Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
// <numeric> -*- C++ -*-

// Copyright (C) 2001-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file include/numeric
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_NUMERIC
#define _GLIBCXX_NUMERIC 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_numeric.h>
#include <ext/numeric_traits.h>

#ifdef _GLIBCXX_PARALLEL
# include <parallel/numeric>
#endif

/**
 * @defgroup numerics Numerics
 *
 * Components for performing numeric operations. Includes support for
 * complex number types, random number generation, numeric (n-at-a-time)
 * arrays, generalized numeric algorithms, and mathematical special functions.
 */

#if __cplusplus >= 201402L
#include <type_traits>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

namespace __detail
{
  // std::abs is not constexpr, doesn't support unsigned integers,
  // and std::abs(std::numeric_limits<T>::min()) is undefined.
  template<typename _Up, typename _Tp>
    constexpr _Up
    __absu(_Tp __val)
    {
      static_assert(is_unsigned<_Up>::value, "result type must be unsigned");
      static_assert(sizeof(_Up) >= sizeof(_Tp),
	  "result type must be at least as wide as the input type");
      return __val < 0 ? -(_Up)__val : (_Up)__val;
    }

  template<typename _Up> void __absu(bool) = delete;

  // GCD implementation
  template<typename _Tp>
    constexpr _Tp
    __gcd(_Tp __m, _Tp __n)
    {
      static_assert(is_unsigned<_Tp>::value, "type must be unsigned");
      return __m == 0 ? __n
	: __n == 0 ? __m
	: __detail::__gcd(__n, _Tp(__m % __n));
    }

  // LCM implementation
  template<typename _Tp>
    constexpr _Tp
    __lcm(_Tp __m, _Tp __n)
    {
      return (__m != 0 && __n != 0)
	? (__m / __detail::__gcd(__m, __n)) * __n
	: 0;
    }
} // namespace __detail

#if __cplusplus >= 201703L

#define __cpp_lib_gcd_lcm 201606
// These were used in drafts of SD-6:
#define __cpp_lib_gcd 201606
#define __cpp_lib_lcm 201606

  /// Greatest common divisor
  template<typename _Mn, typename _Nn>
    constexpr common_type_t<_Mn, _Nn>
    gcd(_Mn __m, _Nn __n) noexcept
    {
      static_assert(is_integral_v<_Mn>, "std::gcd arguments must be integers");
      static_assert(is_integral_v<_Nn>, "std::gcd arguments must be integers");
      static_assert(_Mn(2) != _Mn(1), "std::gcd arguments must not be bool");
      static_assert(_Nn(2) != _Nn(1), "std::gcd arguments must not be bool");
      using _Up = make_unsigned_t<common_type_t<_Mn, _Nn>>;
      return __detail::__gcd(__detail::__absu<_Up>(__m),
			     __detail::__absu<_Up>(__n));
    }

  /// Least common multiple
  template<typename _Mn, typename _Nn>
    constexpr common_type_t<_Mn, _Nn>
    lcm(_Mn __m, _Nn __n) noexcept
    {
      static_assert(is_integral_v<_Mn>, "std::lcm arguments must be integers");
      static_assert(is_integral_v<_Nn>, "std::lcm arguments must be integers");
      static_assert(_Mn(2) == 2, "std::lcm arguments must not be bool");
      static_assert(_Nn(2) == 2, "std::lcm arguments must not be bool");
      using _Up = make_unsigned_t<common_type_t<_Mn, _Nn>>;
      return __detail::__lcm(__detail::__absu<_Up>(__m),
			     __detail::__absu<_Up>(__n));
    }

#endif // C++17

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++14

#if __cplusplus > 201703L
#include <limits>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
  // midpoint
# define __cpp_lib_interpolate 201902L

  template<typename _Tp>
    constexpr
    enable_if_t<__and_v<is_arithmetic<_Tp>, is_same<remove_cv_t<_Tp>, _Tp>,
			__not_<is_same<_Tp, bool>>>,
		_Tp>
    midpoint(_Tp __a, _Tp __b) noexcept
    {
      if constexpr (is_integral_v<_Tp>)
	{
	  using _Up = make_unsigned_t<_Tp>;

	  int __k = 1;
	  _Up __m = __a;
	  _Up __M = __b;
	  if (__a > __b)
	    {
	      __k = -1;
	      __m = __b;
	      __M = __a;
	    }
	  return __a + __k * _Tp(_Up(__M - __m) / 2);
	}
      else // is_floating
	{
	  constexpr _Tp __lo = numeric_limits<_Tp>::min() * 2;
	  constexpr _Tp __hi = numeric_limits<_Tp>::max() / 2;
	  const _Tp __abs_a = __a < 0 ? -__a : __a;
	  const _Tp __abs_b = __b < 0 ? -__b : __b;
	  if (__abs_a <= __hi && __abs_b <= __hi) [[likely]]
	    return (__a + __b) / 2; // always correctly rounded
	  if (__abs_a < __lo) // not safe to halve __a
	    return __a + __b/2;
	  if (__abs_b < __lo) // not safe to halve __b
	    return __a/2 + __b;
	  return __a/2 + __b/2;	    // otherwise correctly rounded
	}
    }

  template<typename _Tp>
    constexpr enable_if_t<is_object_v<_Tp>, _Tp*>
    midpoint(_Tp* __a, _Tp* __b) noexcept
    {
      static_assert( sizeof(_Tp) != 0, "type must be complete" );
      return __a  + (__b - __a) / 2;
    }
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++20

#if __cplusplus > 201402L
#include <bits/stl_function.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

#if __cplusplus > 201703L
#define __cpp_lib_constexpr_numeric 201911L
#endif

  /// @addtogroup numeric_ops
  /// @{

  /**
   *  @brief  Calculate reduction of values in a range.
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @param  __init  Starting value to add other values to.
   *  @param  __binary_op A binary function object.
   *  @return  The final sum.
   *
   *  Reduce the values in the range `[first,last)` using a binary operation.
   *  The initial value is `init`.  The values are not necessarily processed
   *  in order.
   *
   *  This algorithm is similar to `std::accumulate` but is not required to
   *  perform the operations in order from first to last. For operations
   *  that are commutative and associative the result will be the same as
   *  for `std::accumulate`, but for other operations (such as floating point
   *  arithmetic) the result can be different.
   */
  template<typename _InputIterator, typename _Tp, typename _BinaryOperation>
    _GLIBCXX20_CONSTEXPR
    _Tp
    reduce(_InputIterator __first, _InputIterator __last, _Tp __init,
	   _BinaryOperation __binary_op)
    {
      using __ref = typename iterator_traits<_InputIterator>::reference;
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, _Tp&, __ref>);
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, __ref, _Tp&>);
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, _Tp&, _Tp&>);
      static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, __ref, __ref>);
      if constexpr (__is_random_access_iter<_InputIterator>::value)
	{
	  while ((__last - __first) >= 4)
	    {
	      _Tp __v1 = __binary_op(__first[0], __first[1]);
	      _Tp __v2 = __binary_op(__first[2], __first[3]);
	      _Tp __v3 = __binary_op(__v1, __v2);
	      __init = __binary_op(__init, __v3);
	      __first += 4;
	    }
	}
      for (; __first != __last; ++__first)
	__init = __binary_op(__init, *__first);
      return __init;
    }

 /**
   *  @brief  Calculate reduction of values in a range.
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @param  __init  Starting value to add other values to.
   *  @return  The final sum.
   *
   *  Reduce the values in the range `[first,last)` using addition.
   *  Equivalent to calling `std::reduce(first, last, init, std::plus<>())`.
   */
  template<typename _InputIterator, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    inline _Tp
    reduce(_InputIterator __first, _InputIterator __last, _Tp __init)
    { return std::reduce(__first, __last, std::move(__init), plus<>()); }

  /**
   *  @brief  Calculate reduction of values in a range.
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @return  The final sum.
   *
   *  Reduce the values in the range `[first,last)` using addition, with
   *  an initial value of `T{}`, where `T` is the iterator's value type.
   *  Equivalent to calling `std::reduce(first, last, T{}, std::plus<>())`.
   */
  template<typename _InputIterator>
    _GLIBCXX20_CONSTEXPR
    inline typename iterator_traits<_InputIterator>::value_type
    reduce(_InputIterator __first, _InputIterator __last)
    {
      using value_type = typename iterator_traits<_InputIterator>::value_type;
      return std::reduce(__first, __last, value_type{}, plus<>());
    }

  /**
   *  @brief  Combine elements from two ranges and reduce
   *
   *  @param  __first1  Start of first range.
   *  @param  __last1  End of first range.
   *  @param  __first2  Start of second range.
   *  @param  __init  Starting value to add other values to.
   *  @param  __binary_op1 The function used to perform reduction.
   *  @param  __binary_op2 The function used to combine values from the ranges.
   *  @return  The final sum.
   *
   *  Call `binary_op2(first1[n],first2[n])` for each `n` in `[0,last1-first1)`
   *  and then use `binary_op1` to reduce the values returned by `binary_op2`
   *  to a single value of type `T`.
   *
   *  The range beginning at `first2` must contain at least `last1-first1`
   *  elements.
   */
  template<typename _InputIterator1, typename _InputIterator2, typename _Tp,
	   typename _BinaryOperation1, typename _BinaryOperation2>
    _GLIBCXX20_CONSTEXPR
    _Tp
    transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1,
		     _InputIterator2 __first2, _Tp __init,
		     _BinaryOperation1 __binary_op1,
		     _BinaryOperation2 __binary_op2)
    {
      if constexpr (__and_v<__is_random_access_iter<_InputIterator1>,
			    __is_random_access_iter<_InputIterator2>>)
	{
	  while ((__last1 - __first1) >= 4)
	    {
	      _Tp __v1 = __binary_op1(__binary_op2(__first1[0], __first2[0]),
				      __binary_op2(__first1[1], __first2[1]));
	      _Tp __v2 = __binary_op1(__binary_op2(__first1[2], __first2[2]),
				      __binary_op2(__first1[3], __first2[3]));
	      _Tp __v3 = __binary_op1(__v1, __v2);
	      __init = __binary_op1(__init, __v3);
	      __first1 += 4;
	      __first2 += 4;
	    }
	}
      for (; __first1 != __last1; ++__first1, (void) ++__first2)
	__init = __binary_op1(__init, __binary_op2(*__first1, *__first2));
      return __init;
    }

  /**
   *  @brief  Combine elements from two ranges and reduce
   *
   *  @param  __first1  Start of first range.
   *  @param  __last1  End of first range.
   *  @param  __first2  Start of second range.
   *  @param  __init  Starting value to add other values to.
   *  @return  The final sum.
   *
   *  Call `first1[n]*first2[n]` for each `n` in `[0,last1-first1)` and then
   *  use addition to sum those products to a single value of type `T`.
   *
   *  The range beginning at `first2` must contain at least `last1-first1`
   *  elements.
   */
  template<typename _InputIterator1, typename _InputIterator2, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    inline _Tp
    transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1,
		     _InputIterator2 __first2, _Tp __init)
    {
      return std::transform_reduce(__first1, __last1, __first2,
				   std::move(__init),
				   plus<>(), multiplies<>());
    }

  /**
   *  @brief  Transform the elements of a range and reduce
   *
   *  @param  __first  Start of range.
   *  @param  __last  End of range.
   *  @param  __init  Starting value to add other values to.
   *  @param  __binary_op The function used to perform reduction.
   *  @param  __unary_op The function used to transform values from the range.
   *  @return  The final sum.
   *
   *  Call `unary_op(first[n])` for each `n` in `[0,last-first)` and then
   *  use `binary_op` to reduce the values returned by `unary_op`
   *  to a single value of type `T`.
   */
  template<typename _InputIterator, typename _Tp,
	   typename _BinaryOperation, typename _UnaryOperation>
    _GLIBCXX20_CONSTEXPR
    _Tp
    transform_reduce(_InputIterator __first, _InputIterator __last, _Tp __init,
		     _BinaryOperation __binary_op, _UnaryOperation __unary_op)
    {
      if constexpr (__is_random_access_iter<_InputIterator>::value)
	{
	  while ((__last - __first) >= 4)
	    {
	      _Tp __v1 = __binary_op(__unary_op(__first[0]),
				     __unary_op(__first[1]));
	      _Tp __v2 = __binary_op(__unary_op(__first[2]),
				     __unary_op(__first[3]));
	      _Tp __v3 = __binary_op(__v1, __v2);
	      __init = __binary_op(__init, __v3);
	      __first += 4;
	    }
	}
      for (; __first != __last; ++__first)
	__init = __binary_op(__init, __unary_op(*__first));
      return __init;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __init   Initial value.
   *  @param __binary_op Function to perform summation.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `binary_op` for summation.
   *
   *  This function generates an "exclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N-1 input elements,
   *  so the Nth input element is not included.
   */
  template<typename _InputIterator, typename _OutputIterator, typename _Tp,
	   typename _BinaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    exclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _Tp __init,
		   _BinaryOperation __binary_op)
    {
      while (__first != __last)
	{
	  auto __v = __init;
	  __init = __binary_op(__init, *__first);
	  ++__first;
	  *__result++ = std::move(__v);
	}
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __init   Initial value.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `std::plus<>` for summation.
   *
   *  This function generates an "exclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N-1 input elements,
   *  so the Nth input element is not included.
   */
  template<typename _InputIterator, typename _OutputIterator, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    inline _OutputIterator
    exclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _Tp __init)
    {
      return std::exclusive_scan(__first, __last, __result, std::move(__init),
				 plus<>());
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @param __init   Initial value.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	   typename _BinaryOperation, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    inclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _BinaryOperation __binary_op,
		   _Tp __init)
    {
      for (; __first != __last; ++__first)
	*__result++ = __init = __binary_op(__init, *__first);
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements, using `binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	   typename _BinaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    inclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result, _BinaryOperation __binary_op)
    {
      if (__first != __last)
	{
	  auto __init = *__first;
	  *__result++ = __init;
	  ++__first;
	  if (__first != __last)
	    __result = std::inclusive_scan(__first, __last, __result,
					   __binary_op, std::move(__init));
	}
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements, using `std::plus<>` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator>
    _GLIBCXX20_CONSTEXPR
    inline _OutputIterator
    inclusive_scan(_InputIterator __first, _InputIterator __last,
		   _OutputIterator __result)
    { return std::inclusive_scan(__first, __last, __result, plus<>()); }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __init   Initial value.
   *  @param __binary_op Function to perform summation.
   *  @param __unary_op Function to transform elements of the input range.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `__unary_op` to transform the input elements
   *  and using `__binary_op` for summation.
   *
   *  This function generates an "exclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N-1 input elements,
   *  so the Nth input element is not included.
   */
  template<typename _InputIterator, typename _OutputIterator, typename _Tp,
	   typename _BinaryOperation, typename _UnaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    transform_exclusive_scan(_InputIterator __first, _InputIterator __last,
			     _OutputIterator __result, _Tp __init,
			     _BinaryOperation __binary_op,
			     _UnaryOperation __unary_op)
    {
      while (__first != __last)
	{
	  auto __v = __init;
	  __init = __binary_op(__init, __unary_op(*__first));
	  ++__first;
	  *__result++ = std::move(__v);
	}
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @param __unary_op Function to transform elements of the input range.
   *  @param __init   Initial value.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements (and the initial value),
   *  using `__unary_op` to transform the input elements
   *  and using `__binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	   typename _BinaryOperation, typename _UnaryOperation, typename _Tp>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    transform_inclusive_scan(_InputIterator __first, _InputIterator __last,
			     _OutputIterator __result,
			     _BinaryOperation __binary_op,
			     _UnaryOperation __unary_op,
			     _Tp __init)
    {
      for (; __first != __last; ++__first)
	*__result++ = __init = __binary_op(__init, __unary_op(*__first));
      return __result;
    }

  /** @brief Output the cumulative sum of one range to a second range
   *
   *  @param __first  Start of input range.
   *  @param __last   End of input range.
   *  @param __result Start of output range.
   *  @param __binary_op Function to perform summation.
   *  @param __unary_op Function to transform elements of the input range.
   *  @return The end of the output range.
   *
   *  Write the cumulative sum (aka prefix sum, aka scan) of the input range
   *  to the output range. Each element of the output range contains the
   *  running total of all earlier elements,
   *  using `__unary_op` to transform the input elements
   *  and using `__binary_op` for summation.
   *
   *  This function generates an "inclusive" scan, meaning the Nth element
   *  of the output range is the sum of the first N input elements,
   *  so the Nth input element is included.
   */
  template<typename _InputIterator, typename _OutputIterator,
	  typename _BinaryOperation, typename _UnaryOperation>
    _GLIBCXX20_CONSTEXPR
    _OutputIterator
    transform_inclusive_scan(_InputIterator __first, _InputIterator __last,
			     _OutputIterator __result,
			     _BinaryOperation __binary_op,
			     _UnaryOperation __unary_op)
    {
      if (__first != __last)
	{
	  auto __init = __unary_op(*__first);
	  *__result++ = __init;
	  ++__first;
	  if (__first != __last)
	    __result = std::transform_inclusive_scan(__first, __last, __result,
						     __binary_op, __unary_op,
						     std::move(__init));
	}
      return __result;
    }

  /// @} group numeric_ops

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

// Parallel STL algorithms
# if _PSTL_EXECUTION_POLICIES_DEFINED
// If <execution> has already been included, pull in implementations
#  include <pstl/glue_numeric_impl.h>
# else
// Otherwise just pull in forward declarations
#  include <pstl/glue_numeric_defs.h>
#  define _PSTL_NUMERIC_FORWARD_DECLARED 1
# endif

// Feature test macro for parallel algorithms
# define __cpp_lib_parallel_algorithm 201603L
#endif // C++17

#endif /* _GLIBCXX_NUMERIC */