/* $NetBSD: sunxi_can.c,v 1.13 2022/11/19 09:05:42 yamt Exp $ */
/*-
* Copyright (c) 2017,2018 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Manuel Bouyer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "locators.h"
#include "opt_can.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: sunxi_can.c,v 1.13 2022/11/19 09:05:42 yamt Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/ioctl.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/rndsource.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/bpf.h>
#ifdef CAN
#include <netcan/can.h>
#include <netcan/can_var.h>
#endif
#include <dev/fdt/fdtvar.h>
#include <arm/sunxi/sunxi_can.h>
/* shortcut for all error interrupts */
#define SUNXI_CAN_INT_ALLERRS (\
SUNXI_CAN_INT_BERR | \
SUNXI_CAN_INT_ARB_LOST | \
SUNXI_CAN_INT_ERR_PASSIVE | \
SUNXI_CAN_INT_DATA_OR | \
SUNXI_CAN_INT_ERR \
)
struct sunxi_can_softc {
struct canif_softc sc_cansc;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
kmutex_t sc_intr_lock;
void *sc_ih;
struct ifnet *sc_ifp;
krndsource_t sc_rnd_source; /* random source */
struct mbuf *sc_m_transmit; /* mbuf being transmitted */
};
#define sc_dev sc_cansc.csc_dev
#define sc_timecaps sc_cansc.csc_timecaps
#define sc_timings sc_cansc.csc_timings
#define sc_linkmodes sc_cansc.csc_linkmodes
static const struct device_compatible_entry compat_data[] = {
{ .compat = "allwinner,sun4i-a10-can" },
DEVICE_COMPAT_EOL
};
static int sunxi_can_match(device_t, cfdata_t, void *);
static void sunxi_can_attach(device_t, device_t, void *);
static int sunxi_can_intr(void *);
static void sunxi_can_ifstart(struct ifnet *);
static int sunxi_can_ifioctl(struct ifnet *, u_long, void *);
static void sunxi_can_ifwatchdog(struct ifnet *);
static void sunxi_can_enter_reset(struct sunxi_can_softc *);
static void sunxi_can_exit_reset(struct sunxi_can_softc *);
static void sunxi_can_ifdown(struct sunxi_can_softc * const);
static int sunxi_can_ifup(struct sunxi_can_softc * const);
CFATTACH_DECL_NEW(sunxi_can, sizeof(struct sunxi_can_softc),
sunxi_can_match, sunxi_can_attach, NULL, NULL);
static inline uint32_t
sunxi_can_read(struct sunxi_can_softc *sc, bus_size_t o)
{
return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
}
static inline void
sunxi_can_write(struct sunxi_can_softc *sc, bus_size_t o, uint32_t v)
{
return bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
}
static int
sunxi_can_match(device_t parent, cfdata_t cf, void *aux)
{
struct fdt_attach_args * const faa = aux;
return of_compatible_match(faa->faa_phandle, compat_data);
}
static void
sunxi_can_attach(device_t parent, device_t self, void *aux)
{
struct sunxi_can_softc * const sc = device_private(self);
struct fdt_attach_args * const faa = aux;
struct ifnet *ifp;
const int phandle = faa->faa_phandle;
bus_addr_t addr;
bus_size_t size;
char intrstr[128];
struct clk *clk;
struct fdtbus_reset *rst;
sc->sc_dev = self;
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_NET);
sc->sc_bst = faa->faa_bst;
if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
aprint_error(": couldn't map registers\n");
return;
}
if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
aprint_error(": failed to decode interrupt\n");
return;
}
if ((clk = fdtbus_clock_get_index(phandle, 0)) != NULL) {
if (clk_enable(clk) != 0) {
aprint_error(": couldn't enable clock\n");
return;
}
}
if ((rst = fdtbus_reset_get_index(phandle, 0)) != NULL) {
if (fdtbus_reset_deassert(rst) != 0) {
aprint_error(": couldn't de-assert reset\n");
return;
}
}
sc->sc_timecaps.cltc_prop_min = 0;
sc->sc_timecaps.cltc_prop_max = 0;
sc->sc_timecaps.cltc_ps1_min = 1;
sc->sc_timecaps.cltc_ps1_max = 16;
sc->sc_timecaps.cltc_ps2_min = 1;
sc->sc_timecaps.cltc_ps2_max = 8;
sc->sc_timecaps.cltc_sjw_max = 4;
sc->sc_timecaps.cltc_brp_min = 1;
sc->sc_timecaps.cltc_brp_max = 64;
sc->sc_timecaps.cltc_brp_inc = 1;
sc->sc_timecaps.cltc_clock_freq = clk_get_rate(clk);
sc->sc_timecaps.cltc_linkmode_caps =
CAN_LINKMODE_3SAMPLES | CAN_LINKMODE_LISTENONLY |
CAN_LINKMODE_LOOPBACK;
can_ifinit_timings(&sc->sc_cansc);
sc->sc_timings.clt_prop = 0;
sc->sc_timings.clt_sjw = 1;
aprint_naive("\n");
aprint_normal(": CAN bus controller\n");
aprint_debug_dev(self, ": clock freq %d\n",
sc->sc_timecaps.cltc_clock_freq);
sunxi_can_enter_reset(sc);
/*
* Disable and then clear all interrupts
*/
sunxi_can_write(sc, SUNXI_CAN_INTE_REG, 0);
sunxi_can_write(sc, SUNXI_CAN_INT_REG,
sunxi_can_read(sc, SUNXI_CAN_INT_REG));
sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_NET, 0,
sunxi_can_intr, sc, device_xname(self));
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "failed to establish interrupt on %s\n",
intrstr);
return;
}
aprint_normal_dev(self, "interrupting on %s\n", intrstr);
ifp = if_alloc(IFT_OTHER);
sc->sc_ifp = ifp;
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_capabilities = 0;
ifp->if_flags = 0;
ifp->if_start = sunxi_can_ifstart;
ifp->if_ioctl = sunxi_can_ifioctl;
ifp->if_watchdog = sunxi_can_ifwatchdog;
/*
* Attach the interface.
*/
can_ifattach(ifp);
if_deferred_start_init(ifp, NULL);
bpf_mtap_softint_init(ifp);
rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
RND_TYPE_NET, RND_FLAG_DEFAULT);
#ifdef MBUFTRACE
ifp->if_mowner = kmem_zalloc(sizeof(*ifp->if_mowner), KM_SLEEP);
strlcpy(ifp->if_mowner->mo_name, ifp->if_xname,
sizeof(ifp->if_mowner->mo_name));
MOWNER_ATTACH(ifp->if_mowner);
#endif
}
static void
sunxi_can_rx_intr(struct sunxi_can_softc *sc)
{
uint32_t reg0v;
struct mbuf *m;
struct ifnet *ifp = sc->sc_ifp;
struct can_frame *cf;
int dlc;
int regd, i;
KASSERT(mutex_owned(&sc->sc_intr_lock));
reg0v = sunxi_can_read(sc, SUNXI_CAN_TXBUF0_REG);
dlc = reg0v & SUNXI_CAN_TXBUF0_DL;
if (dlc > CAN_MAX_DLC) {
if_statinc(ifp, if_ierrors);
sunxi_can_write(sc, SUNXI_CAN_CMD_REG, SUNXI_CAN_CMD_REL_RX_BUF);
return;
}
m = m_gethdr(M_NOWAIT, MT_HEADER);
if (m == NULL) {
if_statinc(ifp, if_ierrors);
sunxi_can_write(sc, SUNXI_CAN_CMD_REG, SUNXI_CAN_CMD_REL_RX_BUF);
return;
}
cf = mtod(m, struct can_frame *);
memset(cf, 0, sizeof(struct can_frame));
cf->can_dlc = dlc;
if (reg0v & SUNXI_CAN_TXBUF0_EFF) {
cf->can_id =
(sunxi_can_read(sc, SUNXI_CAN_TXBUF1_REG) << 21) |
(sunxi_can_read(sc, SUNXI_CAN_TXBUF2_REG) << 13) |
(sunxi_can_read(sc, SUNXI_CAN_TXBUF3_REG) << 5) |
((sunxi_can_read(sc, SUNXI_CAN_TXBUF4_REG) >> 3) & 0x1f);
cf->can_id |= CAN_EFF_FLAG;
regd = SUNXI_CAN_TXBUF5_REG;
} else {
cf->can_id =
(sunxi_can_read(sc, SUNXI_CAN_TXBUF1_REG) << 3) |
((sunxi_can_read(sc, SUNXI_CAN_TXBUF2_REG) << 5) & 0x7);
regd = SUNXI_CAN_TXBUF3_REG;
}
if (reg0v & SUNXI_CAN_TXBUF0_RTR) {
cf->can_id |= CAN_RTR_FLAG;
} else {
for (i = 0; i < cf->can_dlc; i++) {
cf->data[i] = sunxi_can_read(sc, regd + i * 4);
}
}
sunxi_can_write(sc, SUNXI_CAN_CMD_REG, SUNXI_CAN_CMD_REL_RX_BUF);
m->m_len = m->m_pkthdr.len = CAN_MTU;
if_statadd(ifp, if_ibytes, m->m_len);
m_set_rcvif(m, ifp);
can_bpf_mtap(ifp, m, 1);
can_input(ifp, m);
}
static void
sunxi_can_tx_intr(struct sunxi_can_softc *sc)
{
struct ifnet * const ifp = sc->sc_ifp;
struct mbuf *m;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if ((m = sc->sc_m_transmit) != NULL) {
if_statadd2(ifp, if_obytes, m->m_len, if_opackets, 1);
can_mbuf_tag_clean(m);
m_set_rcvif(m, ifp);
can_input(ifp, m); /* loopback */
sc->sc_m_transmit = NULL;
ifp->if_timer = 0;
}
if_schedule_deferred_start(ifp);
}
static int
sunxi_can_tx_abort(struct sunxi_can_softc *sc)
{
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (sc->sc_m_transmit) {
m_freem(sc->sc_m_transmit);
sc->sc_m_transmit = NULL;
sc->sc_ifp->if_timer = 0;
/*
* the transmit abort will trigger a TX interrupt
* which will restart the queue as appropriate.
*/
sunxi_can_write(sc, SUNXI_CAN_CMD_REG, SUNXI_CAN_CMD_ABT_REQ);
return 1;
}
return 0;
}
static void
sunxi_can_err_intr(struct sunxi_can_softc *sc, uint32_t irq, uint32_t sts)
{
struct ifnet * const ifp = sc->sc_ifp;
KASSERT(mutex_owned(&sc->sc_intr_lock));
int txerr = 0;
uint32_t reg;
if (irq & SUNXI_CAN_INT_DATA_OR) {
if_statinc(ifp, if_ierrors);
sunxi_can_ifdown(sc);
sunxi_can_write(sc, SUNXI_CAN_CMD_REG, SUNXI_CAN_CMD_CLR_OR);
sunxi_can_ifup(sc);
}
if (irq & SUNXI_CAN_INT_ERR) {
reg = sunxi_can_read(sc, SUNXI_CAN_REC_REG);
printf("%s: ERR interrupt status 0x%x counters 0x%x\n",
device_xname(sc->sc_dev), sts, reg);
}
if (irq & SUNXI_CAN_INT_BERR) {
if (sts & SUNXI_CAN_STA_TX)
txerr++;
if (sts & SUNXI_CAN_STA_RX)
if_statinc(ifp, if_ierrors);
}
if (irq & SUNXI_CAN_INT_ERR_PASSIVE) {
printf("%s: PASSV interrupt status 0x%x\n",
device_xname(sc->sc_dev), sts);
}
if (irq & SUNXI_CAN_INT_ARB_LOST) {
txerr++;
}
if (txerr) {
if_statadd(ifp, if_oerrors, txerr);
(void) sunxi_can_tx_abort(sc);
}
}
int
sunxi_can_intr(void *arg)
{
struct sunxi_can_softc * const sc = arg;
int rv = 0;
int irq;
mutex_enter(&sc->sc_intr_lock);
while ((irq = sunxi_can_read(sc, SUNXI_CAN_INT_REG)) != 0) {
uint32_t sts = sunxi_can_read(sc, SUNXI_CAN_STA_REG);
rv = 1;
rnd_add_uint32(&sc->sc_rnd_source, irq);
if ((irq & (SUNXI_CAN_INT_RX_FLAG | SUNXI_CAN_INT_DATA_OR)) ==
SUNXI_CAN_INT_RX_FLAG) {
while (sts & SUNXI_CAN_STA_RX_RDY) {
sunxi_can_rx_intr(sc);
sts = sunxi_can_read(sc, SUNXI_CAN_STA_REG);
}
/*
* Don't write SUNXI_CAN_INT_RX_FLAG to the interrupt
* register, this may clear the RX pending flag
* while there is indeed a packet pending.
* Reading packets should have cleared the RX interrupt,
* so just restart the loop and re-read the interrupt
* register. In the common case irq will now be 0.
*/
continue;
}
if (irq & SUNXI_CAN_INT_TX_FLAG) {
sunxi_can_tx_intr(sc);
}
if (irq & SUNXI_CAN_INT_ALLERRS) {
sunxi_can_err_intr(sc, irq, sts);
}
sunxi_can_write(sc, SUNXI_CAN_INT_REG, irq);
}
mutex_exit(&sc->sc_intr_lock);
return rv;
}
void
sunxi_can_ifstart(struct ifnet *ifp)
{
struct sunxi_can_softc * const sc = ifp->if_softc;
struct mbuf *m;
struct can_frame *cf;
int regd;
uint32_t reg0val;
int i;
mutex_enter(&sc->sc_intr_lock);
if (sc->sc_m_transmit != NULL)
goto out;
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
goto out;
MCLAIM(m, ifp->if_mowner);
sc->sc_m_transmit = m;
KASSERT((m->m_flags & M_PKTHDR) != 0);
KASSERT(m->m_len == m->m_pkthdr.len);
cf = mtod(m, struct can_frame *);
reg0val = cf->can_dlc & SUNXI_CAN_TXBUF0_DL;
if (cf->can_id & CAN_RTR_FLAG)
reg0val |= SUNXI_CAN_TXBUF0_RTR;
if (cf->can_id & CAN_EFF_FLAG) {
reg0val |= SUNXI_CAN_TXBUF0_EFF;
sunxi_can_write(sc, SUNXI_CAN_TXBUF1_REG,
(cf->can_id >> 21) & 0xff);
sunxi_can_write(sc, SUNXI_CAN_TXBUF2_REG,
(cf->can_id >> 13) & 0xff);
sunxi_can_write(sc, SUNXI_CAN_TXBUF3_REG,
(cf->can_id >> 5) & 0xff);
sunxi_can_write(sc, SUNXI_CAN_TXBUF4_REG,
(cf->can_id << 3) & 0xf8);
regd = SUNXI_CAN_TXBUF5_REG;
} else {
sunxi_can_write(sc, SUNXI_CAN_TXBUF1_REG,
(cf->can_id >> 3) & 0xff);
sunxi_can_write(sc, SUNXI_CAN_TXBUF2_REG,
(cf->can_id << 5) & 0xe0);
regd = SUNXI_CAN_TXBUF3_REG;
}
for (i = 0; i < cf->can_dlc; i++) {
sunxi_can_write(sc, regd + i * 4, cf->data[i]);
}
sunxi_can_write(sc, SUNXI_CAN_TXBUF0_REG, reg0val);
if (sc->sc_linkmodes & CAN_LINKMODE_LOOPBACK) {
sunxi_can_write(sc, SUNXI_CAN_CMD_REG,
SUNXI_CAN_CMD_TANS_REQ | SUNXI_CAN_CMD_SELF_REQ);
} else {
sunxi_can_write(sc, SUNXI_CAN_CMD_REG, SUNXI_CAN_CMD_TANS_REQ);
}
ifp->if_timer = 5;
can_bpf_mtap(ifp, m, 0);
out:
mutex_exit(&sc->sc_intr_lock);
}
static int
sunxi_can_ifup(struct sunxi_can_softc * const sc)
{
uint32_t reg;
/* setup timings and mode - has to be done in reset */
reg = SUNXI_CAN_MODSEL_RST;
if (sc->sc_linkmodes & CAN_LINKMODE_LISTENONLY)
reg |= SUNXI_CAN_MODSEL_LST_ONLY;
if (sc->sc_linkmodes & CAN_LINKMODE_LOOPBACK)
reg |= SUNXI_CAN_MODSEL_LB_MOD;
sunxi_can_write(sc, SUNXI_CAN_MODSEL_REG, reg);
reg = 0;
if (sc->sc_timings.clt_prop != 0)
return EINVAL;
if (sc->sc_timings.clt_brp > sc->sc_timecaps.cltc_brp_max ||
sc->sc_timings.clt_brp < sc->sc_timecaps.cltc_brp_min)
return EINVAL;
reg |= (sc->sc_timings.clt_brp - 1) << 0;
if (sc->sc_timings.clt_ps1 > sc->sc_timecaps.cltc_ps1_max ||
sc->sc_timings.clt_ps1 < sc->sc_timecaps.cltc_ps1_min)
return EINVAL;
reg |= (sc->sc_timings.clt_ps1 - 1) << 16;
if (sc->sc_timings.clt_ps2 > sc->sc_timecaps.cltc_ps2_max ||
sc->sc_timings.clt_ps2 < sc->sc_timecaps.cltc_ps2_min)
return EINVAL;
reg |= (sc->sc_timings.clt_ps2 - 1) << 20;
if (sc->sc_timings.clt_sjw > sc->sc_timecaps.cltc_sjw_max ||
sc->sc_timings.clt_sjw < 1)
return EINVAL;
reg |= (sc->sc_timings.clt_sjw - 1) << 14;
if (sc->sc_linkmodes & CAN_LINKMODE_3SAMPLES)
reg |= SUNXI_CAN_BUS_TIME_SAM;
sunxi_can_write(sc, SUNXI_CAN_BUS_TIME_REG, reg);
/* set filters to accept all frames */
sunxi_can_write(sc, SUNXI_CAN_ACPC, 0x00000000);
sunxi_can_write(sc, SUNXI_CAN_ACPM, 0xffffffff);
/* clear errors counter */
sunxi_can_write(sc, SUNXI_CAN_REC_REG, 0);
/* leave reset mode and enable interrupts */
sunxi_can_exit_reset(sc);
sunxi_can_write(sc, SUNXI_CAN_INTE_REG,
SUNXI_CAN_INT_TX_FLAG | SUNXI_CAN_INT_RX_FLAG | SUNXI_CAN_INT_ALLERRS);
sc->sc_ifp->if_flags |= IFF_RUNNING;
return 0;
}
static void
sunxi_can_ifdown(struct sunxi_can_softc * const sc)
{
sc->sc_ifp->if_flags &= ~IFF_RUNNING;
sc->sc_ifp->if_timer = 0;
sunxi_can_enter_reset(sc);
sunxi_can_write(sc, SUNXI_CAN_INTE_REG, 0);
sunxi_can_write(sc, SUNXI_CAN_INT_REG,
sunxi_can_read(sc, SUNXI_CAN_INT_REG));
}
static int
sunxi_can_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct sunxi_can_softc * const sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
mutex_enter(&sc->sc_intr_lock);
switch (cmd) {
case SIOCINITIFADDR:
error = EAFNOSUPPORT;
break;
case SIOCSIFMTU:
if ((unsigned)ifr->ifr_mtu != sizeof(struct can_frame))
error = EINVAL;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = EAFNOSUPPORT;
break;
default:
error = ifioctl_common(ifp, cmd, data);
if (error == 0) {
if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
error = sunxi_can_ifup(sc);
if (error) {
ifp->if_flags &= ~IFF_UP;
}
} else if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
sunxi_can_ifdown(sc);
}
}
break;
}
mutex_exit(&sc->sc_intr_lock);
return error;
}
void
sunxi_can_ifwatchdog(struct ifnet *ifp)
{
struct sunxi_can_softc * const sc = ifp->if_softc;
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
mutex_enter(&sc->sc_intr_lock);
printf("irq 0x%x en 0x%x mode 0x%x status 0x%x timings 0x%x err 0x%x\n",
sunxi_can_read(sc, SUNXI_CAN_INT_REG),
sunxi_can_read(sc, SUNXI_CAN_INTE_REG),
sunxi_can_read(sc, SUNXI_CAN_MODSEL_REG),
sunxi_can_read(sc, SUNXI_CAN_STA_REG),
sunxi_can_read(sc, SUNXI_CAN_BUS_TIME_REG),
sunxi_can_read(sc, SUNXI_CAN_REC_REG));
/* if there is a transmit in progress abort */
if (sunxi_can_tx_abort(sc)) {
if_statinc(ifp, if_oerrors);
}
mutex_exit(&sc->sc_intr_lock);
}
static void
sunxi_can_enter_reset(struct sunxi_can_softc *sc)
{
int i;
uint32_t val;
for (i = 0; i < 1000; i++) {
val = sunxi_can_read(sc, SUNXI_CAN_MODSEL_REG);
val |= SUNXI_CAN_MODSEL_RST;
sunxi_can_write(sc, SUNXI_CAN_MODSEL_REG, val);
val = sunxi_can_read(sc, SUNXI_CAN_MODSEL_REG);
if (val & SUNXI_CAN_MODSEL_RST)
return;
}
printf("%s: couldn't enter reset mode\n", device_xname(sc->sc_dev));
}
static void
sunxi_can_exit_reset(struct sunxi_can_softc *sc)
{
int i;
uint32_t val;
for (i = 0; i < 1000; i++) {
val = sunxi_can_read(sc, SUNXI_CAN_MODSEL_REG);
val &= ~SUNXI_CAN_MODSEL_RST;
sunxi_can_write(sc, SUNXI_CAN_MODSEL_REG, val);
val = sunxi_can_read(sc, SUNXI_CAN_MODSEL_REG);
if ((val & SUNXI_CAN_MODSEL_RST) == 0)
return;
}
printf("%s: couldn't leave reset mode\n", device_xname(sc->sc_dev));
}