Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
dnl  x86 mpn_sqr_basecase -- square an mpn number, optimised for atom.

dnl  Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.

dnl  Copyright 2011 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')

C TODO
C  * Check if 'jmp N(%esp)' is well-predicted enough to allow us to combine the
C    4 large loops into one; we could use it for the outer loop branch.
C  * Optimise code outside of inner loops.
C  * Write combined addmul_1 feed-in a wind-down code, and use when iterating
C    outer each loop.  ("Overlapping software pipelining")
C  * Perhaps use caller-saves regs for inlined mul_1, allowing us to postpone
C    all pushes.
C  * Perhaps write special code for n < M, for some small M.
C  * Replace inlined addmul_1 with smaller code from aorsmul_1.asm, or perhaps
C    with even less pipelined code.
C  * We run the outer loop until we have a 2-limb by 1-limb addmul_1 left.
C    Consider breaking out earlier, saving high the cost of short loops.

C void mpn_sqr_basecase (mp_ptr wp,
C                        mp_srcptr xp, mp_size_t xn);

define(`rp',  `%edi')
define(`up',  `%esi')
define(`n',   `%ecx')

define(`un',  `%ebp')

	TEXT
	ALIGN(16)
PROLOGUE(mpn_sqr_basecase)
	push	%edi
	push	%esi
	mov	12(%esp), rp
	mov	16(%esp), up
	mov	20(%esp), n

	lea	4(rp), rp	C write triangular product starting at rp[1]
	dec	n
	movd	(up), %mm7

	jz	L(one)
	lea	4(up), up
	push	%ebx
	push	%ebp
	mov	n, %eax

	movd	(up), %mm0
	neg	n
	pmuludq	%mm7, %mm0
	pxor	%mm6, %mm6
	mov	n, un

	and	$3, %eax
	jz	L(of0)
	cmp	$2, %eax
	jc	L(of1)
	jz	L(of2)

C ================================================================
	jmp	L(m3)
	ALIGN(16)
L(lm3):	movd	-4(up), %mm0
	pmuludq	%mm7, %mm0
	psrlq	$32, %mm6
	lea	16(rp), rp
	paddq	%mm0, %mm6
	movd	(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, -4(rp)
	psrlq	$32, %mm6
L(m3):	paddq	%mm0, %mm6
	movd	4(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, (rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, 4(rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	add	$4, un
	movd	%mm6, 8(rp)
	lea	16(up), up
	js	L(lm3)

	psrlq	$32, %mm6
	movd	%mm6, 12(rp)

	inc	n
C	jz	L(done)
  lea	-12(up), up
  lea	4(rp), rp
	jmp	L(ol2)

C ================================================================
	ALIGN(16)
L(lm0):	movd	(up), %mm0
	pmuludq	%mm7, %mm0
	psrlq	$32, %mm6
	lea	16(rp), rp
L(of0):	paddq	%mm0, %mm6
	movd	4(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, (rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, 4(rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	movd	12(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, 8(rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	add	$4, un
	movd	%mm6, 12(rp)
	lea	16(up), up
	js	L(lm0)

	psrlq	$32, %mm6
	movd	%mm6, 16(rp)

	inc	n
C	jz	L(done)
  lea	-8(up), up
  lea	8(rp), rp
	jmp	L(ol3)

C ================================================================
	ALIGN(16)
L(lm1):	movd	-12(up), %mm0
	pmuludq	%mm7, %mm0
	psrlq	$32, %mm6
	lea	16(rp), rp
	paddq	%mm0, %mm6
	movd	-8(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, -12(rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	movd	-4(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, -8(rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	movd	(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, -4(rp)
	psrlq	$32, %mm6
L(of1):	paddq	%mm0, %mm6
	add	$4, un
	movd	%mm6, (rp)
	lea	16(up), up
	js	L(lm1)

	psrlq	$32, %mm6
	movd	%mm6, 4(rp)

	inc	n
	jz	L(done)		C goes away when we add special n=2 code
  lea	-20(up), up
  lea	-4(rp), rp
	jmp	L(ol0)

C ================================================================
	ALIGN(16)
L(lm2):	movd	-8(up), %mm0
	pmuludq	%mm7, %mm0
	psrlq	$32, %mm6
	lea	16(rp), rp
	paddq	%mm0, %mm6
	movd	-4(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, -8(rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	movd	(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, -4(rp)
	psrlq	$32, %mm6
L(of2):	paddq	%mm0, %mm6
	movd	4(up), %mm0
	pmuludq	%mm7, %mm0
	movd	%mm6, (rp)
	psrlq	$32, %mm6
	paddq	%mm0, %mm6
	add	$4, un
	movd	%mm6, 4(rp)
	lea	16(up), up
	js	L(lm2)

	psrlq	$32, %mm6
	movd	%mm6, 8(rp)

	inc	n
C	jz	L(done)
  lea	-16(up), up
C  lea	(rp), rp
C	jmp	L(ol1)

C ================================================================

L(ol1):	lea	4(up,n,4), up
	movd	(up), %mm7	C read next U invariant limb
	lea	8(rp,n,4), rp
	mov	n, un

	movd	4(up), %mm1
	pmuludq	%mm7, %mm1
	sar	$2, un
	movd	%mm1, %ebx
	inc	un
	jz	L(re1)

	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	xor	%edx, %edx	C zero edx and CF
	jmp	L(a1)

L(la1):	adc	$0, %edx
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	adc	$0, %edx
	add	%eax, (rp)
L(a1):	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	movd	%mm0, %eax
	movd	12(up), %mm1
	pmuludq	%mm7, %mm1
	adc	$0, %edx
	add	%ebx, 4(rp)
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	lea	16(up), up
	movd	(up), %mm0
	adc	$0, %edx
	add	%eax, 8(rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	pmuludq	%mm7, %mm0
	inc	un
	movd	4(up), %mm1
	jnz	L(la1)

	adc	un, %edx	C un is zero here
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	adc	un, %edx
	add	%eax, (rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %eax
	adc	un, %eax
	add	%ebx, 4(rp)
	adc	un, %eax
	mov	%eax, 8(rp)

	inc	n

C ================================================================

L(ol0):	lea	(up,n,4), up
	movd	4(up), %mm7	C read next U invariant limb
	lea	4(rp,n,4), rp
	mov	n, un

	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	sar	$2, un
	movd	12(up), %mm1
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	xor	%edx, %edx	C zero edx and CF
	jmp	L(a0)

L(la0):	adc	$0, %edx
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	adc	$0, %edx
	add	%eax, (rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	movd	%mm0, %eax
	movd	12(up), %mm1
	pmuludq	%mm7, %mm1
	adc	$0, %edx
	add	%ebx, 4(rp)
L(a0):	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	lea	16(up), up
	movd	(up), %mm0
	adc	$0, %edx
	add	%eax, 8(rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	pmuludq	%mm7, %mm0
	inc	un
	movd	4(up), %mm1
	jnz	L(la0)

	adc	un, %edx	C un is zero here
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	adc	un, %edx
	add	%eax, (rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %eax
	adc	un, %eax
	add	%ebx, 4(rp)
	adc	un, %eax
	mov	%eax, 8(rp)

	inc	n

C ================================================================

L(ol3):	lea	12(up,n,4), up
	movd	-8(up), %mm7	C read next U invariant limb
	lea	(rp,n,4), rp	C put rp back
	mov	n, un

	movd	-4(up), %mm1
	pmuludq	%mm7, %mm1
	sar	$2, un
	movd	%mm1, %ebx
	movd	(up), %mm0
	xor	%edx, %edx	C zero edx and CF
	jmp	L(a3)

L(la3):	adc	$0, %edx
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	adc	$0, %edx
	add	%eax, (rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	movd	%mm0, %eax
	movd	12(up), %mm1
	pmuludq	%mm7, %mm1
	adc	$0, %edx
	add	%ebx, 4(rp)
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	lea	16(up), up
	movd	(up), %mm0
	adc	$0, %edx
	add	%eax, 8(rp)
L(a3):	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	pmuludq	%mm7, %mm0
	inc	un
	movd	4(up), %mm1
	jnz	L(la3)

	adc	un, %edx	C un is zero here
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	adc	un, %edx
	add	%eax, (rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %eax
	adc	un, %eax
	add	%ebx, 4(rp)
	adc	un, %eax
	mov	%eax, 8(rp)

	inc	n

C ================================================================

L(ol2):	lea	8(up,n,4), up
	movd	-4(up), %mm7	C read next U invariant limb
	lea	12(rp,n,4), rp
	mov	n, un

	movd	(up), %mm0
	pmuludq	%mm7, %mm0
	xor	%edx, %edx
	sar	$2, un
	movd	4(up), %mm1
	test	un, un		C clear carry
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	inc	un
	jnz	L(a2)
	jmp	L(re2)

L(la2):	adc	$0, %edx
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
L(a2):	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	movd	8(up), %mm0
	pmuludq	%mm7, %mm0
	adc	$0, %edx
	add	%eax, (rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	movd	%mm0, %eax
	movd	12(up), %mm1
	pmuludq	%mm7, %mm1
	adc	$0, %edx
	add	%ebx, 4(rp)
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	lea	16(up), up
	movd	(up), %mm0
	adc	$0, %edx
	add	%eax, 8(rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %edx
	pmuludq	%mm7, %mm0
	inc	un
	movd	4(up), %mm1
	jnz	L(la2)

	adc	un, %edx	C un is zero here
	add	%ebx, 12(rp)
	movd	%mm0, %eax
	pmuludq	%mm7, %mm1
	lea	16(rp), rp
	psrlq	$32, %mm0
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	adc	un, %edx
	add	%eax, (rp)
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %eax
	adc	un, %eax
	add	%ebx, 4(rp)
	adc	un, %eax
	mov	%eax, 8(rp)

	inc	n
	jmp	L(ol1)

C ================================================================
L(re2):	psrlq	$32, %mm0
	movd	(up), %mm7	C read next U invariant limb
	adc	%edx, %eax
	movd	%mm0, %edx
	movd	%mm1, %ebx
	adc	un, %edx
	add	%eax, (rp)
	lea	4(rp), rp
	psrlq	$32, %mm1
	adc	%edx, %ebx
	movd	%mm1, %eax
	movd	4(up), %mm1
	adc	un, %eax
	add	%ebx, (rp)
	pmuludq	%mm7, %mm1
	adc	un, %eax
	mov	%eax, 4(rp)
	movd	%mm1, %ebx

L(re1):	psrlq	$32, %mm1
	add	%ebx, 4(rp)
	movd	%mm1, %eax
	adc	un, %eax
	xor	n, n		C make n zeroness assumption below true
	mov	%eax, 8(rp)

L(done):			C n is zero here
	mov	24(%esp), up
	mov	28(%esp), %eax

	movd	(up), %mm0
	inc	%eax
	pmuludq	%mm0, %mm0
	lea	4(up), up
	mov	20(%esp), rp
	shr	%eax
	movd	%mm0, (rp)
	psrlq	$32, %mm0
	lea	-12(rp), rp
	mov	%eax, 28(%esp)
	jnc	L(odd)

	movd	%mm0, %ebp
	movd	(up), %mm0
	lea	8(rp), rp
	pmuludq	%mm0, %mm0
	lea	-4(up), up
	add	8(rp), %ebp
	movd	%mm0, %edx
	adc	12(rp), %edx
	rcr	n
	jmp	L(ent)

C	ALIGN(16)		C alignment seems irrelevant
L(top):	movd	(up), %mm1
	adc	n, n
	movd	%mm0, %eax
	pmuludq	%mm1, %mm1
	movd	4(up), %mm0
	adc	(rp), %eax
	movd	%mm1, %ebx
	pmuludq	%mm0, %mm0
	psrlq	$32, %mm1
	adc	4(rp), %ebx
	movd	%mm1, %ebp
	movd	%mm0, %edx
	adc	8(rp), %ebp
	adc	12(rp), %edx
	rcr	n		C FIXME: isn't this awfully slow on atom???
	adc	%eax, (rp)
	adc	%ebx, 4(rp)
L(ent):	lea	8(up), up
	adc	%ebp, 8(rp)
	psrlq	$32, %mm0
	adc	%edx, 12(rp)
L(odd):	decl	28(%esp)
	lea	16(rp), rp
	jnz	L(top)

L(end):	adc	n, n
	movd	%mm0, %eax
	adc	n, %eax
	mov	%eax, (rp)

L(rtn):	emms
	pop	%ebp
	pop	%ebx
	pop	%esi
	pop	%edi
	ret

L(one):	pmuludq	%mm7, %mm7
	movq	%mm7, -4(rp)
	emms
	pop	%esi
	pop	%edi
	ret
EPILOGUE()