/* mpc_dot -- Dot product of two arrays of complex numbers. Copyright (C) 2018, 2020 INRIA This file is part of GNU MPC. GNU MPC is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/ . */ #include <stdio.h> /* for MPC_ASSERT */ #include "mpc-impl.h" /* res <- x[0]*y[0] + ... + x[n-1]*y[n-1] */ int mpc_dot (mpc_ptr res, const mpc_ptr *x, const mpc_ptr *y, unsigned long n, mpc_rnd_t rnd) { int inex_re, inex_im; mpfr_ptr *t; mpfr_t *z; unsigned long i; mpfr_t re_res; z = (mpfr_t *) malloc (2 * n * sizeof (mpfr_t)); /* warning: when n=0, malloc() might return NULL (e.g., gcc119) */ MPC_ASSERT(n == 0 || z != NULL); t = (mpfr_ptr *) malloc (2 * n * sizeof(mpfr_ptr)); MPC_ASSERT(n == 0 || t != NULL); for (i = 0; i < 2 * n; i++) t[i] = z[i]; /* we first store in z[i] the value of Re(x[i])*Re(y[i]) and in z[n+i] that of -Im(x[i])*Im(y[i]) */ for (i = 0; i < n; i++) { mpfr_prec_t prec_x_re = mpfr_get_prec (mpc_realref (x[i])); mpfr_prec_t prec_x_im = mpfr_get_prec (mpc_imagref (x[i])); mpfr_prec_t prec_y_re = mpfr_get_prec (mpc_realref (y[i])); mpfr_prec_t prec_y_im = mpfr_get_prec (mpc_imagref (y[i])); mpfr_prec_t prec_y_max = MPC_MAX (prec_y_re, prec_y_im); /* we allocate z[i] with prec_x_re + prec_y_max bits so that the second loop below does not reallocate */ mpfr_init2 (z[i], prec_x_re + prec_y_max); mpfr_set_prec (z[i], prec_x_re + prec_y_re); mpfr_mul (z[i], mpc_realref (x[i]), mpc_realref (y[i]), MPFR_RNDZ); /* idem for z[n+i]: we allocate with prec_x_im + prec_y_max bits */ mpfr_init2 (z[n+i], prec_x_im + prec_y_max); mpfr_set_prec (z[n+i], prec_x_im + prec_y_im); mpfr_mul (z[n+i], mpc_imagref (x[i]), mpc_imagref (y[i]), MPFR_RNDZ); mpfr_neg (z[n+i], z[n+i], MPFR_RNDZ); } /* copy the real part in a temporary variable, since it might be in the input array */ mpfr_init2 (re_res, mpfr_get_prec (mpc_realref (res))); inex_re = mpfr_sum (re_res, t, 2 * n, MPC_RND_RE (rnd)); /* we then store in z[i] the value of Re(x[i])*Im(y[i]) and in z[n+i] that of Im(x[i])*Re(y[i]) */ for (i = 0; i < n; i++) { mpfr_prec_t prec_x_re = mpfr_get_prec (mpc_realref (x[i])); mpfr_prec_t prec_x_im = mpfr_get_prec (mpc_imagref (x[i])); mpfr_prec_t prec_y_re = mpfr_get_prec (mpc_realref (y[i])); mpfr_prec_t prec_y_im = mpfr_get_prec (mpc_imagref (y[i])); mpfr_set_prec (z[i], prec_x_re + prec_y_im); mpfr_mul (z[i], mpc_realref (x[i]), mpc_imagref (y[i]), MPFR_RNDZ); mpfr_set_prec (z[n+i], prec_x_im + prec_y_re); mpfr_mul (z[n+i], mpc_imagref (x[i]), mpc_realref (y[i]), MPFR_RNDZ); } inex_im = mpfr_sum (mpc_imagref (res), t, 2 * n, MPC_RND_IM (rnd)); mpfr_swap (mpc_realref (res), re_res); mpfr_clear (re_res); for (i = 0; i < 2 * n; i++) mpfr_clear (z[i]); free (t); free (z); return MPC_INEX(inex_re, inex_im); } |