));
alias var_t = Algebraic!(void, string);
var_t foo = "quux";
}
@system unittest
{
alias A = Algebraic!(real, This[], This[int], This[This]);
A v1, v2, v3;
v2 = 5.0L;
v3 = 42.0L;
//v1 = [ v2 ][];
auto v = v1.peek!(A[]);
//writeln(v[0]);
v1 = [ 9 : v3 ];
//writeln(v1);
v1 = [ v3 : v3 ];
//writeln(v1);
}
@system unittest
{
import std.conv : ConvException;
import std.exception : assertThrown, collectException;
// try it with an oddly small size
VariantN!(1) test;
assert(test.size > 1);
// variantArray tests
auto heterogeneous = variantArray(1, 4.5, "hi");
assert(heterogeneous.length == 3);
auto variantArrayAsVariant = Variant(heterogeneous);
assert(variantArrayAsVariant[0] == 1);
assert(variantArrayAsVariant.length == 3);
// array tests
auto arr = Variant([1.2].dup);
auto e = arr[0];
assert(e == 1.2);
arr[0] = 2.0;
assert(arr[0] == 2);
arr ~= 4.5;
assert(arr[1] == 4.5);
// general tests
Variant a;
auto b = Variant(5);
assert(!b.peek!(real) && b.peek!(int));
// assign
a = *b.peek!(int);
// comparison
assert(a == b, a.type.toString() ~ " " ~ b.type.toString());
auto c = Variant("this is a string");
assert(a != c);
// comparison via implicit conversions
a = 42; b = 42.0; assert(a == b);
// try failing conversions
bool failed = false;
try
{
auto d = c.get!(int);
}
catch (Exception e)
{
//writeln(stderr, e.toString);
failed = true;
}
assert(failed); // :o)
// toString tests
a = Variant(42); assert(a.toString() == "42");
a = Variant(42.22); assert(a.toString() == "42.22");
// coerce tests
a = Variant(42.22); assert(a.coerce!(int) == 42);
a = cast(short) 5; assert(a.coerce!(double) == 5);
a = Variant("10"); assert(a.coerce!int == 10);
a = Variant(1);
assert(a.coerce!bool);
a = Variant(0);
assert(!a.coerce!bool);
a = Variant(1.0);
assert(a.coerce!bool);
a = Variant(0.0);
assert(!a.coerce!bool);
a = Variant(float.init);
assertThrown!ConvException(a.coerce!bool);
a = Variant("true");
assert(a.coerce!bool);
a = Variant("false");
assert(!a.coerce!bool);
a = Variant("");
assertThrown!ConvException(a.coerce!bool);
// Object tests
class B1 {}
class B2 : B1 {}
a = new B2;
assert(a.coerce!(B1) !is null);
a = new B1;
assert(collectException(a.coerce!(B2) is null));
a = cast(Object) new B2; // lose static type info; should still work
assert(a.coerce!(B2) !is null);
// struct Big { int a[45]; }
// a = Big.init;
// hash
assert(a.toHash() != 0);
}
// tests adapted from
// http://www.dsource.org/projects/tango/browser/trunk/tango/core/Variant.d?rev=2601
@system unittest
{
Variant v;
assert(!v.hasValue);
v = 42;
assert( v.peek!(int) );
assert( v.convertsTo!(long) );
assert( v.get!(int) == 42 );
assert( v.get!(long) == 42L );
assert( v.get!(ulong) == 42uL );
v = "Hello, World!";
assert( v.peek!(string) );
assert( v.get!(string) == "Hello, World!" );
assert(!is(char[] : wchar[]));
assert( !v.convertsTo!(wchar[]) );
assert( v.get!(string) == "Hello, World!" );
// Literal arrays are dynamically-typed
v = cast(int[4]) [1,2,3,4];
assert( v.peek!(int[4]) );
assert( v.get!(int[4]) == [1,2,3,4] );
{
v = [1,2,3,4,5];
assert( v.peek!(int[]) );
assert( v.get!(int[]) == [1,2,3,4,5] );
}
v = 3.1413;
assert( v.peek!(double) );
assert( v.convertsTo!(real) );
//@@@ BUG IN COMPILER: DOUBLE SHOULD NOT IMPLICITLY CONVERT TO FLOAT
assert( !v.convertsTo!(float) );
assert( *v.peek!(double) == 3.1413 );
auto u = Variant(v);
assert( u.peek!(double) );
assert( *u.peek!(double) == 3.1413 );
// operators
v = 38;
assert( v + 4 == 42 );
assert( 4 + v == 42 );
assert( v - 4 == 34 );
assert( Variant(4) - v == -34 );
assert( v * 2 == 76 );
assert( 2 * v == 76 );
assert( v / 2 == 19 );
assert( Variant(2) / v == 0 );
assert( v % 2 == 0 );
assert( Variant(2) % v == 2 );
assert( (v & 6) == 6 );
assert( (6 & v) == 6 );
assert( (v | 9) == 47 );
assert( (9 | v) == 47 );
assert( (v ^ 5) == 35 );
assert( (5 ^ v) == 35 );
assert( v << 1 == 76 );
assert( Variant(1) << Variant(2) == 4 );
assert( v >> 1 == 19 );
assert( Variant(4) >> Variant(2) == 1 );
assert( Variant("abc") ~ "def" == "abcdef" );
assert( Variant("abc") ~ Variant("def") == "abcdef" );
v = 38;
v += 4;
assert( v == 42 );
v = 38; v -= 4; assert( v == 34 );
v = 38; v *= 2; assert( v == 76 );
v = 38; v /= 2; assert( v == 19 );
v = 38; v %= 2; assert( v == 0 );
v = 38; v &= 6; assert( v == 6 );
v = 38; v |= 9; assert( v == 47 );
v = 38; v ^= 5; assert( v == 35 );
v = 38; v <<= 1; assert( v == 76 );
v = 38; v >>= 1; assert( v == 19 );
v = 38; v += 1; assert( v < 40 );
v = "abc";
v ~= "def";
assert( v == "abcdef", *v.peek!(char[]) );
assert( Variant(0) < Variant(42) );
assert( Variant(42) > Variant(0) );
assert( Variant(42) > Variant(0.1) );
assert( Variant(42.1) > Variant(1) );
assert( Variant(21) == Variant(21) );
assert( Variant(0) != Variant(42) );
assert( Variant("bar") == Variant("bar") );
assert( Variant("foo") != Variant("bar") );
{
auto v1 = Variant(42);
auto v2 = Variant("foo");
auto v3 = Variant(1+2.0i);
int[Variant] hash;
hash[v1] = 0;
hash[v2] = 1;
hash[v3] = 2;
assert( hash[v1] == 0 );
assert( hash[v2] == 1 );
assert( hash[v3] == 2 );
}
{
int[char[]] hash;
hash["a"] = 1;
hash["b"] = 2;
hash["c"] = 3;
Variant vhash = hash;
assert( vhash.get!(int[char[]])["a"] == 1 );
assert( vhash.get!(int[char[]])["b"] == 2 );
assert( vhash.get!(int[char[]])["c"] == 3 );
}
}
@system unittest
{
// check comparisons incompatible with AllowedTypes
Algebraic!int v = 2;
assert(v == 2);
assert(v < 3);
static assert(!__traits(compiles, {v == long.max;}));
static assert(!__traits(compiles, {v == null;}));
static assert(!__traits(compiles, {v < long.max;}));
static assert(!__traits(compiles, {v > null;}));
}
@system unittest
{
// bug 1558
Variant va=1;
Variant vb=-2;
assert((va+vb).get!(int) == -1);
assert((va-vb).get!(int) == 3);
}
@system unittest
{
Variant a;
a=5;
Variant b;
b=a;
Variant[] c;
c = variantArray(1, 2, 3.0, "hello", 4);
assert(c[3] == "hello");
}
@system unittest
{
Variant v = 5;
assert(!__traits(compiles, v.coerce!(bool delegate())));
}
@system unittest
{
struct Huge {
real a, b, c, d, e, f, g;
}
Huge huge;
huge.e = 42;
Variant v;
v = huge; // Compile time error.
assert(v.get!(Huge).e == 42);
}
@system unittest
{
const x = Variant(42);
auto y1 = x.get!(const int);
// @@@BUG@@@
//auto y2 = x.get!(immutable int)();
}
// test iteration
@system unittest
{
auto v = Variant([ 1, 2, 3, 4 ][]);
auto j = 0;
foreach (int i; v)
{
assert(i == ++j);
}
assert(j == 4);
}
// test convertibility
@system unittest
{
auto v = Variant("abc".dup);
assert(v.convertsTo!(char[]));
}
// http://d.puremagic.com/issues/show_bug.cgi?id=5424
@system unittest
{
interface A {
void func1();
}
static class AC: A {
void func1() {
}
}
A a = new AC();
a.func1();
Variant b = Variant(a);
}
@system unittest
{
// bug 7070
Variant v;
v = null;
}
// Class and interface opEquals, issue 12157
@system unittest
{
class Foo { }
class DerivedFoo : Foo { }
Foo f1 = new Foo();
Foo f2 = new DerivedFoo();
Variant v1 = f1, v2 = f2;
assert(v1 == f1);
assert(v1 != new Foo());
assert(v1 != f2);
assert(v2 != v1);
assert(v2 == f2);
}
// Const parameters with opCall, issue 11361.
@system unittest
{
static string t1(string c) {
return c ~ "a";
}
static const(char)[] t2(const(char)[] p) {
return p ~ "b";
}
static char[] t3(int p) {
import std.conv : text;
return p.text.dup;
}
Variant v1 = &t1;
Variant v2 = &t2;
Variant v3 = &t3;
assert(v1("abc") == "abca");
assert(v1("abc").type == typeid(string));
assert(v2("abc") == "abcb");
assert(v2(cast(char[])("abc".dup)) == "abcb");
assert(v2("abc").type == typeid(const(char)[]));
assert(v3(4) == ['4']);
assert(v3(4).type == typeid(char[]));
}
// issue 12071
@system unittest
{
static struct Structure { int data; }
alias VariantTest = Algebraic!(Structure delegate() pure nothrow @nogc @safe);
bool called = false;
Structure example() pure nothrow @nogc @safe
{
called = true;
return Structure.init;
}
auto m = VariantTest(&example);
m();
assert(called);
}
// Ordering comparisons of incompatible types, e.g. issue 7990.
@system unittest
{
import std.exception : assertThrown;
assertThrown!VariantException(Variant(3) < "a");
assertThrown!VariantException("a" < Variant(3));
assertThrown!VariantException(Variant(3) < Variant("a"));
assertThrown!VariantException(Variant.init < Variant(3));
assertThrown!VariantException(Variant(3) < Variant.init);
}
// Handling of unordered types, e.g. issue 9043.
@system unittest
{
import std.exception : assertThrown;
static struct A { int a; }
assert(Variant(A(3)) != A(4));
assertThrown!VariantException(Variant(A(3)) < A(4));
assertThrown!VariantException(A(3) < Variant(A(4)));
assertThrown!VariantException(Variant(A(3)) < Variant(A(4)));
}
// Handling of empty types and arrays, e.g. issue 10958
@system unittest
{
class EmptyClass { }
struct EmptyStruct { }
alias EmptyArray = void[0];
alias Alg = Algebraic!(EmptyClass, EmptyStruct, EmptyArray);
Variant testEmpty(T)()
{
T inst;
Variant v = inst;
assert(v.get!T == inst);
assert(v.peek!T !is null);
assert(*v.peek!T == inst);
Alg alg = inst;
assert(alg.get!T == inst);
return v;
}
testEmpty!EmptyClass();
testEmpty!EmptyStruct();
testEmpty!EmptyArray();
// EmptyClass/EmptyStruct sizeof is 1, so we have this to test just size 0.
EmptyArray arr = EmptyArray.init;
Algebraic!(EmptyArray) a = arr;
assert(a.length == 0);
assert(a.get!EmptyArray == arr);
}
// Handling of void function pointers / delegates, e.g. issue 11360
@system unittest
{
static void t1() { }
Variant v = &t1;
assert(v() == Variant.init);
static int t2() { return 3; }
Variant v2 = &t2;
assert(v2() == 3);
}
// Using peek for large structs, issue 8580
@system unittest
{
struct TestStruct(bool pad)
{
int val1;
static if (pad)
ubyte[Variant.size] padding;
int val2;
}
void testPeekWith(T)()
{
T inst;
inst.val1 = 3;
inst.val2 = 4;
Variant v = inst;
T* original = v.peek!T;
assert(original.val1 == 3);
assert(original.val2 == 4);
original.val1 = 6;
original.val2 = 8;
T modified = v.get!T;
assert(modified.val1 == 6);
assert(modified.val2 == 8);
}
testPeekWith!(TestStruct!false)();
testPeekWith!(TestStruct!true)();
}
/**
* Applies a delegate or function to the given $(LREF Algebraic) depending on the held type,
* ensuring that all types are handled by the visiting functions.
*
* The delegate or function having the currently held value as parameter is called
* with $(D variant)'s current value. Visiting handlers are passed
* in the template parameter list.
* It is statically ensured that all held types of
* $(D variant) are handled across all handlers.
* $(D visit) allows delegates and static functions to be passed
* as parameters.
*
* If a function with an untyped parameter is specified, this function is called
* when the variant contains a type that does not match any other function.
* This can be used to apply the same function across multiple possible types.
* Exactly one generic function is allowed.
*
* If a function without parameters is specified, this function is called
* when `variant` doesn't hold a value. Exactly one parameter-less function
* is allowed.
*
* Duplicate overloads matching the same type in one of the visitors are disallowed.
*
* Returns: The return type of visit is deduced from the visiting functions and must be
* the same across all overloads.
* Throws: $(LREF VariantException) if `variant` doesn't hold a value and no
* parameter-less fallback function is specified.
*/
template visit(Handlers...)
if (Handlers.length > 0)
{
///
auto visit(VariantType)(VariantType variant)
if (isAlgebraic!VariantType)
{
return visitImpl!(true, VariantType, Handlers)(variant);
}
}
///
@system unittest
{
Algebraic!(int, string) variant;
variant = 10;
assert(variant.visit!((string s) => cast(int) s.length,
(int i) => i)()
== 10);
variant = "string";
assert(variant.visit!((int i) => i,
(string s) => cast(int) s.length)()
== 6);
// Error function usage
Algebraic!(int, string) emptyVar;
auto rslt = emptyVar.visit!((string s) => cast(int) s.length,
(int i) => i,
() => -1)();
assert(rslt == -1);
// Generic function usage
Algebraic!(int, float, real) number = 2;
assert(number.visit!(x => x += 1) == 3);
// Generic function for int/float with separate behavior for string
Algebraic!(int, float, string) something = 2;
assert(something.visit!((string s) => s.length, x => x) == 2); // generic
something = "asdf";
assert(something.visit!((string s) => s.length, x => x) == 4); // string
// Generic handler and empty handler
Algebraic!(int, float, real) empty2;
assert(empty2.visit!(x => x + 1, () => -1) == -1);
}
@system unittest
{
Algebraic!(size_t, string) variant;
// not all handled check
static assert(!__traits(compiles, variant.visit!((size_t i){ })() ));
variant = cast(size_t) 10;
auto which = 0;
variant.visit!( (string s) => which = 1,
(size_t i) => which = 0
)();
// integer overload was called
assert(which == 0);
// mustn't compile as generic Variant not supported
Variant v;
static assert(!__traits(compiles, v.visit!((string s) => which = 1,
(size_t i) => which = 0
)()
));
static size_t func(string s) {
return s.length;
}
variant = "test";
assert( 4 == variant.visit!(func,
(size_t i) => i
)());
Algebraic!(int, float, string) variant2 = 5.0f;
// Shouldn' t compile as float not handled by visitor.
static assert(!__traits(compiles, variant2.visit!(
(int _) {},
(string _) {})()));
Algebraic!(size_t, string, float) variant3;
variant3 = 10.0f;
auto floatVisited = false;
assert(variant3.visit!(
(float f) { floatVisited = true; return cast(size_t) f; },
func,
(size_t i) { return i; }
)() == 10);
assert(floatVisited == true);
Algebraic!(float, string) variant4;
assert(variant4.visit!(func, (float f) => cast(size_t) f, () => size_t.max)() == size_t.max);
// double error func check
static assert(!__traits(compiles,
visit!(() => size_t.max, func, (float f) => cast(size_t) f, () => size_t.max)(variant4))
);
}
// disallow providing multiple generic handlers to visit
// disallow a generic handler that does not apply to all types
@system unittest
{
Algebraic!(int, float) number = 2;
// ok, x + 1 valid for int and float
static assert( __traits(compiles, number.visit!(x => x + 1)));
// bad, two generic handlers
static assert(!__traits(compiles, number.visit!(x => x + 1, x => x + 2)));
// bad, x ~ "a" does not apply to int or float
static assert(!__traits(compiles, number.visit!(x => x ~ "a")));
// bad, x ~ "a" does not apply to int or float
static assert(!__traits(compiles, number.visit!(x => x + 1, x => x ~ "a")));
Algebraic!(int, string) maybenumber = 2;
// ok, x ~ "a" valid for string, x + 1 valid for int, only 1 generic
static assert( __traits(compiles, number.visit!((string x) => x ~ "a", x => x + 1)));
// bad, x ~ "a" valid for string but not int
static assert(!__traits(compiles, number.visit!(x => x ~ "a")));
// bad, two generics, each only applies in one case
static assert(!__traits(compiles, number.visit!(x => x + 1, x => x ~ "a")));
}
/**
* Behaves as $(LREF visit) but doesn't enforce that all types are handled
* by the visiting functions.
*
* If a parameter-less function is specified it is called when
* either $(D variant) doesn't hold a value or holds a type
* which isn't handled by the visiting functions.
*
* Returns: The return type of tryVisit is deduced from the visiting functions and must be
* the same across all overloads.
* Throws: $(LREF VariantException) if `variant` doesn't hold a value or
* `variant` holds a value which isn't handled by the visiting functions,
* when no parameter-less fallback function is specified.
*/
template tryVisit(Handlers...)
if (Handlers.length > 0)
{
///
auto tryVisit(VariantType)(VariantType variant)
if (isAlgebraic!VariantType)
{
return visitImpl!(false, VariantType, Handlers)(variant);
}
}
///
@system unittest
{
Algebraic!(int, string) variant;
variant = 10;
auto which = -1;
variant.tryVisit!((int i) { which = 0; })();
assert(which == 0);
// Error function usage
variant = "test";
variant.tryVisit!((int i) { which = 0; },
() { which = -100; })();
assert(which == -100);
}
@system unittest
{
import std.exception : assertThrown;
Algebraic!(int, string) variant;
variant = 10;
auto which = -1;
variant.tryVisit!((int i){ which = 0; })();
assert(which == 0);
variant = "test";
assertThrown!VariantException(variant.tryVisit!((int i) { which = 0; })());
void errorfunc()
{
which = -1;
}
variant.tryVisit!((int i) { which = 0; }, errorfunc)();
assert(which == -1);
}
private template isAlgebraic(Type)
{
static if (is(Type _ == VariantN!T, T...))
enum isAlgebraic = T.length >= 2; // T[0] == maxDataSize, T[1..$] == AllowedTypesParam
else
enum isAlgebraic = false;
}
@system unittest
{
static assert(!isAlgebraic!(Variant));
static assert( isAlgebraic!(Algebraic!(string)));
static assert( isAlgebraic!(Algebraic!(int, int[])));
}
private auto visitImpl(bool Strict, VariantType, Handler...)(VariantType variant)
if (isAlgebraic!VariantType && Handler.length > 0)
{
alias AllowedTypes = VariantType.AllowedTypes;
/**
* Returns: Struct where $(D indices) is an array which
* contains at the n-th position the index in Handler which takes the
* n-th type of AllowedTypes. If an Handler doesn't match an
* AllowedType, -1 is set. If a function in the delegates doesn't
* have parameters, the field $(D exceptionFuncIdx) is set;
* otherwise it's -1.
*/
auto visitGetOverloadMap()
{
struct Result {
int[AllowedTypes.length] indices;
int exceptionFuncIdx = -1;
int generalFuncIdx = -1;
}
Result result;
foreach (tidx, T; AllowedTypes)
{
bool added = false;
foreach (dgidx, dg; Handler)
{
// Handle normal function objects
static if (isSomeFunction!dg)
{
alias Params = Parameters!dg;
static if (Params.length == 0)
{
// Just check exception functions in the first
// inner iteration (over delegates)
if (tidx > 0)
continue;
else
{
if (result.exceptionFuncIdx != -1)
assert(false, "duplicate parameter-less (error-)function specified");
result.exceptionFuncIdx = dgidx;
}
}
else static if (is(Params[0] == T) || is(Unqual!(Params[0]) == T))
{
if (added)
assert(false, "duplicate overload specified for type '" ~ T.stringof ~ "'");
added = true;
result.indices[tidx] = dgidx;
}
}
else static if (isSomeFunction!(dg!T))
{
assert(result.generalFuncIdx == -1 ||
result.generalFuncIdx == dgidx,
"Only one generic visitor function is allowed");
result.generalFuncIdx = dgidx;
}
// Handle composite visitors with opCall overloads
else
{
static assert(false, dg.stringof ~ " is not a function or delegate");
}
}
if (!added)
result.indices[tidx] = -1;
}
return result;
}
enum HandlerOverloadMap = visitGetOverloadMap();
if (!variant.hasValue)
{
// Call the exception function. The HandlerOverloadMap
// will have its exceptionFuncIdx field set to value != -1 if an
// exception function has been specified; otherwise we just through an exception.
static if (HandlerOverloadMap.exceptionFuncIdx != -1)
return Handler[ HandlerOverloadMap.exceptionFuncIdx ]();
else
throw new VariantException("variant must hold a value before being visited.");
}
foreach (idx, T; AllowedTypes)
{
if (auto ptr = variant.peek!T)
{
enum dgIdx = HandlerOverloadMap.indices[idx];
static if (dgIdx == -1)
{
static if (HandlerOverloadMap.generalFuncIdx >= 0)
return Handler[HandlerOverloadMap.generalFuncIdx](*ptr);
else static if (Strict)
static assert(false, "overload for type '" ~ T.stringof ~ "' hasn't been specified");
else static if (HandlerOverloadMap.exceptionFuncIdx != -1)
return Handler[HandlerOverloadMap.exceptionFuncIdx]();
else
throw new VariantException(
"variant holds value of type '"
~ T.stringof ~
"' but no visitor has been provided"
);
}
else
{
return Handler[ dgIdx ](*ptr);
}
}
}
assert(false);
}
@system unittest
{
// validate that visit can be called with a const type
struct Foo { int depth; }
struct Bar { int depth; }
alias FooBar = Algebraic!(Foo, Bar);
int depth(in FooBar fb) {
return fb.visit!((Foo foo) => foo.depth,
(Bar bar) => bar.depth);
}
FooBar fb = Foo(3);
assert(depth(fb) == 3);
}
@system unittest
{
// https://issues.dlang.org/show_bug.cgi?id=16383
class Foo {this() immutable {}}
alias V = Algebraic!(immutable Foo);
auto x = V(new immutable Foo).visit!(
(immutable(Foo) _) => 3
);
assert(x == 3);
}
@system unittest
{
// http://d.puremagic.com/issues/show_bug.cgi?id=5310
const Variant a;
assert(a == a);
Variant b;
assert(a == b);
assert(b == a);
}
@system unittest
{
const Variant a = [2];
assert(a[0] == 2);
}
@system unittest
{
// http://d.puremagic.com/issues/show_bug.cgi?id=10017
static struct S
{
ubyte[Variant.size + 1] s;
}
Variant v1, v2;
v1 = S(); // the payload is allocated on the heap
v2 = v1; // AssertError: target must be non-null
assert(v1 == v2);
}
@system unittest
{
import std.exception : assertThrown;
// http://d.puremagic.com/issues/show_bug.cgi?id=7069
Variant v;
int i = 10;
v = i;
foreach (qual; AliasSeq!(MutableOf, ConstOf))
{
assert(v.get!(qual!int) == 10);
assert(v.get!(qual!float) == 10.0f);
}
foreach (qual; AliasSeq!(ImmutableOf, SharedOf, SharedConstOf))
{
assertThrown!VariantException(v.get!(qual!int));
}
const(int) ci = 20;
v = ci;
foreach (qual; AliasSeq!(ConstOf))
{
assert(v.get!(qual!int) == 20);
assert(v.get!(qual!float) == 20.0f);
}
foreach (qual; AliasSeq!(MutableOf, ImmutableOf, SharedOf, SharedConstOf))
{
assertThrown!VariantException(v.get!(qual!int));
assertThrown!VariantException(v.get!(qual!float));
}
immutable(int) ii = ci;
v = ii;
foreach (qual; AliasSeq!(ImmutableOf, ConstOf, SharedConstOf))
{
assert(v.get!(qual!int) == 20);
assert(v.get!(qual!float) == 20.0f);
}
foreach (qual; AliasSeq!(MutableOf, SharedOf))
{
assertThrown!VariantException(v.get!(qual!int));
assertThrown!VariantException(v.get!(qual!float));
}
int[] ai = [1,2,3];
v = ai;
foreach (qual; AliasSeq!(MutableOf, ConstOf))
{
assert(v.get!(qual!(int[])) == [1,2,3]);
assert(v.get!(qual!(int)[]) == [1,2,3]);
}
foreach (qual; AliasSeq!(ImmutableOf, SharedOf, SharedConstOf))
{
assertThrown!VariantException(v.get!(qual!(int[])));
assertThrown!VariantException(v.get!(qual!(int)[]));
}
const(int[]) cai = [4,5,6];
v = cai;
foreach (qual; AliasSeq!(ConstOf))
{
assert(v.get!(qual!(int[])) == [4,5,6]);
assert(v.get!(qual!(int)[]) == [4,5,6]);
}
foreach (qual; AliasSeq!(MutableOf, ImmutableOf, SharedOf, SharedConstOf))
{
assertThrown!VariantException(v.get!(qual!(int[])));
assertThrown!VariantException(v.get!(qual!(int)[]));
}
immutable(int[]) iai = [7,8,9];
v = iai;
//assert(v.get!(immutable(int[])) == [7,8,9]); // Bug ??? runtime error
assert(v.get!(immutable(int)[]) == [7,8,9]);
assert(v.get!(const(int[])) == [7,8,9]);
assert(v.get!(const(int)[]) == [7,8,9]);
//assert(v.get!(shared(const(int[]))) == cast(shared const)[7,8,9]); // Bug ??? runtime error
//assert(v.get!(shared(const(int))[]) == cast(shared const)[7,8,9]); // Bug ??? runtime error
foreach (qual; AliasSeq!(MutableOf))
{
assertThrown!VariantException(v.get!(qual!(int[])));
assertThrown!VariantException(v.get!(qual!(int)[]));
}
class A {}
class B : A {}
B b = new B();
v = b;
foreach (qual; AliasSeq!(MutableOf, ConstOf))
{
assert(v.get!(qual!B) is b);
assert(v.get!(qual!A) is b);
assert(v.get!(qual!Object) is b);
}
foreach (qual; AliasSeq!(ImmutableOf, SharedOf, SharedConstOf))
{
assertThrown!VariantException(v.get!(qual!B));
assertThrown!VariantException(v.get!(qual!A));
assertThrown!VariantException(v.get!(qual!Object));
}
const(B) cb = new B();
v = cb;
foreach (qual; AliasSeq!(ConstOf))
{
assert(v.get!(qual!B) is cb);
assert(v.get!(qual!A) is cb);
assert(v.get!(qual!Object) is cb);
}
foreach (qual; AliasSeq!(MutableOf, ImmutableOf, SharedOf, SharedConstOf))
{
assertThrown!VariantException(v.get!(qual!B));
assertThrown!VariantException(v.get!(qual!A));
assertThrown!VariantException(v.get!(qual!Object));
}
immutable(B) ib = new immutable(B)();
v = ib;
foreach (qual; AliasSeq!(ImmutableOf, ConstOf, SharedConstOf))
{
assert(v.get!(qual!B) is ib);
assert(v.get!(qual!A) is ib);
assert(v.get!(qual!Object) is ib);
}
foreach (qual; AliasSeq!(MutableOf, SharedOf))
{
assertThrown!VariantException(v.get!(qual!B));
assertThrown!VariantException(v.get!(qual!A));
assertThrown!VariantException(v.get!(qual!Object));
}
shared(B) sb = new shared B();
v = sb;
foreach (qual; AliasSeq!(SharedOf, SharedConstOf))
{
assert(v.get!(qual!B) is sb);
assert(v.get!(qual!A) is sb);
assert(v.get!(qual!Object) is sb);
}
foreach (qual; AliasSeq!(MutableOf, ImmutableOf, ConstOf))
{
assertThrown!VariantException(v.get!(qual!B));
assertThrown!VariantException(v.get!(qual!A));
assertThrown!VariantException(v.get!(qual!Object));
}
shared(const(B)) scb = new shared const B();
v = scb;
foreach (qual; AliasSeq!(SharedConstOf))
{
assert(v.get!(qual!B) is scb);
assert(v.get!(qual!A) is scb);
assert(v.get!(qual!Object) is scb);
}
foreach (qual; AliasSeq!(MutableOf, ConstOf, ImmutableOf, SharedOf))
{
assertThrown!VariantException(v.get!(qual!B));
assertThrown!VariantException(v.get!(qual!A));
assertThrown!VariantException(v.get!(qual!Object));
}
}
@system unittest
{
static struct DummyScope
{
// https://d.puremagic.com/issues/show_bug.cgi?id=12540
alias Alias12540 = Algebraic!Class12540;
static class Class12540
{
Alias12540 entity;
}
}
}
@system unittest
{
// https://issues.dlang.org/show_bug.cgi?id=10194
// Also test for elaborate copying
static struct S
{
@disable this();
this(int dummy)
{
++cnt;
}
this(this)
{
++cnt;
}
@disable S opAssign();
~this()
{
--cnt;
assert(cnt >= 0);
}
static int cnt = 0;
}
{
Variant v;
{
v = S(0);
assert(S.cnt == 1);
}
assert(S.cnt == 1);
// assigning a new value should destroy the existing one
v = 0;
assert(S.cnt == 0);
// destroying the variant should destroy it's current value
v = S(0);
assert(S.cnt == 1);
}
assert(S.cnt == 0);
}
@system unittest
{
// Bugzilla 13300
static struct S
{
this(this) {}
~this() {}
}
static assert( hasElaborateCopyConstructor!(Variant));
static assert(!hasElaborateCopyConstructor!(Algebraic!bool));
static assert( hasElaborateCopyConstructor!(Algebraic!S));
static assert( hasElaborateCopyConstructor!(Algebraic!(bool, S)));
static assert( hasElaborateDestructor!(Variant));
static assert(!hasElaborateDestructor!(Algebraic!bool));
static assert( hasElaborateDestructor!(Algebraic!S));
static assert( hasElaborateDestructor!(Algebraic!(bool, S)));
import std.array;
alias Value = Algebraic!bool;
static struct T
{
Value value;
@disable this();
}
auto a = appender!(T[]);
}
@system unittest
{
// Bugzilla 13871
alias A = Algebraic!(int, typeof(null));
static struct B { A value; }
alias C = std.variant.Algebraic!B;
C var;
var = C(B());
}
@system unittest
{
import std.exception : assertThrown, assertNotThrown;
// Make sure Variant can handle types with opDispatch but no length field.
struct SWithNoLength
{
void opDispatch(string s)() { }
}
struct SWithLength
{
@property int opDispatch(string s)()
{
// Assume that s == "length"
return 5; // Any value is OK for test.
}
}
SWithNoLength sWithNoLength;
Variant v = sWithNoLength;
assertThrown!VariantException(v.length);
SWithLength sWithLength;
v = sWithLength;
assertNotThrown!VariantException(v.get!SWithLength.length);
assertThrown!VariantException(v.length);
}
@system unittest
{
// Bugzilla 13534
static assert(!__traits(compiles, () @safe {
auto foo() @system { return 3; }
auto v = Variant(&foo);
v(); // foo is called in safe code!?
}));
}
@system unittest
{
// Bugzilla 15039
import std.typecons;
import std.variant;
alias IntTypedef = Typedef!int;
alias Obj = Algebraic!(int, IntTypedef, This[]);
Obj obj = 1;
obj.visit!(
(int x) {},
(IntTypedef x) {},
(Obj[] x) {},
);
}
@system unittest
{
// Bugzilla 15791
int n = 3;
struct NS1 { int foo() { return n + 10; } }
struct NS2 { int foo() { return n * 10; } }
Variant v;
v = NS1();
assert(v.get!NS1.foo() == 13);
v = NS2();
assert(v.get!NS2.foo() == 30);
}
@system unittest
{
// Bugzilla 15827
static struct Foo15827 { Variant v; this(Foo15827 v) {} }
Variant v = Foo15827.init;
}