Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
\input texinfo @c -*-texinfo-*-

@c %**start of header
@setfilename libgomp.info
@settitle GNU libgomp
@c %**end of header


@copying
Copyright @copyright{} 2006-2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Funding Free Software'', the Front-Cover
texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the section entitled
``GNU Free Documentation License''.

(a) The FSF's Front-Cover Text is:

     A GNU Manual

(b) The FSF's Back-Cover Text is:

     You have freedom to copy and modify this GNU Manual, like GNU
     software.  Copies published by the Free Software Foundation raise
     funds for GNU development.
@end copying

@ifinfo
@dircategory GNU Libraries
@direntry
* libgomp: (libgomp).          GNU Offloading and Multi Processing Runtime Library.
@end direntry

This manual documents libgomp, the GNU Offloading and Multi Processing
Runtime library.  This is the GNU implementation of the OpenMP and
OpenACC APIs for parallel and accelerator programming in C/C++ and
Fortran.

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA

@insertcopying
@end ifinfo


@setchapternewpage odd

@titlepage
@title GNU Offloading and Multi Processing Runtime Library
@subtitle The GNU OpenMP and OpenACC Implementation
@page
@vskip 0pt plus 1filll
@comment For the @value{version-GCC} Version*
@sp 1
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor@*
Boston, MA 02110-1301, USA@*
@sp 1
@insertcopying
@end titlepage

@summarycontents
@contents
@page


@node Top
@top Introduction
@cindex Introduction

This manual documents the usage of libgomp, the GNU Offloading and
Multi Processing Runtime Library.  This includes the GNU
implementation of the @uref{https://www.openmp.org, OpenMP} Application
Programming Interface (API) for multi-platform shared-memory parallel
programming in C/C++ and Fortran, and the GNU implementation of the
@uref{https://www.openacc.org, OpenACC} Application Programming
Interface (API) for offloading of code to accelerator devices in C/C++
and Fortran.

Originally, libgomp implemented the GNU OpenMP Runtime Library.  Based
on this, support for OpenACC and offloading (both OpenACC and OpenMP
4's target construct) has been added later on, and the library's name
changed to GNU Offloading and Multi Processing Runtime Library.



@comment
@comment  When you add a new menu item, please keep the right hand
@comment  aligned to the same column.  Do not use tabs.  This provides
@comment  better formatting.
@comment
@menu
* Enabling OpenMP::            How to enable OpenMP for your applications.
* OpenMP Runtime Library Routines: Runtime Library Routines.
                               The OpenMP runtime application programming
                               interface.
* OpenMP Environment Variables: Environment Variables.
                               Influencing OpenMP runtime behavior with
                               environment variables.
* Enabling OpenACC::           How to enable OpenACC for your
                               applications.
* OpenACC Runtime Library Routines:: The OpenACC runtime application
                               programming interface.
* OpenACC Environment Variables:: Influencing OpenACC runtime behavior with
                               environment variables.
* CUDA Streams Usage::         Notes on the implementation of
                               asynchronous operations.
* OpenACC Library Interoperability:: OpenACC library interoperability with the
                               NVIDIA CUBLAS library.
* OpenACC Profiling Interface::
* The libgomp ABI::            Notes on the external ABI presented by libgomp.
* Reporting Bugs::             How to report bugs in the GNU Offloading and
                               Multi Processing Runtime Library.
* Copying::                    GNU general public license says
                               how you can copy and share libgomp.
* GNU Free Documentation License::
                               How you can copy and share this manual.
* Funding::                    How to help assure continued work for free 
                               software.
* Library Index::              Index of this documentation.
@end menu


@c ---------------------------------------------------------------------
@c Enabling OpenMP
@c ---------------------------------------------------------------------

@node Enabling OpenMP
@chapter Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time 
flag @command{-fopenmp} must be specified.  This enables the OpenMP directive
@code{#pragma omp} in C/C++ and @code{!$omp} directives in free form, 
@code{c$omp}, @code{*$omp} and @code{!$omp} directives in fixed form, 
@code{!$} conditional compilation sentinels in free form and @code{c$},
@code{*$} and @code{!$} sentinels in fixed form, for Fortran.  The flag also
arranges for automatic linking of the OpenMP runtime library 
(@ref{Runtime Library Routines}).

A complete description of all OpenMP directives accepted may be found in 
the @uref{https://www.openmp.org, OpenMP Application Program Interface} manual,
version 4.5.


@c ---------------------------------------------------------------------
@c OpenMP Runtime Library Routines
@c ---------------------------------------------------------------------

@node Runtime Library Routines
@chapter OpenMP Runtime Library Routines

The runtime routines described here are defined by Section 3 of the OpenMP
specification in version 4.5.  The routines are structured in following
three parts:

@menu
Control threads, processors and the parallel environment.  They have C
linkage, and do not throw exceptions.

* omp_get_active_level::        Number of active parallel regions
* omp_get_ancestor_thread_num:: Ancestor thread ID
* omp_get_cancellation::        Whether cancellation support is enabled
* omp_get_default_device::      Get the default device for target regions
* omp_get_dynamic::             Dynamic teams setting
* omp_get_level::               Number of parallel regions
* omp_get_max_active_levels::   Maximum number of active regions
* omp_get_max_task_priority::   Maximum task priority value that can be set
* omp_get_max_threads::         Maximum number of threads of parallel region
* omp_get_nested::              Nested parallel regions
* omp_get_num_devices::         Number of target devices
* omp_get_num_procs::           Number of processors online
* omp_get_num_teams::           Number of teams
* omp_get_num_threads::         Size of the active team
* omp_get_proc_bind::           Whether theads may be moved between CPUs
* omp_get_schedule::            Obtain the runtime scheduling method
* omp_get_team_num::            Get team number
* omp_get_team_size::           Number of threads in a team
* omp_get_thread_limit::        Maximum number of threads
* omp_get_thread_num::          Current thread ID
* omp_in_parallel::             Whether a parallel region is active
* omp_in_final::                Whether in final or included task region
* omp_is_initial_device::       Whether executing on the host device
* omp_set_default_device::      Set the default device for target regions
* omp_set_dynamic::             Enable/disable dynamic teams
* omp_set_max_active_levels::   Limits the number of active parallel regions
* omp_set_nested::              Enable/disable nested parallel regions
* omp_set_num_threads::         Set upper team size limit
* omp_set_schedule::            Set the runtime scheduling method

Initialize, set, test, unset and destroy simple and nested locks.

* omp_init_lock::            Initialize simple lock
* omp_set_lock::             Wait for and set simple lock
* omp_test_lock::            Test and set simple lock if available
* omp_unset_lock::           Unset simple lock
* omp_destroy_lock::         Destroy simple lock
* omp_init_nest_lock::       Initialize nested lock
* omp_set_nest_lock::        Wait for and set simple lock
* omp_test_nest_lock::       Test and set nested lock if available
* omp_unset_nest_lock::      Unset nested lock
* omp_destroy_nest_lock::    Destroy nested lock

Portable, thread-based, wall clock timer.

* omp_get_wtick::            Get timer precision.
* omp_get_wtime::            Elapsed wall clock time.
@end menu



@node omp_get_active_level
@section @code{omp_get_active_level} -- Number of parallel regions
@table @asis
@item @emph{Description}:
This function returns the nesting level for the active parallel blocks,
which enclose the calling call.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_active_level(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_active_level()}
@end multitable

@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.20.
@end table



@node omp_get_ancestor_thread_num
@section @code{omp_get_ancestor_thread_num} -- Ancestor thread ID
@table @asis
@item @emph{Description}:
This function returns the thread identification number for the given
nesting level of the current thread.  For values of @var{level} outside
zero to @code{omp_get_level} -1 is returned; if @var{level} is
@code{omp_get_level} the result is identical to @code{omp_get_thread_num}.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_ancestor_thread_num(int level);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_ancestor_thread_num(level)}
@item                   @tab @code{integer level}
@end multitable

@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_thread_num}, @ref{omp_get_team_size}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.18.
@end table



@node omp_get_cancellation
@section @code{omp_get_cancellation} -- Whether cancellation support is enabled
@table @asis
@item @emph{Description}:
This function returns @code{true} if cancellation is activated, @code{false}
otherwise.  Here, @code{true} and @code{false} represent their language-specific
counterparts.  Unless @env{OMP_CANCELLATION} is set true, cancellations are
deactivated.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_cancellation(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_cancellation()}
@end multitable

@item @emph{See also}:
@ref{OMP_CANCELLATION}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.9.
@end table



@node omp_get_default_device
@section @code{omp_get_default_device} -- Get the default device for target regions
@table @asis
@item @emph{Description}:
Get the default device for target regions without device clause.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_default_device(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_default_device()}
@end multitable

@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_set_default_device}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.30.
@end table



@node omp_get_dynamic
@section @code{omp_get_dynamic} -- Dynamic teams setting
@table @asis
@item @emph{Description}:
This function returns @code{true} if enabled, @code{false} otherwise. 
Here, @code{true} and @code{false} represent their language-specific 
counterparts.

The dynamic team setting may be initialized at startup by the 
@env{OMP_DYNAMIC} environment variable or at runtime using
@code{omp_set_dynamic}.  If undefined, dynamic adjustment is
disabled by default.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_dynamic(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_dynamic()}
@end multitable

@item @emph{See also}:
@ref{omp_set_dynamic}, @ref{OMP_DYNAMIC}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.8.
@end table



@node omp_get_level
@section @code{omp_get_level} -- Obtain the current nesting level
@table @asis
@item @emph{Description}:
This function returns the nesting level for the parallel blocks,
which enclose the calling call.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_level(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_level()}
@end multitable

@item @emph{See also}:
@ref{omp_get_active_level}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.17.
@end table



@node omp_get_max_active_levels
@section @code{omp_get_max_active_levels} -- Maximum number of active regions
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed number of nested, active parallel regions.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_active_levels(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_active_levels()}
@end multitable

@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{omp_get_active_level}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.16.
@end table


@node omp_get_max_task_priority
@section @code{omp_get_max_task_priority} -- Maximum priority value
that can be set for tasks.
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed priority number for tasks.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_task_priority(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_task_priority()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
@end table


@node omp_get_max_threads
@section @code{omp_get_max_threads} -- Maximum number of threads of parallel region
@table @asis
@item @emph{Description}:
Return the maximum number of threads used for the current parallel region
that does not use the clause @code{num_threads}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_threads(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_threads()}
@end multitable

@item @emph{See also}:
@ref{omp_set_num_threads}, @ref{omp_set_dynamic}, @ref{omp_get_thread_limit}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.3.
@end table



@node omp_get_nested
@section @code{omp_get_nested} -- Nested parallel regions
@table @asis
@item @emph{Description}:
This function returns @code{true} if nested parallel regions are
enabled, @code{false} otherwise.  Here, @code{true} and @code{false}
represent their language-specific counterparts.

Nested parallel regions may be initialized at startup by the 
@env{OMP_NESTED} environment variable or at runtime using
@code{omp_set_nested}.  If undefined, nested parallel regions are
disabled by default.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_nested(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_nested()}
@end multitable

@item @emph{See also}:
@ref{omp_set_nested}, @ref{OMP_NESTED}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.11.
@end table



@node omp_get_num_devices
@section @code{omp_get_num_devices} -- Number of target devices
@table @asis
@item @emph{Description}:
Returns the number of target devices.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_devices(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_devices()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.31.
@end table



@node omp_get_num_procs
@section @code{omp_get_num_procs} -- Number of processors online
@table @asis
@item @emph{Description}:
Returns the number of processors online on that device.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_procs(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_procs()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.5.
@end table



@node omp_get_num_teams
@section @code{omp_get_num_teams} -- Number of teams
@table @asis
@item @emph{Description}:
Returns the number of teams in the current team region.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_teams(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_teams()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.32.
@end table



@node omp_get_num_threads
@section @code{omp_get_num_threads} -- Size of the active team
@table @asis
@item @emph{Description}:
Returns the number of threads in the current team.  In a sequential section of
the program @code{omp_get_num_threads} returns 1.

The default team size may be initialized at startup by the 
@env{OMP_NUM_THREADS} environment variable.  At runtime, the size
of the current team may be set either by the @code{NUM_THREADS}
clause or by @code{omp_set_num_threads}.  If none of the above were
used to define a specific value and @env{OMP_DYNAMIC} is disabled,
one thread per CPU online is used.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_threads(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_threads()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{omp_set_num_threads}, @ref{OMP_NUM_THREADS}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.2.
@end table



@node omp_get_proc_bind
@section @code{omp_get_proc_bind} -- Whether theads may be moved between CPUs
@table @asis
@item @emph{Description}:
This functions returns the currently active thread affinity policy, which is
set via @env{OMP_PROC_BIND}.  Possible values are @code{omp_proc_bind_false},
@code{omp_proc_bind_true}, @code{omp_proc_bind_master},
@code{omp_proc_bind_close} and @code{omp_proc_bind_spread}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_proc_bind_t omp_get_proc_bind(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(kind=omp_proc_bind_kind) function omp_get_proc_bind()}
@end multitable

@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY},

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.22.
@end table



@node omp_get_schedule
@section @code{omp_get_schedule} -- Obtain the runtime scheduling method
@table @asis
@item @emph{Description}:
Obtain the runtime scheduling method.  The @var{kind} argument will be
set to the value @code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}.  The second argument,
@var{chunk_size}, is set to the chunk size.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_get_schedule(omp_sched_t *kind, int *chunk_size);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_get_schedule(kind, chunk_size)}
@item                   @tab @code{integer(kind=omp_sched_kind) kind}
@item                   @tab @code{integer chunk_size}
@end multitable

@item @emph{See also}:
@ref{omp_set_schedule}, @ref{OMP_SCHEDULE}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.13.
@end table



@node omp_get_team_num
@section @code{omp_get_team_num} -- Get team number
@table @asis
@item @emph{Description}:
Returns the team number of the calling thread.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_num(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_num()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.33.
@end table



@node omp_get_team_size
@section @code{omp_get_team_size} -- Number of threads in a team
@table @asis
@item @emph{Description}:
This function returns the number of threads in a thread team to which
either the current thread or its ancestor belongs.  For values of @var{level}
outside zero to @code{omp_get_level}, -1 is returned; if @var{level} is zero,
1 is returned, and for @code{omp_get_level}, the result is identical
to @code{omp_get_num_threads}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_size(int level);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_size(level)}
@item                   @tab @code{integer level}
@end multitable

@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_level}, @ref{omp_get_ancestor_thread_num}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.19.
@end table



@node omp_get_thread_limit
@section @code{omp_get_thread_limit} -- Maximum number of threads
@table @asis
@item @emph{Description}:
Return the maximum number of threads of the program.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_limit(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_limit()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{OMP_THREAD_LIMIT}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.14.
@end table



@node omp_get_thread_num
@section @code{omp_get_thread_num} -- Current thread ID
@table @asis
@item @emph{Description}:
Returns a unique thread identification number within the current team.
In a sequential parts of the program, @code{omp_get_thread_num}
always returns 0.  In parallel regions the return value varies
from 0 to @code{omp_get_num_threads}-1 inclusive.  The return
value of the master thread of a team is always 0.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_num(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_num()}
@end multitable

@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_ancestor_thread_num}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.4.
@end table



@node omp_in_parallel
@section @code{omp_in_parallel} -- Whether a parallel region is active
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in parallel,
@code{false} otherwise.  Here, @code{true} and @code{false} represent
their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_parallel(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_parallel()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.6.
@end table


@node omp_in_final
@section @code{omp_in_final} -- Whether in final or included task region
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in a final
or included task region, @code{false} otherwise.  Here, @code{true}
and @code{false} represent their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_final(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_final()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.21.
@end table



@node omp_is_initial_device
@section @code{omp_is_initial_device} -- Whether executing on the host device
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running on the host device,
@code{false} otherwise.  Here, @code{true} and @code{false} represent
their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_is_initial_device(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_is_initial_device()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.34.
@end table



@node omp_set_default_device
@section @code{omp_set_default_device} -- Set the default device for target regions
@table @asis
@item @emph{Description}:
Set the default device for target regions without device clause.  The argument
shall be a nonnegative device number.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_default_device(int device_num);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_default_device(device_num)}
@item                   @tab @code{integer device_num}
@end multitable

@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_get_default_device}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
@end table



@node omp_set_dynamic
@section @code{omp_set_dynamic} -- Enable/disable dynamic teams
@table @asis
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads 
within a team.  The function takes the language-specific equivalent
of @code{true} and @code{false}, where @code{true} enables dynamic 
adjustment of team sizes and @code{false} disables it.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_dynamic(int dynamic_threads);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_dynamic(dynamic_threads)}
@item                   @tab @code{logical, intent(in) :: dynamic_threads}
@end multitable

@item @emph{See also}:
@ref{OMP_DYNAMIC}, @ref{omp_get_dynamic}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.7.
@end table



@node omp_set_max_active_levels
@section @code{omp_set_max_active_levels} -- Limits the number of active parallel regions
@table @asis
@item @emph{Description}:
This function limits the maximum allowed number of nested, active
parallel regions.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_max_active_levels(int max_levels);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_max_active_levels(max_levels)}
@item                   @tab @code{integer max_levels}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_get_active_level}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.15.
@end table



@node omp_set_nested
@section @code{omp_set_nested} -- Enable/disable nested parallel regions
@table @asis
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams.  The function takes the language-specific
equivalent of @code{true} and @code{false}, where @code{true} enables 
dynamic adjustment of team sizes and @code{false} disables it.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nested(int nested);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nested(nested)}
@item                   @tab @code{logical, intent(in) :: nested}
@end multitable

@item @emph{See also}:
@ref{OMP_NESTED}, @ref{omp_get_nested}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.10.
@end table



@node omp_set_num_threads
@section @code{omp_set_num_threads} -- Set upper team size limit
@table @asis
@item @emph{Description}:
Specifies the number of threads used by default in subsequent parallel 
sections, if those do not specify a @code{num_threads} clause.  The
argument of @code{omp_set_num_threads} shall be a positive integer.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_num_threads(int num_threads);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_num_threads(num_threads)}
@item                   @tab @code{integer, intent(in) :: num_threads}
@end multitable

@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_num_threads}, @ref{omp_get_max_threads}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.1.
@end table



@node omp_set_schedule
@section @code{omp_set_schedule} -- Set the runtime scheduling method
@table @asis
@item @emph{Description}:
Sets the runtime scheduling method.  The @var{kind} argument can have the
value @code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}.  Except for
@code{omp_sched_auto}, the chunk size is set to the value of
@var{chunk_size} if positive, or to the default value if zero or negative.
For @code{omp_sched_auto} the @var{chunk_size} argument is ignored.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_schedule(omp_sched_t kind, int chunk_size);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_schedule(kind, chunk_size)}
@item                   @tab @code{integer(kind=omp_sched_kind) kind}
@item                   @tab @code{integer chunk_size}
@end multitable

@item @emph{See also}:
@ref{omp_get_schedule}
@ref{OMP_SCHEDULE}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.12.
@end table



@node omp_init_lock
@section @code{omp_init_lock} -- Initialize simple lock
@table @asis
@item @emph{Description}:
Initialize a simple lock.  After initialization, the lock is in
an unlocked state.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(out) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_destroy_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
@end table



@node omp_set_lock
@section @code{omp_set_lock} -- Wait for and set simple lock
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by 
@code{omp_init_lock}.  The calling thread is blocked until the lock 
is available.  If the lock is already held by the current thread, 
a deadlock occurs.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_test_lock}, @ref{omp_unset_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
@end table



@node omp_test_lock
@section @code{omp_test_lock} -- Test and set simple lock if available
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by 
@code{omp_init_lock}.  Contrary to @code{omp_set_lock}, @code{omp_test_lock} 
does not block if the lock is not available.  This function returns
@code{true} upon success, @code{false} otherwise.  Here, @code{true} and
@code{false} represent their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
@end table



@node omp_unset_lock
@section @code{omp_unset_lock} -- Unset simple lock
@table @asis
@item @emph{Description}:
A simple lock about to be unset must have been locked by @code{omp_set_lock}
or @code{omp_test_lock} before.  In addition, the lock must be held by the
thread calling @code{omp_unset_lock}.  Then, the lock becomes unlocked.  If one
or more threads attempted to set the lock before, one of them is chosen to,
again, set the lock to itself.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_set_lock}, @ref{omp_test_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
@end table



@node omp_destroy_lock
@section @code{omp_destroy_lock} -- Destroy simple lock
@table @asis
@item @emph{Description}:
Destroy a simple lock.  In order to be destroyed, a simple lock must be
in the unlocked state. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
@end table



@node omp_init_nest_lock
@section @code{omp_init_nest_lock} -- Initialize nested lock
@table @asis
@item @emph{Description}:
Initialize a nested lock.  After initialization, the lock is in
an unlocked state and the nesting count is set to zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(out) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_destroy_nest_lock}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
@end table


@node omp_set_nest_lock
@section @code{omp_set_nest_lock} -- Wait for and set nested lock
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by 
@code{omp_init_nest_lock}.  The calling thread is blocked until the lock
is available.  If the lock is already held by the current thread, the
nesting count for the lock is incremented.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_init_nest_lock}, @ref{omp_unset_nest_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
@end table



@node omp_test_nest_lock
@section @code{omp_test_nest_lock} -- Test and set nested lock if available
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by 
@code{omp_init_nest_lock}.  Contrary to @code{omp_set_nest_lock},
@code{omp_test_nest_lock} does not block if the lock is not available. 
If the lock is already held by the current thread, the new nesting count 
is returned.  Otherwise, the return value equals zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable


@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
@end table



@node omp_unset_nest_lock
@section @code{omp_unset_nest_lock} -- Unset nested lock
@table @asis
@item @emph{Description}:
A nested lock about to be unset must have been locked by @code{omp_set_nested_lock}
or @code{omp_test_nested_lock} before.  In addition, the lock must be held by the
thread calling @code{omp_unset_nested_lock}.  If the nesting count drops to zero, the
lock becomes unlocked.  If one ore more threads attempted to set the lock before,
one of them is chosen to, again, set the lock to itself.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_set_nest_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
@end table



@node omp_destroy_nest_lock
@section @code{omp_destroy_nest_lock} -- Destroy nested lock
@table @asis
@item @emph{Description}:
Destroy a nested lock.  In order to be destroyed, a nested lock must be
in the unlocked state and its nesting count must equal zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_nest_lock(omp_nest_lock_t *);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
@end table



@node omp_get_wtick
@section @code{omp_get_wtick} -- Get timer precision
@table @asis
@item @emph{Description}:
Gets the timer precision, i.e., the number of seconds between two 
successive clock ticks.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtick(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtick()}
@end multitable

@item @emph{See also}:
@ref{omp_get_wtime}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.2.
@end table



@node omp_get_wtime
@section @code{omp_get_wtime} -- Elapsed wall clock time
@table @asis
@item @emph{Description}:
Elapsed wall clock time in seconds.  The time is measured per thread, no
guarantee can be made that two distinct threads measure the same time.
Time is measured from some "time in the past", which is an arbitrary time
guaranteed not to change during the execution of the program.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtime(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtime()}
@end multitable

@item @emph{See also}:
@ref{omp_get_wtick}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.1.
@end table



@c ---------------------------------------------------------------------
@c OpenMP Environment Variables
@c ---------------------------------------------------------------------

@node Environment Variables
@chapter OpenMP Environment Variables

The environment variables which beginning with @env{OMP_} are defined by
section 4 of the OpenMP specification in version 4.5, while those
beginning with @env{GOMP_} are GNU extensions.

@menu
* OMP_CANCELLATION::        Set whether cancellation is activated
* OMP_DISPLAY_ENV::         Show OpenMP version and environment variables
* OMP_DEFAULT_DEVICE::      Set the device used in target regions
* OMP_DYNAMIC::             Dynamic adjustment of threads
* OMP_MAX_ACTIVE_LEVELS::   Set the maximum number of nested parallel regions
* OMP_MAX_TASK_PRIORITY::   Set the maximum task priority value
* OMP_NESTED::              Nested parallel regions
* OMP_NUM_THREADS::         Specifies the number of threads to use
* OMP_PROC_BIND::           Whether theads may be moved between CPUs
* OMP_PLACES::              Specifies on which CPUs the theads should be placed
* OMP_STACKSIZE::           Set default thread stack size
* OMP_SCHEDULE::            How threads are scheduled
* OMP_THREAD_LIMIT::        Set the maximum number of threads
* OMP_WAIT_POLICY::         How waiting threads are handled
* GOMP_CPU_AFFINITY::       Bind threads to specific CPUs
* GOMP_DEBUG::              Enable debugging output
* GOMP_STACKSIZE::          Set default thread stack size
* GOMP_SPINCOUNT::          Set the busy-wait spin count
* GOMP_RTEMS_THREAD_POOLS:: Set the RTEMS specific thread pools
@end menu


@node OMP_CANCELLATION
@section @env{OMP_CANCELLATION} -- Set whether cancellation is activated
@cindex Environment Variable
@table @asis
@item @emph{Description}:
If set to @code{TRUE}, the cancellation is activated.  If set to @code{FALSE} or
if unset, cancellation is disabled and the @code{cancel} construct is ignored.

@item @emph{See also}:
@ref{omp_get_cancellation}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.11
@end table



@node OMP_DISPLAY_ENV
@section @env{OMP_DISPLAY_ENV} -- Show OpenMP version and environment variables
@cindex Environment Variable
@table @asis
@item @emph{Description}:
If set to @code{TRUE}, the OpenMP version number and the values
associated with the OpenMP environment variables are printed to @code{stderr}.
If set to @code{VERBOSE}, it additionally shows the value of the environment
variables which are GNU extensions.  If undefined or set to @code{FALSE},
this information will not be shown.


@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.12
@end table



@node OMP_DEFAULT_DEVICE
@section @env{OMP_DEFAULT_DEVICE} -- Set the device used in target regions
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Set to choose the device which is used in a @code{target} region, unless the
value is overridden by @code{omp_set_default_device} or by a @code{device}
clause.  The value shall be the nonnegative device number. If no device with
the given device number exists, the code is executed on the host.  If unset,
device number 0 will be used.


@item @emph{See also}:
@ref{omp_get_default_device}, @ref{omp_set_default_device},

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.13
@end table



@node OMP_DYNAMIC
@section @env{OMP_DYNAMIC} -- Dynamic adjustment of threads
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads 
within a team.  The value of this environment variable shall be 
@code{TRUE} or @code{FALSE}.  If undefined, dynamic adjustment is
disabled by default.

@item @emph{See also}:
@ref{omp_set_dynamic}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.3
@end table



@node OMP_MAX_ACTIVE_LEVELS
@section @env{OMP_MAX_ACTIVE_LEVELS} -- Set the maximum number of nested parallel regions
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies the initial value for the maximum number of nested parallel
regions.  The value of this variable shall be a positive integer.
If undefined, the number of active levels is unlimited.

@item @emph{See also}:
@ref{omp_set_max_active_levels}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.9
@end table



@node OMP_MAX_TASK_PRIORITY
@section @env{OMP_MAX_TASK_PRIORITY} -- Set the maximum priority
number that can be set for a task.
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies the initial value for the maximum priority value that can be
set for a task.  The value of this variable shall be a non-negative
integer, and zero is allowed.  If undefined, the default priority is
0.

@item @emph{See also}:
@ref{omp_get_max_task_priority}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.14
@end table



@node OMP_NESTED
@section @env{OMP_NESTED} -- Nested parallel regions
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams.  The value of this environment variable 
shall be @code{TRUE} or @code{FALSE}.  If undefined, nested parallel 
regions are disabled by default.

@item @emph{See also}:
@ref{omp_set_nested}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.6
@end table



@node OMP_NUM_THREADS
@section @env{OMP_NUM_THREADS} -- Specifies the number of threads to use
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Specifies the default number of threads to use in parallel regions.  The 
value of this variable shall be a comma-separated list of positive integers;
the value specified the number of threads to use for the corresponding nested
level.  If undefined one thread per CPU is used.

@item @emph{See also}:
@ref{omp_set_num_threads}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.2
@end table



@node OMP_PROC_BIND
@section @env{OMP_PROC_BIND} -- Whether theads may be moved between CPUs
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies whether threads may be moved between processors.  If set to
@code{TRUE}, OpenMP theads should not be moved; if set to @code{FALSE}
they may be moved.  Alternatively, a comma separated list with the
values @code{MASTER}, @code{CLOSE} and @code{SPREAD} can be used to specify
the thread affinity policy for the corresponding nesting level.  With
@code{MASTER} the worker threads are in the same place partition as the
master thread.  With @code{CLOSE} those are kept close to the master thread
in contiguous place partitions.  And with @code{SPREAD} a sparse distribution
across the place partitions is used.

When undefined, @env{OMP_PROC_BIND} defaults to @code{TRUE} when
@env{OMP_PLACES} or @env{GOMP_CPU_AFFINITY} is set and @code{FALSE} otherwise.

@item @emph{See also}:
@ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.4
@end table



@node OMP_PLACES
@section @env{OMP_PLACES} -- Specifies on which CPUs the theads should be placed
@cindex Environment Variable
@table @asis
@item @emph{Description}:
The thread placement can be either specified using an abstract name or by an
explicit list of the places.  The abstract names @code{threads}, @code{cores}
and @code{sockets} can be optionally followed by a positive number in
parentheses, which denotes the how many places shall be created.  With
@code{threads} each place corresponds to a single hardware thread; @code{cores}
to a single core with the corresponding number of hardware threads; and with
@code{sockets} the place corresponds to a single socket.  The resulting
placement can be shown by setting the @env{OMP_DISPLAY_ENV} environment
variable.

Alternatively, the placement can be specified explicitly as comma-separated
list of places.  A place is specified by set of nonnegative numbers in curly
braces, denoting the denoting the hardware threads.  The hardware threads
belonging to a place can either be specified as comma-separated list of
nonnegative thread numbers or using an interval.  Multiple places can also be
either specified by a comma-separated list of places or by an interval.  To
specify an interval, a colon followed by the count is placed after after
the hardware thread number or the place.  Optionally, the length can be
followed by a colon and the stride number -- otherwise a unit stride is
assumed.  For instance, the following specifies the same places list:
@code{"@{0,1,2@}, @{3,4,6@}, @{7,8,9@}, @{10,11,12@}"};
@code{"@{0:3@}, @{3:3@}, @{7:3@}, @{10:3@}"}; and @code{"@{0:2@}:4:3"}.

If @env{OMP_PLACES} and @env{GOMP_CPU_AFFINITY} are unset and
@env{OMP_PROC_BIND} is either unset or @code{false}, threads may be moved
between CPUs following no placement policy.

@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind},
@ref{OMP_DISPLAY_ENV}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.5
@end table



@node OMP_STACKSIZE
@section @env{OMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Set the default thread stack size in kilobytes, unless the number
is suffixed by @code{B}, @code{K}, @code{M} or @code{G}, in which
case the size is, respectively, in bytes, kilobytes, megabytes
or gigabytes.  This is different from @code{pthread_attr_setstacksize}
which gets the number of bytes as an argument.  If the stack size cannot
be set due to system constraints, an error is reported and the initial
stack size is left unchanged.  If undefined, the stack size is system
dependent.

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.7
@end table



@node OMP_SCHEDULE
@section @env{OMP_SCHEDULE} -- How threads are scheduled
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Allows to specify @code{schedule type} and @code{chunk size}. 
The value of the variable shall have the form: @code{type[,chunk]} where
@code{type} is one of @code{static}, @code{dynamic}, @code{guided} or @code{auto}
The optional @code{chunk} size shall be a positive integer.  If undefined,
dynamic scheduling and a chunk size of 1 is used.

@item @emph{See also}:
@ref{omp_set_schedule}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Sections 2.7.1.1 and 4.1
@end table



@node OMP_THREAD_LIMIT
@section @env{OMP_THREAD_LIMIT} -- Set the maximum number of threads
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies the number of threads to use for the whole program.  The
value of this variable shall be a positive integer.  If undefined,
the number of threads is not limited.

@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_thread_limit}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.10
@end table



@node OMP_WAIT_POLICY
@section @env{OMP_WAIT_POLICY} -- How waiting threads are handled
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies whether waiting threads should be active or passive.  If
the value is @code{PASSIVE}, waiting threads should not consume CPU
power while waiting; while the value is @code{ACTIVE} specifies that
they should.  If undefined, threads wait actively for a short time
before waiting passively.

@item @emph{See also}:
@ref{GOMP_SPINCOUNT}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.8
@end table



@node GOMP_CPU_AFFINITY
@section @env{GOMP_CPU_AFFINITY} -- Bind threads to specific CPUs
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Binds threads to specific CPUs.  The variable should contain a space-separated
or comma-separated list of CPUs.  This list may contain different kinds of 
entries: either single CPU numbers in any order, a range of CPUs (M-N) 
or a range with some stride (M-N:S).  CPU numbers are zero based.  For example,
@code{GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"} will bind the initial thread
to CPU 0, the second to CPU 3, the third to CPU 1, the fourth to 
CPU 2, the fifth to CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12,
and 14 respectively and then start assigning back from the beginning of
the list.  @code{GOMP_CPU_AFFINITY=0} binds all threads to CPU 0.

There is no libgomp library routine to determine whether a CPU affinity
specification is in effect.  As a workaround, language-specific library 
functions, e.g., @code{getenv} in C or @code{GET_ENVIRONMENT_VARIABLE} in 
Fortran, may be used to query the setting of the @code{GOMP_CPU_AFFINITY} 
environment variable.  A defined CPU affinity on startup cannot be changed 
or disabled during the runtime of the application.

If both @env{GOMP_CPU_AFFINITY} and @env{OMP_PROC_BIND} are set,
@env{OMP_PROC_BIND} has a higher precedence.  If neither has been set and
@env{OMP_PROC_BIND} is unset, or when @env{OMP_PROC_BIND} is set to
@code{FALSE}, the host system will handle the assignment of threads to CPUs.

@item @emph{See also}:
@ref{OMP_PLACES}, @ref{OMP_PROC_BIND}
@end table



@node GOMP_DEBUG
@section @env{GOMP_DEBUG} -- Enable debugging output
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Enable debugging output.  The variable should be set to @code{0}
(disabled, also the default if not set), or @code{1} (enabled).

If enabled, some debugging output will be printed during execution.
This is currently not specified in more detail, and subject to change.
@end table



@node GOMP_STACKSIZE
@section @env{GOMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Set the default thread stack size in kilobytes.  This is different from
@code{pthread_attr_setstacksize} which gets the number of bytes as an 
argument.  If the stack size cannot be set due to system constraints, an 
error is reported and the initial stack size is left unchanged.  If undefined,
the stack size is system dependent.

@item @emph{See also}:
@ref{OMP_STACKSIZE}

@item @emph{Reference}: 
@uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html,
GCC Patches Mailinglist}, 
@uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html,
GCC Patches Mailinglist}
@end table



@node GOMP_SPINCOUNT
@section @env{GOMP_SPINCOUNT} -- Set the busy-wait spin count
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Determines how long a threads waits actively with consuming CPU power
before waiting passively without consuming CPU power.  The value may be
either @code{INFINITE}, @code{INFINITY} to always wait actively or an
integer which gives the number of spins of the busy-wait loop.  The
integer may optionally be followed by the following suffixes acting
as multiplication factors: @code{k} (kilo, thousand), @code{M} (mega,
million), @code{G} (giga, billion), or @code{T} (tera, trillion).
If undefined, 0 is used when @env{OMP_WAIT_POLICY} is @code{PASSIVE},
300,000 is used when @env{OMP_WAIT_POLICY} is undefined and
30 billion is used when @env{OMP_WAIT_POLICY} is @code{ACTIVE}.
If there are more OpenMP threads than available CPUs, 1000 and 100
spins are used for @env{OMP_WAIT_POLICY} being @code{ACTIVE} or
undefined, respectively; unless the @env{GOMP_SPINCOUNT} is lower
or @env{OMP_WAIT_POLICY} is @code{PASSIVE}.

@item @emph{See also}:
@ref{OMP_WAIT_POLICY}
@end table



@node GOMP_RTEMS_THREAD_POOLS
@section @env{GOMP_RTEMS_THREAD_POOLS} -- Set the RTEMS specific thread pools
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
This environment variable is only used on the RTEMS real-time operating system.
It determines the scheduler instance specific thread pools.  The format for
@env{GOMP_RTEMS_THREAD_POOLS} is a list of optional
@code{<thread-pool-count>[$<priority>]@@<scheduler-name>} configurations
separated by @code{:} where:
@itemize @bullet
@item @code{<thread-pool-count>} is the thread pool count for this scheduler
instance.
@item @code{$<priority>} is an optional priority for the worker threads of a
thread pool according to @code{pthread_setschedparam}.  In case a priority
value is omitted, then a worker thread will inherit the priority of the OpenMP
master thread that created it.  The priority of the worker thread is not
changed after creation, even if a new OpenMP master thread using the worker has
a different priority.
@item @code{@@<scheduler-name>} is the scheduler instance name according to the
RTEMS application configuration.
@end itemize
In case no thread pool configuration is specified for a scheduler instance,
then each OpenMP master thread of this scheduler instance will use its own
dynamically allocated thread pool.  To limit the worker thread count of the
thread pools, each OpenMP master thread must call @code{omp_set_num_threads}.
@item @emph{Example}:
Lets suppose we have three scheduler instances @code{IO}, @code{WRK0}, and
@code{WRK1} with @env{GOMP_RTEMS_THREAD_POOLS} set to
@code{"1@@WRK0:3$4@@WRK1"}.  Then there are no thread pool restrictions for
scheduler instance @code{IO}.  In the scheduler instance @code{WRK0} there is
one thread pool available.  Since no priority is specified for this scheduler
instance, the worker thread inherits the priority of the OpenMP master thread
that created it.  In the scheduler instance @code{WRK1} there are three thread
pools available and their worker threads run at priority four.
@end table



@c ---------------------------------------------------------------------
@c Enabling OpenACC
@c ---------------------------------------------------------------------

@node Enabling OpenACC
@chapter Enabling OpenACC

To activate the OpenACC extensions for C/C++ and Fortran, the compile-time 
flag @option{-fopenacc} must be specified.  This enables the OpenACC directive
@code{#pragma acc} in C/C++ and @code{!$acc} directives in free form,
@code{c$acc}, @code{*$acc} and @code{!$acc} directives in fixed form,
@code{!$} conditional compilation sentinels in free form and @code{c$},
@code{*$} and @code{!$} sentinels in fixed form, for Fortran.  The flag also
arranges for automatic linking of the OpenACC runtime library 
(@ref{OpenACC Runtime Library Routines}).

See @uref{https://gcc.gnu.org/wiki/OpenACC} for more information.

A complete description of all OpenACC directives accepted may be found in 
the @uref{https://www.openacc.org, OpenACC} Application Programming
Interface manual, version 2.6.



@c ---------------------------------------------------------------------
@c OpenACC Runtime Library Routines
@c ---------------------------------------------------------------------

@node OpenACC Runtime Library Routines
@chapter OpenACC Runtime Library Routines

The runtime routines described here are defined by section 3 of the OpenACC
specifications in version 2.6.
They have C linkage, and do not throw exceptions.
Generally, they are available only for the host, with the exception of
@code{acc_on_device}, which is available for both the host and the
acceleration device.

@menu
* acc_get_num_devices::         Get number of devices for the given device
                                type.
* acc_set_device_type::         Set type of device accelerator to use.
* acc_get_device_type::         Get type of device accelerator to be used.
* acc_set_device_num::          Set device number to use.
* acc_get_device_num::          Get device number to be used.
* acc_get_property::            Get device property.
* acc_async_test::              Tests for completion of a specific asynchronous
                                operation.
* acc_async_test_all::          Tests for completion of all asynchronous
                                operations.
* acc_wait::                    Wait for completion of a specific asynchronous
                                operation.
* acc_wait_all::                Waits for completion of all asynchronous
                                operations.
* acc_wait_all_async::          Wait for completion of all asynchronous
                                operations.
* acc_wait_async::              Wait for completion of asynchronous operations.
* acc_init::                    Initialize runtime for a specific device type.
* acc_shutdown::                Shuts down the runtime for a specific device
                                type.
* acc_on_device::               Whether executing on a particular device
* acc_malloc::                  Allocate device memory.
* acc_free::                    Free device memory.
* acc_copyin::                  Allocate device memory and copy host memory to
                                it.
* acc_present_or_copyin::       If the data is not present on the device,
                                allocate device memory and copy from host
                                memory.
* acc_create::                  Allocate device memory and map it to host
                                memory.
* acc_present_or_create::       If the data is not present on the device,
                                allocate device memory and map it to host
                                memory.
* acc_copyout::                 Copy device memory to host memory.
* acc_delete::                  Free device memory.
* acc_update_device::           Update device memory from mapped host memory.
* acc_update_self::             Update host memory from mapped device memory.
* acc_map_data::                Map previously allocated device memory to host
                                memory.
* acc_unmap_data::              Unmap device memory from host memory.
* acc_deviceptr::               Get device pointer associated with specific
                                host address.
* acc_hostptr::                 Get host pointer associated with specific
                                device address.
* acc_is_present::              Indicate whether host variable / array is
                                present on device.
* acc_memcpy_to_device::        Copy host memory to device memory.
* acc_memcpy_from_device::      Copy device memory to host memory.
* acc_attach::                  Let device pointer point to device-pointer target.
* acc_detach::                  Let device pointer point to host-pointer target.

API routines for target platforms.

* acc_get_current_cuda_device:: Get CUDA device handle.
* acc_get_current_cuda_context::Get CUDA context handle.
* acc_get_cuda_stream::         Get CUDA stream handle.
* acc_set_cuda_stream::         Set CUDA stream handle.

API routines for the OpenACC Profiling Interface.

* acc_prof_register::           Register callbacks.
* acc_prof_unregister::         Unregister callbacks.
* acc_prof_lookup::             Obtain inquiry functions.
* acc_register_library::        Library registration.
@end menu



@node acc_get_num_devices
@section @code{acc_get_num_devices} -- Get number of devices for given device type
@table @asis
@item @emph{Description}
This function returns a value indicating the number of devices available
for the device type specified in @var{devicetype}. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_num_devices(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function acc_get_num_devices(devicetype)}
@item                  @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.1.
@end table



@node acc_set_device_type
@section @code{acc_set_device_type} -- Set type of device accelerator to use.
@table @asis
@item @emph{Description}
This function indicates to the runtime library which device type, specified
in @var{devicetype}, to use when executing a parallel or kernels region. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_type(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_type(devicetype)}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.2.
@end table



@node acc_get_device_type
@section @code{acc_get_device_type} -- Get type of device accelerator to be used.
@table @asis
@item @emph{Description}
This function returns what device type will be used when executing a
parallel or kernels region.

This function returns @code{acc_device_none} if
@code{acc_get_device_type} is called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks of the OpenACC Profiling Interface (@ref{OpenACC Profiling
Interface}), that is, if the device is currently being initialized.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_device_t acc_get_device_type(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_type(void)}
@item                  @tab @code{integer(kind=acc_device_kind) acc_get_device_type}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.3.
@end table



@node acc_set_device_num
@section @code{acc_set_device_num} -- Set device number to use.
@table @asis
@item @emph{Description}
This function will indicate to the runtime which device number,
specified by @var{devicenum}, associated with the specified device
type @var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_num(int devicenum, acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_num(devicenum, devicetype)}
@item                   @tab @code{integer devicenum}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.4.
@end table



@node acc_get_device_num
@section @code{acc_get_device_num} -- Get device number to be used.
@table @asis
@item @emph{Description}
This function returns which device number associated with the specified device
type @var{devicetype}, will be used when executing a parallel or kernels
region.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_device_num(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_num(devicetype)}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@item                   @tab @code{integer acc_get_device_num}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.5.
@end table



@node acc_get_property
@section @code{acc_get_property} -- Get device property.
@cindex acc_get_property
@cindex acc_get_property_string
@table @asis
@item @emph{Description}
These routines return the value of the specified @var{property} for the
device being queried according to @var{devicenum} and @var{devicetype}.
Integer-valued and string-valued properties are returned by
@code{acc_get_property} and @code{acc_get_property_string} respectively.
The Fortran @code{acc_get_property_string} subroutine returns the string
retrieved in its fourth argument while the remaining entry points are
functions, which pass the return value as their result.

Note for Fortran, only: the OpenACC technical committee corrected and, hence,
modified the interface introduced in OpenACC 2.6.  The kind-value parameter
@code{acc_device_property} has been renamed to @code{acc_device_property_kind}
for consistency and the return type of the @code{acc_get_property} function is
now a @code{c_size_t} integer instead of a @code{acc_device_property} integer.
The parameter @code{acc_device_property} will continue to be provided,
but might be removed in a future version of GCC.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{size_t acc_get_property(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
@item @emph{Prototype}: @tab @code{const char *acc_get_property_string(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_property(devicenum, devicetype, property)}
@item @emph{Interface}: @tab @code{subroutine acc_get_property_string(devicenum, devicetype, property, string)}
@item                   @tab @code{use ISO_C_Binding, only: c_size_t}
@item                   @tab @code{integer devicenum}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@item                   @tab @code{integer(kind=acc_device_property_kind) property}
@item                   @tab @code{integer(kind=c_size_t) acc_get_property}
@item                   @tab @code{character(*) string}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.6.
@end table



@node acc_async_test
@section @code{acc_async_test} -- Test for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function tests for completion of the asynchronous operation specified
in @var{arg}. In C/C++, a non-zero value will be returned to indicate
the specified asynchronous operation has completed. While Fortran will return
a @code{true}. If the asynchronous operation has not completed, C/C++ returns
a zero and Fortran returns a @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test(int arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test(arg)}
@item                   @tab @code{integer(kind=acc_handle_kind) arg}
@item                   @tab @code{logical acc_async_test}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.9.
@end table



@node acc_async_test_all
@section @code{acc_async_test_all} -- Tests for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function tests for completion of all asynchronous operations.
In C/C++, a non-zero value will be returned to indicate all asynchronous
operations have completed. While Fortran will return a @code{true}. If
any asynchronous operation has not completed, C/C++ returns a zero and
Fortran returns a @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test_all(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test()}
@item                   @tab @code{logical acc_get_device_num}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.10.
@end table



@node acc_wait
@section @code{acc_wait} -- Wait for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function waits for completion of the asynchronous operation
specified in @var{arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait(arg);}
@item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait(arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait(arg)}
@item                   @tab @code{integer(acc_handle_kind) arg}
@item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait(arg)}
@item                                               @tab @code{integer(acc_handle_kind) arg}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.11.
@end table



@node acc_wait_all
@section @code{acc_wait_all} -- Waits for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function waits for the completion of all asynchronous operations.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all(void);}
@item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait_all(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_all()}
@item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait_all()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.13.
@end table



@node acc_wait_all_async
@section @code{acc_wait_all_async} -- Wait for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on the queue @var{async} for any
and all asynchronous operations that have been previously enqueued on
any queue.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all_async(int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_all_async(async)}
@item                   @tab @code{integer(acc_handle_kind) async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.14.
@end table



@node acc_wait_async
@section @code{acc_wait_async} -- Wait for completion of asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on queue @var{async} for any and all
asynchronous operations enqueued on queue @var{arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_async(int arg, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_async(arg, async)}
@item                   @tab @code{integer(acc_handle_kind) arg, async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.12.
@end table



@node acc_init
@section @code{acc_init} -- Initialize runtime for a specific device type.
@table @asis
@item @emph{Description}
This function initializes the runtime for the device type specified in
@var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_init(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_init(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.7.
@end table



@node acc_shutdown
@section @code{acc_shutdown} -- Shuts down the runtime for a specific device type.
@table @asis
@item @emph{Description}
This function shuts down the runtime for the device type specified in
@var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_shutdown(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_shutdown(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.8.
@end table



@node acc_on_device
@section @code{acc_on_device} -- Whether executing on a particular device
@table @asis
@item @emph{Description}:
This function returns whether the program is executing on a particular
device specified in @var{devicetype}. In C/C++ a non-zero value is
returned to indicate the device is executing on the specified device type.
In Fortran, @code{true} will be returned. If the program is not executing
on the specified device type C/C++ will return a zero, while Fortran will
return @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_on_device(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_on_device(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@item                   @tab @code{logical acc_on_device}
@end multitable


@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.17.
@end table



@node acc_malloc
@section @code{acc_malloc} -- Allocate device memory.
@table @asis
@item @emph{Description}
This function allocates @var{len} bytes of device memory. It returns
the device address of the allocated memory.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{d_void* acc_malloc(size_t len);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.18.
@end table



@node acc_free
@section @code{acc_free} -- Free device memory.
@table @asis
@item @emph{Description}
Free previously allocated device memory at the device address @code{a}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_free(d_void *a);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.19.
@end table



@node acc_copyin
@section @code{acc_copyin} -- Allocate device memory and copy host memory to it.
@table @asis
@item @emph{Description}
In C/C++, this function allocates @var{len} bytes of device memory
and maps it to the specified host address in @var{a}. The device
address of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a
variable or array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_copyin(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_copyin_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.20.
@end table



@node acc_present_or_copyin
@section @code{acc_present_or_copyin} -- If the data is not present on the device, allocate device memory and copy from host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specified by @var{a} and of length
@var{len} is present or not. If it is not present, then device memory
will be allocated and the host memory copied. The device address of
the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

Note that @code{acc_present_or_copyin} and @code{acc_pcopyin} exist for
backward compatibility with OpenACC 2.0; use @ref{acc_copyin} instead.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_copyin(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_pcopyin(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.20.
@end table



@node acc_create
@section @code{acc_create} -- Allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function allocates device memory and maps it to host memory specified
by the host address @var{a} with a length of @var{len} bytes. In C/C++,
the function returns the device address of the allocated device memory.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_create(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_create_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_create(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_create(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_create_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_create_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.21.
@end table



@node acc_present_or_create
@section @code{acc_present_or_create} -- If the data is not present on the device, allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specified by @var{a} and of length
@var{len} is present or not. If it is not present, then device memory
will be allocated and mapped to host memory. In C/C++, the device address
of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

Note that @code{acc_present_or_create} and @code{acc_pcreate} exist for
backward compatibility with OpenACC 2.0; use @ref{acc_create} instead.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_create(h_void *a, size_t len)}
@item @emph{Prototype}: @tab @code{void *acc_pcreate(h_void *a, size_t len)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.21.
@end table



@node acc_copyout
@section @code{acc_copyout} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies mapped device memory to host memory which is specified
by host address @var{a} for a length @var{len} bytes in C/C++.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_copyout(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_copyout_async(h_void *a, size_t len, int async);}
@item @emph{Prototype}: @tab @code{acc_copyout_finalize(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_copyout_finalize_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.22.
@end table



@node acc_delete
@section @code{acc_delete} -- Free device memory.
@table @asis
@item @emph{Description}
This function frees previously allocated device memory specified by
the device address @var{a} and the length of @var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_delete(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_delete_async(h_void *a, size_t len, int async);}
@item @emph{Prototype}: @tab @code{acc_delete_finalize(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_delete_finalize_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_delete(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_delete(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.23.
@end table



@node acc_update_device
@section @code{acc_update_device} -- Update device memory from mapped host memory.
@table @asis
@item @emph{Description}
This function updates the device copy from the previously mapped host memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len, async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.24.
@end table



@node acc_update_self
@section @code{acc_update_self} -- Update host memory from mapped device memory.
@table @asis
@item @emph{Description}
This function updates the host copy from the previously mapped device memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_self(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_update_self_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.25.
@end table



@node acc_map_data
@section @code{acc_map_data} -- Map previously allocated device memory to host memory.
@table @asis
@item @emph{Description}
This function maps previously allocated device and host memory. The device
memory is specified with the device address @var{d}. The host memory is
specified with the host address @var{h} and a length of @var{len}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_map_data(h_void *h, d_void *d, size_t len);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.26.
@end table



@node acc_unmap_data
@section @code{acc_unmap_data} -- Unmap device memory from host memory.
@table @asis
@item @emph{Description}
This function unmaps previously mapped device and host memory. The latter
specified by @var{h}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_unmap_data(h_void *h);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.27.
@end table



@node acc_deviceptr
@section @code{acc_deviceptr} -- Get device pointer associated with specific host address.
@table @asis
@item @emph{Description}
This function returns the device address that has been mapped to the
host address specified by @var{h}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_deviceptr(h_void *h);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.28.
@end table



@node acc_hostptr
@section @code{acc_hostptr} -- Get host pointer associated with specific device address.
@table @asis
@item @emph{Description}
This function returns the host address that has been mapped to the
device address specified by @var{d}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_hostptr(d_void *d);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.29.
@end table



@node acc_is_present
@section @code{acc_is_present} -- Indicate whether host variable / array is present on device.
@table @asis
@item @emph{Description}
This function indicates whether the specified host address in @var{a} and a
length of @var{len} bytes is present on the device. In C/C++, a non-zero
value is returned to indicate the presence of the mapped memory on the
device. A zero is returned to indicate the memory is not mapped on the
device.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes. If the host
memory is mapped to device memory, then a @code{true} is returned. Otherwise,
a @code{false} is return to indicate the mapped memory is not present.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_is_present(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_is_present(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{logical acc_is_present}
@item @emph{Interface}: @tab @code{function acc_is_present(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{logical acc_is_present}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.30.
@end table



@node acc_memcpy_to_device
@section @code{acc_memcpy_to_device} -- Copy host memory to device memory.
@table @asis
@item @emph{Description}
This function copies host memory specified by host address of @var{src} to
device memory specified by the device address @var{dest} for a length of
@var{bytes} bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_memcpy_to_device(d_void *dest, h_void *src, size_t bytes);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.31.
@end table



@node acc_memcpy_from_device
@section @code{acc_memcpy_from_device} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies host memory specified by host address of @var{src} from
device memory specified by the device address @var{dest} for a length of
@var{bytes} bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_memcpy_from_device(d_void *dest, h_void *src, size_t bytes);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.32.
@end table



@node acc_attach
@section @code{acc_attach} -- Let device pointer point to device-pointer target.
@table @asis
@item @emph{Description}
This function updates a pointer on the device from pointing to a host-pointer
address to pointing to the corresponding device data.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_attach(h_void **ptr);}
@item @emph{Prototype}: @tab @code{acc_attach_async(h_void **ptr, int async);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.34.
@end table



@node acc_detach
@section @code{acc_detach} -- Let device pointer point to host-pointer target.
@table @asis
@item @emph{Description}
This function updates a pointer on the device from pointing to a device-pointer
address to pointing to the corresponding host data.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_detach(h_void **ptr);}
@item @emph{Prototype}: @tab @code{acc_detach_async(h_void **ptr, int async);}
@item @emph{Prototype}: @tab @code{acc_detach_finalize(h_void **ptr);}
@item @emph{Prototype}: @tab @code{acc_detach_finalize_async(h_void **ptr, int async);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.35.
@end table



@node acc_get_current_cuda_device
@section @code{acc_get_current_cuda_device} -- Get CUDA device handle.
@table @asis
@item @emph{Description}
This function returns the CUDA device handle. This handle is the same
as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_device(void);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.1.
@end table



@node acc_get_current_cuda_context
@section @code{acc_get_current_cuda_context} -- Get CUDA context handle.
@table @asis
@item @emph{Description}
This function returns the CUDA context handle. This handle is the same
as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_context(void);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.2.
@end table



@node acc_get_cuda_stream
@section @code{acc_get_cuda_stream} -- Get CUDA stream handle.
@table @asis
@item @emph{Description}
This function returns the CUDA stream handle for the queue @var{async}.
This handle is the same as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_cuda_stream(int async);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.3.
@end table



@node acc_set_cuda_stream
@section @code{acc_set_cuda_stream} -- Set CUDA stream handle.
@table @asis
@item @emph{Description}
This function associates the stream handle specified by @var{stream} with
the queue @var{async}.

This cannot be used to change the stream handle associated with
@code{acc_async_sync}.

The return value is not specified.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_set_cuda_stream(int async, void *stream);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.4.
@end table



@node acc_prof_register
@section @code{acc_prof_register} -- Register callbacks.
@table @asis
@item @emph{Description}:
This function registers callbacks.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_prof_register (acc_event_t, acc_prof_callback, acc_register_t);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@node acc_prof_unregister
@section @code{acc_prof_unregister} -- Unregister callbacks.
@table @asis
@item @emph{Description}:
This function unregisters callbacks.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_prof_unregister (acc_event_t, acc_prof_callback, acc_register_t);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@node acc_prof_lookup
@section @code{acc_prof_lookup} -- Obtain inquiry functions.
@table @asis
@item @emph{Description}:
Function to obtain inquiry functions.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_query_fn acc_prof_lookup (const char *);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@node acc_register_library
@section @code{acc_register_library} -- Library registration.
@table @asis
@item @emph{Description}:
Function for library registration.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_register_library (acc_prof_reg, acc_prof_reg, acc_prof_lookup_func);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}, @ref{ACC_PROFLIB}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@c ---------------------------------------------------------------------
@c OpenACC Environment Variables
@c ---------------------------------------------------------------------

@node OpenACC Environment Variables
@chapter OpenACC Environment Variables

The variables @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}
are defined by section 4 of the OpenACC specification in version 2.0.
The variable @env{ACC_PROFLIB}
is defined by section 4 of the OpenACC specification in version 2.6.
The variable @env{GCC_ACC_NOTIFY} is used for diagnostic purposes.

@menu
* ACC_DEVICE_TYPE::
* ACC_DEVICE_NUM::
* ACC_PROFLIB::
* GCC_ACC_NOTIFY::
@end menu



@node ACC_DEVICE_TYPE
@section @code{ACC_DEVICE_TYPE}
@table @asis
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.1.
@end table



@node ACC_DEVICE_NUM
@section @code{ACC_DEVICE_NUM}
@table @asis
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.2.
@end table



@node ACC_PROFLIB
@section @code{ACC_PROFLIB}
@table @asis
@item @emph{See also}:
@ref{acc_register_library}, @ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.3.
@end table



@node GCC_ACC_NOTIFY
@section @code{GCC_ACC_NOTIFY}
@table @asis
@item @emph{Description}:
Print debug information pertaining to the accelerator.
@end table



@c ---------------------------------------------------------------------
@c CUDA Streams Usage
@c ---------------------------------------------------------------------

@node CUDA Streams Usage
@chapter CUDA Streams Usage

This applies to the @code{nvptx} plugin only.

The library provides elements that perform asynchronous movement of
data and asynchronous operation of computing constructs.  This
asynchronous functionality is implemented by making use of CUDA
streams@footnote{See "Stream Management" in "CUDA Driver API",
TRM-06703-001, Version 5.5, for additional information}.

The primary means by that the asynchronous functionality is accessed
is through the use of those OpenACC directives which make use of the
@code{async} and @code{wait} clauses.  When the @code{async} clause is
first used with a directive, it creates a CUDA stream.  If an
@code{async-argument} is used with the @code{async} clause, then the
stream is associated with the specified @code{async-argument}.

Following the creation of an association between a CUDA stream and the
@code{async-argument} of an @code{async} clause, both the @code{wait}
clause and the @code{wait} directive can be used.  When either the
clause or directive is used after stream creation, it creates a
rendezvous point whereby execution waits until all operations
associated with the @code{async-argument}, that is, stream, have
completed.

Normally, the management of the streams that are created as a result of
using the @code{async} clause, is done without any intervention by the
caller.  This implies the association between the @code{async-argument}
and the CUDA stream will be maintained for the lifetime of the program.
However, this association can be changed through the use of the library
function @code{acc_set_cuda_stream}.  When the function
@code{acc_set_cuda_stream} is called, the CUDA stream that was
originally associated with the @code{async} clause will be destroyed.
Caution should be taken when changing the association as subsequent
references to the @code{async-argument} refer to a different
CUDA stream.



@c ---------------------------------------------------------------------
@c OpenACC Library Interoperability
@c ---------------------------------------------------------------------

@node OpenACC Library Interoperability
@chapter OpenACC Library Interoperability

@section Introduction

The OpenACC library uses the CUDA Driver API, and may interact with
programs that use the Runtime library directly, or another library
based on the Runtime library, e.g., CUBLAS@footnote{See section 2.26,
"Interactions with the CUDA Driver API" in
"CUDA Runtime API", Version 5.5, and section 2.27, "VDPAU
Interoperability", in "CUDA Driver API", TRM-06703-001, Version 5.5,
for additional information on library interoperability.}.
This chapter describes the use cases and what changes are
required in order to use both the OpenACC library and the CUBLAS and Runtime
libraries within a program.

@section First invocation: NVIDIA CUBLAS library API

In this first use case (see below), a function in the CUBLAS library is called
prior to any of the functions in the OpenACC library. More specifically, the
function @code{cublasCreate()}.

When invoked, the function initializes the library and allocates the
hardware resources on the host and the device on behalf of the caller. Once
the initialization and allocation has completed, a handle is returned to the
caller. The OpenACC library also requires initialization and allocation of
hardware resources. Since the CUBLAS library has already allocated the
hardware resources for the device, all that is left to do is to initialize
the OpenACC library and acquire the hardware resources on the host.

Prior to calling the OpenACC function that initializes the library and
allocate the host hardware resources, you need to acquire the device number
that was allocated during the call to @code{cublasCreate()}. The invoking of the
runtime library function @code{cudaGetDevice()} accomplishes this. Once
acquired, the device number is passed along with the device type as
parameters to the OpenACC library function @code{acc_set_device_num()}.

Once the call to @code{acc_set_device_num()} has completed, the OpenACC
library uses the  context that was created during the call to
@code{cublasCreate()}. In other words, both libraries will be sharing the
same context.

@smallexample
    /* Create the handle */
    s = cublasCreate(&h);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasCreate failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Get the device number */
    e = cudaGetDevice(&dev);
    if (e != cudaSuccess)
    @{
        fprintf(stderr, "cudaGetDevice failed %d\n", e);
        exit(EXIT_FAILURE);
    @}

    /* Initialize OpenACC library and use device 'dev' */
    acc_set_device_num(dev, acc_device_nvidia);

@end smallexample
@center Use Case 1 

@section First invocation: OpenACC library API

In this second use case (see below), a function in the OpenACC library is
called prior to any of the functions in the CUBLAS library. More specificially,
the function @code{acc_set_device_num()}.

In the use case presented here, the function @code{acc_set_device_num()}
is used to both initialize the OpenACC library and allocate the hardware
resources on the host and the device. In the call to the function, the
call parameters specify which device to use and what device
type to use, i.e., @code{acc_device_nvidia}. It should be noted that this
is but one method to initialize the OpenACC library and allocate the
appropriate hardware resources. Other methods are available through the
use of environment variables and these will be discussed in the next section.

Once the call to @code{acc_set_device_num()} has completed, other OpenACC
functions can be called as seen with multiple calls being made to
@code{acc_copyin()}. In addition, calls can be made to functions in the
CUBLAS library. In the use case a call to @code{cublasCreate()} is made
subsequent to the calls to @code{acc_copyin()}.
As seen in the previous use case, a call to @code{cublasCreate()}
initializes the CUBLAS library and allocates the hardware resources on the
host and the device.  However, since the device has already been allocated,
@code{cublasCreate()} will only initialize the CUBLAS library and allocate
the appropriate hardware resources on the host. The context that was created
as part of the OpenACC initialization is shared with the CUBLAS library,
similarly to the first use case.

@smallexample
    dev = 0;

    acc_set_device_num(dev, acc_device_nvidia);

    /* Copy the first set to the device */
    d_X = acc_copyin(&h_X[0], N * sizeof (float));
    if (d_X == NULL)
    @{ 
        fprintf(stderr, "copyin error h_X\n");
        exit(EXIT_FAILURE);
    @}

    /* Copy the second set to the device */
    d_Y = acc_copyin(&h_Y1[0], N * sizeof (float));
    if (d_Y == NULL)
    @{ 
        fprintf(stderr, "copyin error h_Y1\n");
        exit(EXIT_FAILURE);
    @}

    /* Create the handle */
    s = cublasCreate(&h);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasCreate failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Perform saxpy using CUBLAS library function */
    s = cublasSaxpy(h, N, &alpha, d_X, 1, d_Y, 1);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasSaxpy failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Copy the results from the device */
    acc_memcpy_from_device(&h_Y1[0], d_Y, N * sizeof (float));

@end smallexample
@center Use Case 2

@section OpenACC library and environment variables

There are two environment variables associated with the OpenACC library
that may be used to control the device type and device number:
@env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}, respectively. These two
environment variables can be used as an alternative to calling
@code{acc_set_device_num()}. As seen in the second use case, the device
type and device number were specified using @code{acc_set_device_num()}.
If however, the aforementioned environment variables were set, then the
call to @code{acc_set_device_num()} would not be required.


The use of the environment variables is only relevant when an OpenACC function
is called prior to a call to @code{cudaCreate()}. If @code{cudaCreate()}
is called prior to a call to an OpenACC function, then you must call
@code{acc_set_device_num()}@footnote{More complete information
about @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM} can be found in
sections 4.1 and 4.2 of the @uref{https://www.openacc.org, OpenACC}
Application Programming Interfaceā€¯, Version 2.6.}



@c ---------------------------------------------------------------------
@c OpenACC Profiling Interface
@c ---------------------------------------------------------------------

@node OpenACC Profiling Interface
@chapter OpenACC Profiling Interface

@section Implementation Status and Implementation-Defined Behavior

We're implementing the OpenACC Profiling Interface as defined by the
OpenACC 2.6 specification.  We're clarifying some aspects here as
@emph{implementation-defined behavior}, while they're still under
discussion within the OpenACC Technical Committee.

This implementation is tuned to keep the performance impact as low as
possible for the (very common) case that the Profiling Interface is
not enabled.  This is relevant, as the Profiling Interface affects all
the @emph{hot} code paths (in the target code, not in the offloaded
code).  Users of the OpenACC Profiling Interface can be expected to
understand that performance will be impacted to some degree once the
Profiling Interface has gotten enabled: for example, because of the
@emph{runtime} (libgomp) calling into a third-party @emph{library} for
every event that has been registered.

We're not yet accounting for the fact that @cite{OpenACC events may
occur during event processing}.
We just handle one case specially, as required by CUDA 9.0
@command{nvprof}, that @code{acc_get_device_type}
(@ref{acc_get_device_type})) may be called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks.

We're not yet implementing initialization via a
@code{acc_register_library} function that is either statically linked
in, or dynamically via @env{LD_PRELOAD}.
Initialization via @code{acc_register_library} functions dynamically
loaded via the @env{ACC_PROFLIB} environment variable does work, as
does directly calling @code{acc_prof_register},
@code{acc_prof_unregister}, @code{acc_prof_lookup}.

As currently there are no inquiry functions defined, calls to
@code{acc_prof_lookup} will always return @code{NULL}.

There aren't separate @emph{start}, @emph{stop} events defined for the
event types @code{acc_ev_create}, @code{acc_ev_delete},
@code{acc_ev_alloc}, @code{acc_ev_free}.  It's not clear if these
should be triggered before or after the actual device-specific call is
made.  We trigger them after.

Remarks about data provided to callbacks:

@table @asis

@item @code{acc_prof_info.event_type}
It's not clear if for @emph{nested} event callbacks (for example,
@code{acc_ev_enqueue_launch_start} as part of a parent compute
construct), this should be set for the nested event
(@code{acc_ev_enqueue_launch_start}), or if the value of the parent
construct should remain (@code{acc_ev_compute_construct_start}).  In
this implementation, the value will generally correspond to the
innermost nested event type.

@item @code{acc_prof_info.device_type}
@itemize

@item
For @code{acc_ev_compute_construct_start}, and in presence of an
@code{if} clause with @emph{false} argument, this will still refer to
the offloading device type.
It's not clear if that's the expected behavior.

@item
Complementary to the item before, for
@code{acc_ev_compute_construct_end}, this is set to
@code{acc_device_host} in presence of an @code{if} clause with
@emph{false} argument.
It's not clear if that's the expected behavior.

@end itemize

@item @code{acc_prof_info.thread_id}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.async}
@itemize

@item
Not yet implemented correctly for
@code{acc_ev_compute_construct_start}.

@item
In a compute construct, for host-fallback
execution/@code{acc_device_host} it will always be
@code{acc_async_sync}.
It's not clear if that's the expected behavior.

@item
For @code{acc_ev_device_init_start} and @code{acc_ev_device_init_end},
it will always be @code{acc_async_sync}.
It's not clear if that's the expected behavior.

@end itemize

@item @code{acc_prof_info.async_queue}
There is no @cite{limited number of asynchronous queues} in libgomp.
This will always have the same value as @code{acc_prof_info.async}.

@item @code{acc_prof_info.src_file}
Always @code{NULL}; not yet implemented.

@item @code{acc_prof_info.func_name}
Always @code{NULL}; not yet implemented.

@item @code{acc_prof_info.line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.end_line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.func_line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.func_end_line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_event_info.event_type}, @code{acc_event_info.*.event_type}
Relating to @code{acc_prof_info.event_type} discussed above, in this
implementation, this will always be the same value as
@code{acc_prof_info.event_type}.

@item @code{acc_event_info.*.parent_construct}
@itemize

@item
Will be @code{acc_construct_parallel} for all OpenACC compute
constructs as well as many OpenACC Runtime API calls; should be the
one matching the actual construct, or
@code{acc_construct_runtime_api}, respectively.

@item
Will be @code{acc_construct_enter_data} or
@code{acc_construct_exit_data} when processing variable mappings
specified in OpenACC @emph{declare} directives; should be
@code{acc_construct_declare}.

@item
For implicit @code{acc_ev_device_init_start},
@code{acc_ev_device_init_end}, and explicit as well as implicit
@code{acc_ev_alloc}, @code{acc_ev_free},
@code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
@code{acc_ev_enqueue_download_start}, and
@code{acc_ev_enqueue_download_end}, will be
@code{acc_construct_parallel}; should reflect the real parent
construct.

@end itemize

@item @code{acc_event_info.*.implicit}
For @code{acc_ev_alloc}, @code{acc_ev_free},
@code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
@code{acc_ev_enqueue_download_start}, and
@code{acc_ev_enqueue_download_end}, this currently will be @code{1}
also for explicit usage.

@item @code{acc_event_info.data_event.var_name}
Always @code{NULL}; not yet implemented.

@item @code{acc_event_info.data_event.host_ptr}
For @code{acc_ev_alloc}, and @code{acc_ev_free}, this is always
@code{NULL}.

@item @code{typedef union acc_api_info}
@dots{} as printed in @cite{5.2.3. Third Argument: API-Specific
Information}.  This should obviously be @code{typedef @emph{struct}
acc_api_info}.

@item @code{acc_api_info.device_api}
Possibly not yet implemented correctly for
@code{acc_ev_compute_construct_start},
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}:
will always be @code{acc_device_api_none} for these event types.
For @code{acc_ev_enter_data_start}, it will be
@code{acc_device_api_none} in some cases.

@item @code{acc_api_info.device_type}
Always the same as @code{acc_prof_info.device_type}.

@item @code{acc_api_info.vendor}
Always @code{-1}; not yet implemented.

@item @code{acc_api_info.device_handle}
Always @code{NULL}; not yet implemented.

@item @code{acc_api_info.context_handle}
Always @code{NULL}; not yet implemented.

@item @code{acc_api_info.async_handle}
Always @code{NULL}; not yet implemented.

@end table

Remarks about certain event types:

@table @asis

@item @code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
@itemize

@item
@c See 'DEVICE_INIT_INSIDE_COMPUTE_CONSTRUCT' in
@c 'libgomp.oacc-c-c++-common/acc_prof-kernels-1.c',
@c 'libgomp.oacc-c-c++-common/acc_prof-parallel-1.c'.
Whan a compute construct triggers implicit
@code{acc_ev_device_init_start} and @code{acc_ev_device_init_end}
events, they currently aren't @emph{nested within} the corresponding
@code{acc_ev_compute_construct_start} and
@code{acc_ev_compute_construct_end}, but they're currently observed
@emph{before} @code{acc_ev_compute_construct_start}.
It's not clear what to do: the standard asks us provide a lot of
details to the @code{acc_ev_compute_construct_start} callback, without
(implicitly) initializing a device before?

@item
Callbacks for these event types will not be invoked for calls to the
@code{acc_set_device_type} and @code{acc_set_device_num} functions.
It's not clear if they should be.

@end itemize

@item @code{acc_ev_enter_data_start}, @code{acc_ev_enter_data_end}, @code{acc_ev_exit_data_start}, @code{acc_ev_exit_data_end}
@itemize

@item
Callbacks for these event types will also be invoked for OpenACC
@emph{host_data} constructs.
It's not clear if they should be.

@item
Callbacks for these event types will also be invoked when processing
variable mappings specified in OpenACC @emph{declare} directives.
It's not clear if they should be.

@end itemize

@end table

Callbacks for the following event types will be invoked, but dispatch
and information provided therein has not yet been thoroughly reviewed:

@itemize
@item @code{acc_ev_alloc}
@item @code{acc_ev_free}
@item @code{acc_ev_update_start}, @code{acc_ev_update_end}
@item @code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end}
@item @code{acc_ev_enqueue_download_start}, @code{acc_ev_enqueue_download_end}
@end itemize

During device initialization, and finalization, respectively,
callbacks for the following event types will not yet be invoked:

@itemize
@item @code{acc_ev_alloc}
@item @code{acc_ev_free}
@end itemize

Callbacks for the following event types have not yet been implemented,
so currently won't be invoked:

@itemize
@item @code{acc_ev_device_shutdown_start}, @code{acc_ev_device_shutdown_end}
@item @code{acc_ev_runtime_shutdown}
@item @code{acc_ev_create}, @code{acc_ev_delete}
@item @code{acc_ev_wait_start}, @code{acc_ev_wait_end}
@end itemize

For the following runtime library functions, not all expected
callbacks will be invoked (mostly concerning implicit device
initialization):

@itemize
@item @code{acc_get_num_devices}
@item @code{acc_set_device_type}
@item @code{acc_get_device_type}
@item @code{acc_set_device_num}
@item @code{acc_get_device_num}
@item @code{acc_init}
@item @code{acc_shutdown}
@end itemize

Aside from implicit device initialization, for the following runtime
library functions, no callbacks will be invoked for shared-memory
offloading devices (it's not clear if they should be):

@itemize
@item @code{acc_malloc}
@item @code{acc_free}
@item @code{acc_copyin}, @code{acc_present_or_copyin}, @code{acc_copyin_async}
@item @code{acc_create}, @code{acc_present_or_create}, @code{acc_create_async}
@item @code{acc_copyout}, @code{acc_copyout_async}, @code{acc_copyout_finalize}, @code{acc_copyout_finalize_async}
@item @code{acc_delete}, @code{acc_delete_async}, @code{acc_delete_finalize}, @code{acc_delete_finalize_async}
@item @code{acc_update_device}, @code{acc_update_device_async}
@item @code{acc_update_self}, @code{acc_update_self_async}
@item @code{acc_map_data}, @code{acc_unmap_data}
@item @code{acc_memcpy_to_device}, @code{acc_memcpy_to_device_async}
@item @code{acc_memcpy_from_device}, @code{acc_memcpy_from_device_async}
@end itemize



@c ---------------------------------------------------------------------
@c The libgomp ABI
@c ---------------------------------------------------------------------

@node The libgomp ABI
@chapter The libgomp ABI

The following sections present notes on the external ABI as 
presented by libgomp.  Only maintainers should need them.

@menu
* Implementing MASTER construct::
* Implementing CRITICAL construct::
* Implementing ATOMIC construct::
* Implementing FLUSH construct::
* Implementing BARRIER construct::
* Implementing THREADPRIVATE construct::
* Implementing PRIVATE clause::
* Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses::
* Implementing REDUCTION clause::
* Implementing PARALLEL construct::
* Implementing FOR construct::
* Implementing ORDERED construct::
* Implementing SECTIONS construct::
* Implementing SINGLE construct::
* Implementing OpenACC's PARALLEL construct::
@end menu


@node Implementing MASTER construct
@section Implementing MASTER construct

@smallexample
if (omp_get_thread_num () == 0)
  block
@end smallexample

Alternately, we generate two copies of the parallel subfunction
and only include this in the version run by the master thread.
Surely this is not worthwhile though...



@node Implementing CRITICAL construct
@section Implementing CRITICAL construct

Without a specified name,

@smallexample
  void GOMP_critical_start (void);
  void GOMP_critical_end (void);
@end smallexample

so that we don't get COPY relocations from libgomp to the main
application.

With a specified name, use omp_set_lock and omp_unset_lock with
name being transformed into a variable declared like

@smallexample
  omp_lock_t gomp_critical_user_<name> __attribute__((common))
@end smallexample

Ideally the ABI would specify that all zero is a valid unlocked
state, and so we wouldn't need to initialize this at
startup.



@node Implementing ATOMIC construct
@section Implementing ATOMIC construct

The target should implement the @code{__sync} builtins.

Failing that we could add

@smallexample
  void GOMP_atomic_enter (void)
  void GOMP_atomic_exit (void)
@end smallexample

which reuses the regular lock code, but with yet another lock
object private to the library.



@node Implementing FLUSH construct
@section Implementing FLUSH construct

Expands to the @code{__sync_synchronize} builtin.



@node Implementing BARRIER construct
@section Implementing BARRIER construct

@smallexample
  void GOMP_barrier (void)
@end smallexample


@node Implementing THREADPRIVATE construct
@section Implementing THREADPRIVATE construct

In _most_ cases we can map this directly to @code{__thread}.  Except
that OMP allows constructors for C++ objects.  We can either
refuse to support this (how often is it used?) or we can 
implement something akin to .ctors.

Even more ideally, this ctor feature is handled by extensions
to the main pthreads library.  Failing that, we can have a set
of entry points to register ctor functions to be called.



@node Implementing PRIVATE clause
@section Implementing PRIVATE clause

In association with a PARALLEL, or within the lexical extent
of a PARALLEL block, the variable becomes a local variable in
the parallel subfunction.

In association with FOR or SECTIONS blocks, create a new
automatic variable within the current function.  This preserves
the semantic of new variable creation.



@node Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
@section Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses

This seems simple enough for PARALLEL blocks.  Create a private 
struct for communicating between the parent and subfunction.
In the parent, copy in values for scalar and "small" structs;
copy in addresses for others TREE_ADDRESSABLE types.  In the 
subfunction, copy the value into the local variable.

It is not clear what to do with bare FOR or SECTION blocks.
The only thing I can figure is that we do something like:

@smallexample
#pragma omp for firstprivate(x) lastprivate(y)
for (int i = 0; i < n; ++i)
  body;
@end smallexample

which becomes

@smallexample
@{
  int x = x, y;

  // for stuff

  if (i == n)
    y = y;
@}
@end smallexample

where the "x=x" and "y=y" assignments actually have different
uids for the two variables, i.e. not something you could write
directly in C.  Presumably this only makes sense if the "outer"
x and y are global variables.

COPYPRIVATE would work the same way, except the structure 
broadcast would have to happen via SINGLE machinery instead.



@node Implementing REDUCTION clause
@section Implementing REDUCTION clause

The private struct mentioned in the previous section should have 
a pointer to an array of the type of the variable, indexed by the 
thread's @var{team_id}.  The thread stores its final value into the 
array, and after the barrier, the master thread iterates over the
array to collect the values.


@node Implementing PARALLEL construct
@section Implementing PARALLEL construct

@smallexample
  #pragma omp parallel
  @{
    body;
  @}
@end smallexample

becomes

@smallexample
  void subfunction (void *data)
  @{
    use data;
    body;
  @}

  setup data;
  GOMP_parallel_start (subfunction, &data, num_threads);
  subfunction (&data);
  GOMP_parallel_end ();
@end smallexample

@smallexample
  void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)
@end smallexample

The @var{FN} argument is the subfunction to be run in parallel.

The @var{DATA} argument is a pointer to a structure used to 
communicate data in and out of the subfunction, as discussed
above with respect to FIRSTPRIVATE et al.

The @var{NUM_THREADS} argument is 1 if an IF clause is present
and false, or the value of the NUM_THREADS clause, if
present, or 0.

The function needs to create the appropriate number of
threads and/or launch them from the dock.  It needs to
create the team structure and assign team ids.

@smallexample
  void GOMP_parallel_end (void)
@end smallexample

Tears down the team and returns us to the previous @code{omp_in_parallel()} state.



@node Implementing FOR construct
@section Implementing FOR construct

@smallexample
  #pragma omp parallel for
  for (i = lb; i <= ub; i++)
    body;
@end smallexample

becomes

@smallexample
  void subfunction (void *data)
  @{
    long _s0, _e0;
    while (GOMP_loop_static_next (&_s0, &_e0))
    @{
      long _e1 = _e0, i;
      for (i = _s0; i < _e1; i++)
        body;
    @}
    GOMP_loop_end_nowait ();
  @}

  GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0);
  subfunction (NULL);
  GOMP_parallel_end ();
@end smallexample

@smallexample
  #pragma omp for schedule(runtime)
  for (i = 0; i < n; i++)
    body;
@end smallexample

becomes

@smallexample
  @{
    long i, _s0, _e0;
    if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0))
      do @{
        long _e1 = _e0;
        for (i = _s0, i < _e0; i++)
          body;
      @} while (GOMP_loop_runtime_next (&_s0, _&e0));
    GOMP_loop_end ();
  @}
@end smallexample

Note that while it looks like there is trickiness to propagating
a non-constant STEP, there isn't really.  We're explicitly allowed
to evaluate it as many times as we want, and any variables involved
should automatically be handled as PRIVATE or SHARED like any other
variables.  So the expression should remain evaluable in the 
subfunction.  We can also pull it into a local variable if we like,
but since its supposed to remain unchanged, we can also not if we like.

If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be
able to get away with no work-sharing context at all, since we can
simply perform the arithmetic directly in each thread to divide up
the iterations.  Which would mean that we wouldn't need to call any
of these routines.

There are separate routines for handling loops with an ORDERED
clause.  Bookkeeping for that is non-trivial...



@node Implementing ORDERED construct
@section Implementing ORDERED construct

@smallexample
  void GOMP_ordered_start (void)
  void GOMP_ordered_end (void)
@end smallexample



@node Implementing SECTIONS construct
@section Implementing SECTIONS construct

A block as 

@smallexample
  #pragma omp sections
  @{
    #pragma omp section
    stmt1;
    #pragma omp section
    stmt2;
    #pragma omp section
    stmt3;
  @}
@end smallexample

becomes

@smallexample
  for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())
    switch (i)
      @{
      case 1:
        stmt1;
        break;
      case 2:
        stmt2;
        break;
      case 3:
        stmt3;
        break;
      @}
  GOMP_barrier ();
@end smallexample


@node Implementing SINGLE construct
@section Implementing SINGLE construct

A block like 

@smallexample
  #pragma omp single
  @{
    body;
  @}
@end smallexample

becomes

@smallexample
  if (GOMP_single_start ())
    body;
  GOMP_barrier ();
@end smallexample

while 

@smallexample
  #pragma omp single copyprivate(x)
    body;
@end smallexample

becomes

@smallexample
  datap = GOMP_single_copy_start ();
  if (datap == NULL)
    @{
      body;
      data.x = x;
      GOMP_single_copy_end (&data);
    @}
  else
    x = datap->x;
  GOMP_barrier ();
@end smallexample



@node Implementing OpenACC's PARALLEL construct
@section Implementing OpenACC's PARALLEL construct

@smallexample
  void GOACC_parallel ()
@end smallexample



@c ---------------------------------------------------------------------
@c Reporting Bugs
@c ---------------------------------------------------------------------

@node Reporting Bugs
@chapter Reporting Bugs

Bugs in the GNU Offloading and Multi Processing Runtime Library should
be reported via @uref{https://gcc.gnu.org/bugzilla/, Bugzilla}.  Please add
"openacc", or "openmp", or both to the keywords field in the bug
report, as appropriate.



@c ---------------------------------------------------------------------
@c GNU General Public License
@c ---------------------------------------------------------------------

@include gpl_v3.texi



@c ---------------------------------------------------------------------
@c GNU Free Documentation License
@c ---------------------------------------------------------------------

@include fdl.texi



@c ---------------------------------------------------------------------
@c Funding Free Software
@c ---------------------------------------------------------------------

@include funding.texi

@c ---------------------------------------------------------------------
@c Index
@c ---------------------------------------------------------------------

@node Library Index
@unnumbered Library Index

@printindex cp

@bye