dnl x86 mpn_gcd_11 optimised for processors with fast BSF. dnl Based on the K7 gcd_1.asm, by Kevin Ryde. Rehacked by Torbjorn Granlund. dnl Copyright 2000-2002, 2005, 2009, 2011, 2012, 2015 Free Software dnl Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C cycles/bit (approx) C AMD K7 7.80 C AMD K8,K9 7.79 C AMD K10 4.08 C AMD bd1 ? C AMD bobcat 7.82 C Intel P4-2 14.9 C Intel P4-3/4 14.0 C Intel P6/13 5.09 C Intel core2 4.22 C Intel NHM 5.00 C Intel SBR 5.00 C Intel atom 17.1 C VIA nano ? C Numbers measured with: speed -CD -s16-32 -t16 mpn_gcd_1 define(`u0', `%eax') define(`v0', `%edx') ASM_START() TEXT ALIGN(16) PROLOGUE(mpn_gcd_11) push %edi push %esi mov 12(%esp), %eax mov 16(%esp), %edx jmp L(odd) ALIGN(16) C K10 BD C2 NHM SBR L(top): cmovc( %esi, %eax) C u = |v - u| 0,3 0,3 0,6 0,5 0,5 cmovc( %edi, %edx) C v = min(u,v) 0,3 0,3 2,8 1,7 1,7 shr %cl, %eax C 1,7 1,6 2,8 2,8 2,8 L(odd): mov %edx, %esi C 1 1 4 3 3 sub %eax, %esi C 2 2 5 4 4 bsf %esi, %ecx C 3 3 6 5 5 mov %eax, %edi C 2 2 3 3 4 sub %edx, %eax C 2 2 4 3 4 jnz L(top) C L(end): mov %edx, %eax pop %esi pop %edi ret EPILOGUE() |