//===-- asan_fake_stack.cc ------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// FakeStack is used to detect use-after-return bugs.
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#include "asan_poisoning.h"
#include "asan_thread.h"
namespace __asan {
static const u64 kMagic1 = kAsanStackAfterReturnMagic;
static const u64 kMagic2 = (kMagic1 << 8) | kMagic1;
static const u64 kMagic4 = (kMagic2 << 16) | kMagic2;
static const u64 kMagic8 = (kMagic4 << 32) | kMagic4;
static const u64 kAllocaRedzoneSize = 32UL;
static const u64 kAllocaRedzoneMask = 31UL;
// For small size classes inline PoisonShadow for better performance.
ALWAYS_INLINE void SetShadow(uptr ptr, uptr size, uptr class_id, u64 magic) {
u64 *shadow = reinterpret_cast<u64*>(MemToShadow(ptr));
if (SHADOW_SCALE == 3 && class_id <= 6) {
// This code expects SHADOW_SCALE=3.
for (uptr i = 0; i < (((uptr)1) << class_id); i++) {
shadow[i] = magic;
// Make sure this does not become memset.
SanitizerBreakOptimization(nullptr);
}
} else {
// The size class is too big, it's cheaper to poison only size bytes.
PoisonShadow(ptr, size, static_cast<u8>(magic));
}
}
FakeStack *FakeStack::Create(uptr stack_size_log) {
static uptr kMinStackSizeLog = 16;
static uptr kMaxStackSizeLog = FIRST_32_SECOND_64(24, 28);
if (stack_size_log < kMinStackSizeLog)
stack_size_log = kMinStackSizeLog;
if (stack_size_log > kMaxStackSizeLog)
stack_size_log = kMaxStackSizeLog;
uptr size = RequiredSize(stack_size_log);
FakeStack *res = reinterpret_cast<FakeStack *>(
flags()->uar_noreserve ? MmapNoReserveOrDie(size, "FakeStack")
: MmapOrDie(size, "FakeStack"));
res->stack_size_log_ = stack_size_log;
u8 *p = reinterpret_cast<u8 *>(res);
VReport(1, "T%d: FakeStack created: %p -- %p stack_size_log: %zd; "
"mmapped %zdK, noreserve=%d \n",
GetCurrentTidOrInvalid(), p,
p + FakeStack::RequiredSize(stack_size_log), stack_size_log,
size >> 10, flags()->uar_noreserve);
return res;
}
void FakeStack::Destroy(int tid) {
PoisonAll(0);
if (Verbosity() >= 2) {
InternalScopedString str(kNumberOfSizeClasses * 50);
for (uptr class_id = 0; class_id < kNumberOfSizeClasses; class_id++)
str.append("%zd: %zd/%zd; ", class_id, hint_position_[class_id],
NumberOfFrames(stack_size_log(), class_id));
Report("T%d: FakeStack destroyed: %s\n", tid, str.data());
}
uptr size = RequiredSize(stack_size_log_);
FlushUnneededASanShadowMemory(reinterpret_cast<uptr>(this), size);
UnmapOrDie(this, size);
}
void FakeStack::PoisonAll(u8 magic) {
PoisonShadow(reinterpret_cast<uptr>(this), RequiredSize(stack_size_log()),
magic);
}
#if !defined(_MSC_VER) || defined(__clang__)
ALWAYS_INLINE USED
#endif
FakeFrame *FakeStack::Allocate(uptr stack_size_log, uptr class_id,
uptr real_stack) {
CHECK_LT(class_id, kNumberOfSizeClasses);
if (needs_gc_)
GC(real_stack);
uptr &hint_position = hint_position_[class_id];
const int num_iter = NumberOfFrames(stack_size_log, class_id);
u8 *flags = GetFlags(stack_size_log, class_id);
for (int i = 0; i < num_iter; i++) {
uptr pos = ModuloNumberOfFrames(stack_size_log, class_id, hint_position++);
// This part is tricky. On one hand, checking and setting flags[pos]
// should be atomic to ensure async-signal safety. But on the other hand,
// if the signal arrives between checking and setting flags[pos], the
// signal handler's fake stack will start from a different hint_position
// and so will not touch this particular byte. So, it is safe to do this
// with regular non-atomic load and store (at least I was not able to make
// this code crash).
if (flags[pos]) continue;
flags[pos] = 1;
FakeFrame *res = reinterpret_cast<FakeFrame *>(
GetFrame(stack_size_log, class_id, pos));
res->real_stack = real_stack;
*SavedFlagPtr(reinterpret_cast<uptr>(res), class_id) = &flags[pos];
return res;
}
return nullptr; // We are out of fake stack.
}
uptr FakeStack::AddrIsInFakeStack(uptr ptr, uptr *frame_beg, uptr *frame_end) {
uptr stack_size_log = this->stack_size_log();
uptr beg = reinterpret_cast<uptr>(GetFrame(stack_size_log, 0, 0));
uptr end = reinterpret_cast<uptr>(this) + RequiredSize(stack_size_log);
if (ptr < beg || ptr >= end) return 0;
uptr class_id = (ptr - beg) >> stack_size_log;
uptr base = beg + (class_id << stack_size_log);
CHECK_LE(base, ptr);
CHECK_LT(ptr, base + (((uptr)1) << stack_size_log));
uptr pos = (ptr - base) >> (kMinStackFrameSizeLog + class_id);
uptr res = base + pos * BytesInSizeClass(class_id);
*frame_end = res + BytesInSizeClass(class_id);
*frame_beg = res + sizeof(FakeFrame);
return res;
}
void FakeStack::HandleNoReturn() {
needs_gc_ = true;
}
// When throw, longjmp or some such happens we don't call OnFree() and
// as the result may leak one or more fake frames, but the good news is that
// we are notified about all such events by HandleNoReturn().
// If we recently had such no-return event we need to collect garbage frames.
// We do it based on their 'real_stack' values -- everything that is lower
// than the current real_stack is garbage.
NOINLINE void FakeStack::GC(uptr real_stack) {
uptr collected = 0;
for (uptr class_id = 0; class_id < kNumberOfSizeClasses; class_id++) {
u8 *flags = GetFlags(stack_size_log(), class_id);
for (uptr i = 0, n = NumberOfFrames(stack_size_log(), class_id); i < n;
i++) {
if (flags[i] == 0) continue; // not allocated.
FakeFrame *ff = reinterpret_cast<FakeFrame *>(
GetFrame(stack_size_log(), class_id, i));
if (ff->real_stack < real_stack) {
flags[i] = 0;
collected++;
}
}
}
needs_gc_ = false;
}
void FakeStack::ForEachFakeFrame(RangeIteratorCallback callback, void *arg) {
for (uptr class_id = 0; class_id < kNumberOfSizeClasses; class_id++) {
u8 *flags = GetFlags(stack_size_log(), class_id);
for (uptr i = 0, n = NumberOfFrames(stack_size_log(), class_id); i < n;
i++) {
if (flags[i] == 0) continue; // not allocated.
FakeFrame *ff = reinterpret_cast<FakeFrame *>(
GetFrame(stack_size_log(), class_id, i));
uptr begin = reinterpret_cast<uptr>(ff);
callback(begin, begin + FakeStack::BytesInSizeClass(class_id), arg);
}
}
}
#if (SANITIZER_LINUX && !SANITIZER_ANDROID) || SANITIZER_FUCHSIA
static THREADLOCAL FakeStack *fake_stack_tls;
FakeStack *GetTLSFakeStack() {
return fake_stack_tls;
}
void SetTLSFakeStack(FakeStack *fs) {
fake_stack_tls = fs;
}
#else
FakeStack *GetTLSFakeStack() { return 0; }
void SetTLSFakeStack(FakeStack *fs) { }
#endif // (SANITIZER_LINUX && !SANITIZER_ANDROID) || SANITIZER_FUCHSIA
static FakeStack *GetFakeStack() {
AsanThread *t = GetCurrentThread();
if (!t) return nullptr;
return t->fake_stack();
}
static FakeStack *GetFakeStackFast() {
if (FakeStack *fs = GetTLSFakeStack())
return fs;
if (!__asan_option_detect_stack_use_after_return)
return nullptr;
return GetFakeStack();
}
ALWAYS_INLINE uptr OnMalloc(uptr class_id, uptr size) {
FakeStack *fs = GetFakeStackFast();
if (!fs) return 0;
uptr local_stack;
uptr real_stack = reinterpret_cast<uptr>(&local_stack);
FakeFrame *ff = fs->Allocate(fs->stack_size_log(), class_id, real_stack);
if (!ff) return 0; // Out of fake stack.
uptr ptr = reinterpret_cast<uptr>(ff);
SetShadow(ptr, size, class_id, 0);
return ptr;
}
ALWAYS_INLINE void OnFree(uptr ptr, uptr class_id, uptr size) {
FakeStack::Deallocate(ptr, class_id);
SetShadow(ptr, size, class_id, kMagic8);
}
} // namespace __asan
// ---------------------- Interface ---------------- {{{1
using namespace __asan;
#define DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(class_id) \
extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr \
__asan_stack_malloc_##class_id(uptr size) { \
return OnMalloc(class_id, size); \
} \
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __asan_stack_free_##class_id( \
uptr ptr, uptr size) { \
OnFree(ptr, class_id, size); \
}
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(0)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(1)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(2)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(3)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(4)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(5)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(6)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(7)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(8)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(9)
DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID(10)
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void *__asan_get_current_fake_stack() { return GetFakeStackFast(); }
SANITIZER_INTERFACE_ATTRIBUTE
void *__asan_addr_is_in_fake_stack(void *fake_stack, void *addr, void **beg,
void **end) {
FakeStack *fs = reinterpret_cast<FakeStack*>(fake_stack);
if (!fs) return nullptr;
uptr frame_beg, frame_end;
FakeFrame *frame = reinterpret_cast<FakeFrame *>(fs->AddrIsInFakeStack(
reinterpret_cast<uptr>(addr), &frame_beg, &frame_end));
if (!frame) return nullptr;
if (frame->magic != kCurrentStackFrameMagic)
return nullptr;
if (beg) *beg = reinterpret_cast<void*>(frame_beg);
if (end) *end = reinterpret_cast<void*>(frame_end);
return reinterpret_cast<void*>(frame->real_stack);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_alloca_poison(uptr addr, uptr size) {
uptr LeftRedzoneAddr = addr - kAllocaRedzoneSize;
uptr PartialRzAddr = addr + size;
uptr RightRzAddr = (PartialRzAddr + kAllocaRedzoneMask) & ~kAllocaRedzoneMask;
uptr PartialRzAligned = PartialRzAddr & ~(SHADOW_GRANULARITY - 1);
FastPoisonShadow(LeftRedzoneAddr, kAllocaRedzoneSize, kAsanAllocaLeftMagic);
FastPoisonShadowPartialRightRedzone(
PartialRzAligned, PartialRzAddr % SHADOW_GRANULARITY,
RightRzAddr - PartialRzAligned, kAsanAllocaRightMagic);
FastPoisonShadow(RightRzAddr, kAllocaRedzoneSize, kAsanAllocaRightMagic);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __asan_allocas_unpoison(uptr top, uptr bottom) {
if ((!top) || (top > bottom)) return;
REAL(memset)(reinterpret_cast<void*>(MemToShadow(top)), 0,
(bottom - top) / SHADOW_GRANULARITY);
}
} // extern "C"