/* $NetBSD: pl181.c,v 1.9 2021/08/07 16:19:12 thorpej Exp $ */
/*-
* Copyright (c) 2015 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pl181.c,v 1.9 2021/08/07 16:19:12 thorpej Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmc_ioreg.h>
#include <dev/ic/pl181reg.h>
#include <dev/ic/pl181var.h>
/*
* Data length register is 16 bits for a maximum of 65535 bytes. Round
* maximum transfer size down to the nearest sector.
*/
#define PLMMC_MAXXFER rounddown(65535, SDMMC_SECTOR_SIZE)
/*
* PL181 FIFO is 16 words deep (64 bytes)
*/
#define PL181_FIFO_DEPTH 64
/*
* Data transfer IRQ status bits
*/
#define PLMMC_INT_DATA_MASK \
(MMCI_INT_DATA_TIMEOUT|MMCI_INT_DATA_CRC_FAIL| \
MMCI_INT_TX_FIFO_EMPTY|MMCI_INT_TX_FIFO_HALF_EMPTY| \
MMCI_INT_RX_FIFO_FULL|MMCI_INT_RX_FIFO_HALF_FULL| \
MMCI_INT_DATA_END|MMCI_INT_DATA_BLOCK_END)
#define PLMMC_INT_CMD_MASK \
(MMCI_INT_CMD_TIMEOUT|MMCI_INT_CMD_RESP_END)
static int plmmc_host_reset(sdmmc_chipset_handle_t);
static uint32_t plmmc_host_ocr(sdmmc_chipset_handle_t);
static int plmmc_host_maxblklen(sdmmc_chipset_handle_t);
static int plmmc_card_detect(sdmmc_chipset_handle_t);
static int plmmc_write_protect(sdmmc_chipset_handle_t);
static int plmmc_bus_power(sdmmc_chipset_handle_t, uint32_t);
static int plmmc_bus_clock(sdmmc_chipset_handle_t, int);
static int plmmc_bus_width(sdmmc_chipset_handle_t, int);
static int plmmc_bus_rod(sdmmc_chipset_handle_t, int);
static void plmmc_exec_command(sdmmc_chipset_handle_t,
struct sdmmc_command *);
static void plmmc_card_enable_intr(sdmmc_chipset_handle_t, int);
static void plmmc_card_intr_ack(sdmmc_chipset_handle_t);
static int plmmc_wait_cmd(struct plmmc_softc *);
static int plmmc_pio_transfer(struct plmmc_softc *,
struct sdmmc_command *, int);
static struct sdmmc_chip_functions plmmc_chip_functions = {
.host_reset = plmmc_host_reset,
.host_ocr = plmmc_host_ocr,
.host_maxblklen = plmmc_host_maxblklen,
.card_detect = plmmc_card_detect,
.write_protect = plmmc_write_protect,
.bus_power = plmmc_bus_power,
.bus_clock = plmmc_bus_clock,
.bus_width = plmmc_bus_width,
.bus_rod = plmmc_bus_rod,
.exec_command = plmmc_exec_command,
.card_enable_intr = plmmc_card_enable_intr,
.card_intr_ack = plmmc_card_intr_ack,
};
#define MMCI_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define MMCI_WRITE_MULTI(sc, reg, datap, cnt) \
bus_space_write_multi_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (datap), (cnt))
#define MMCI_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define MMCI_READ_MULTI(sc, reg, datap, cnt) \
bus_space_read_multi_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (datap), (cnt))
void
plmmc_init(struct plmmc_softc *sc)
{
struct sdmmcbus_attach_args saa;
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_BIO);
cv_init(&sc->sc_intr_cv, "plmmcirq");
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev, "PeriphID %#x %#x %#x %#x\n",
MMCI_READ(sc, MMCI_PERIPH_ID0_REG),
MMCI_READ(sc, MMCI_PERIPH_ID1_REG),
MMCI_READ(sc, MMCI_PERIPH_ID2_REG),
MMCI_READ(sc, MMCI_PERIPH_ID3_REG));
device_printf(sc->sc_dev, "PCellID %#x %#x %#x %#x\n",
MMCI_READ(sc, MMCI_PCELL_ID0_REG),
MMCI_READ(sc, MMCI_PCELL_ID1_REG),
MMCI_READ(sc, MMCI_PCELL_ID2_REG),
MMCI_READ(sc, MMCI_PCELL_ID3_REG));
#endif
plmmc_bus_clock(sc, 400);
MMCI_WRITE(sc, MMCI_POWER_REG, 0);
delay(10000);
MMCI_WRITE(sc, MMCI_POWER_REG, MMCI_POWER_CTRL_POWERUP);
delay(10000);
MMCI_WRITE(sc, MMCI_POWER_REG, MMCI_POWER_CTRL_POWERON);
plmmc_host_reset(sc);
memset(&saa, 0, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.saa_sct = &plmmc_chip_functions;
saa.saa_sch = sc;
saa.saa_clkmin = 400;
saa.saa_clkmax = sc->sc_max_freq > 0 ?
sc->sc_max_freq / 1000 : sc->sc_clock_freq / 1000;
saa.saa_caps = SMC_CAPS_4BIT_MODE;
sc->sc_sdmmc_dev = config_found(sc->sc_dev, &saa, NULL, CFARGS_NONE);
}
static int
plmmc_intr_xfer(struct plmmc_softc *sc, struct sdmmc_command *cmd)
{
uint32_t len;
if (cmd == NULL) {
device_printf(sc->sc_dev, "TX/RX interrupt with no active transfer\n");
return EINVAL;
}
if (cmd->c_buf == NULL) {
return EINVAL;
}
const uint32_t fifo_cnt =
__SHIFTOUT(MMCI_READ(sc, MMCI_FIFO_CNT_REG), MMCI_FIFO_CNT) * 4;
if (fifo_cnt > sc->sc_fifo_resid) {
device_printf(sc->sc_dev, "FIFO counter is out of sync with active transfer\n");
return EIO;
}
if (cmd->c_flags & SCF_CMD_READ)
len = sc->sc_fifo_resid - fifo_cnt;
else
len = uimin(sc->sc_fifo_resid, PL181_FIFO_DEPTH);
if (len == 0)
return 0;
if (cmd->c_flags & SCF_CMD_READ)
MMCI_READ_MULTI(sc, MMCI_FIFO_REG, (uint32_t *)cmd->c_buf, len / 4);
else
MMCI_WRITE_MULTI(sc, MMCI_FIFO_REG, (uint32_t *)cmd->c_buf, len / 4);
sc->sc_fifo_resid -= len;
cmd->c_resid -= len;
cmd->c_buf += len;
return 0;
}
int
plmmc_intr(void *priv)
{
struct plmmc_softc *sc = priv;
uint32_t status, mask;
int retry = 100000;
mutex_enter(&sc->sc_lock);
while (--retry > 0) {
status = MMCI_READ(sc, MMCI_STATUS_REG);
#ifdef PLMMC_DEBUG
printf("%s: MMCI_STATUS_REG = %#x\n", __func__, status);
#endif
if ((status & sc->sc_status_mask) == 0)
break;
MMCI_WRITE(sc, MMCI_CLEAR_REG, status);
sc->sc_intr_status |= status;
if (status & MMCI_INT_CMD_TIMEOUT)
break;
if (status & (MMCI_INT_DATA_TIMEOUT|MMCI_INT_DATA_CRC_FAIL)) {
device_printf(sc->sc_dev,
"data xfer error, status %08x\n", status);
break;
}
if (status & (MMCI_INT_TX_FIFO_EMPTY|MMCI_INT_TX_FIFO_HALF_EMPTY|
MMCI_INT_RX_FIFO_FULL|MMCI_INT_RX_FIFO_HALF_FULL|
MMCI_INT_DATA_END|MMCI_INT_DATA_BLOCK_END)) {
/* Data transfer in progress */
if (plmmc_intr_xfer(sc, sc->sc_cmd) == 0 &&
sc->sc_fifo_resid == 0) {
/* Disable data IRQs */
mask = MMCI_READ(sc, MMCI_MASK0_REG);
mask &= ~PLMMC_INT_DATA_MASK;
MMCI_WRITE(sc, MMCI_MASK0_REG, mask);
/* Ignore data status bits after transfer */
sc->sc_status_mask &= ~PLMMC_INT_DATA_MASK;
}
}
if (status & MMCI_INT_CMD_RESP_END)
cv_broadcast(&sc->sc_intr_cv);
}
if (retry == 0) {
device_printf(sc->sc_dev, "intr handler stuck, fifo resid %d, status %08x\n",
sc->sc_fifo_resid, MMCI_READ(sc, MMCI_STATUS_REG));
}
cv_broadcast(&sc->sc_intr_cv);
mutex_exit(&sc->sc_lock);
return 1;
}
static int
plmmc_wait_cmd(struct plmmc_softc *sc)
{
int error = 0;
KASSERT(mutex_owned(&sc->sc_lock));
while (error == 0) {
if (sc->sc_intr_status & MMCI_INT_CMD_TIMEOUT) {
error = ETIMEDOUT;
break;
} else if (sc->sc_intr_status & MMCI_INT_CMD_RESP_END) {
break;
}
error = cv_timedwait(&sc->sc_intr_cv, &sc->sc_lock, hz * 2);
if (error != 0)
break;
}
return error;
}
static int
plmmc_pio_transfer(struct plmmc_softc *sc, struct sdmmc_command *cmd,
int xferlen)
{
int error = 0;
while (sc->sc_fifo_resid > 0 && error == 0) {
error = cv_timedwait(&sc->sc_intr_cv,
&sc->sc_lock, hz * 5);
if (error != 0)
break;
if (sc->sc_intr_status & MMCI_INT_DATA_TIMEOUT)
error = ETIMEDOUT;
else if (sc->sc_intr_status & MMCI_INT_DATA_CRC_FAIL)
error = EIO;
}
return error;
}
static int
plmmc_host_reset(sdmmc_chipset_handle_t sch)
{
struct plmmc_softc *sc = sch;
MMCI_WRITE(sc, MMCI_MASK0_REG, 0);
MMCI_WRITE(sc, MMCI_MASK1_REG, 0);
MMCI_WRITE(sc, MMCI_CLEAR_REG, 0xffffffff);
return 0;
}
static uint32_t
plmmc_host_ocr(sdmmc_chipset_handle_t sch)
{
return MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V;
}
static int
plmmc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
return 2048;
}
static int
plmmc_card_detect(sdmmc_chipset_handle_t sch)
{
return 1;
}
static int
plmmc_write_protect(sdmmc_chipset_handle_t sch)
{
return 0;
}
static int
plmmc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
return 0;
}
static int
plmmc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
{
struct plmmc_softc *sc = sch;
u_int pll_freq, clk_div;
uint32_t clock;
clock = MMCI_CLOCK_PWRSAVE;
if (freq) {
pll_freq = sc->sc_clock_freq / 1000;
clk_div = (howmany(pll_freq, freq) >> 1) - 1;
clock |= __SHIFTIN(clk_div, MMCI_CLOCK_CLKDIV);
clock |= MMCI_CLOCK_ENABLE;
}
MMCI_WRITE(sc, MMCI_CLOCK_REG, clock);
return 0;
}
static int
plmmc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
return 0;
}
static int
plmmc_bus_rod(sdmmc_chipset_handle_t sch, int on)
{
struct plmmc_softc *sc = sch;
uint32_t power;
power = MMCI_READ(sc, MMCI_POWER_REG);
if (on) {
power |= MMCI_POWER_ROD;
} else {
power &= ~MMCI_POWER_ROD;
}
MMCI_WRITE(sc, MMCI_POWER_REG, power);
return 0;
}
static void
plmmc_do_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct plmmc_softc *sc = sch;
uint32_t cmdval = MMCI_COMMAND_ENABLE;
KASSERT(mutex_owned(&sc->sc_lock));
const int xferlen = uimin(cmd->c_resid, PLMMC_MAXXFER);
sc->sc_cmd = cmd;
sc->sc_fifo_resid = xferlen;
sc->sc_status_mask = ~0U;
sc->sc_intr_status = 0;
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev,
"opcode %d flags %#x datalen %d resid %d xferlen %d\n",
cmd->c_opcode, cmd->c_flags, cmd->c_datalen, cmd->c_resid, xferlen);
#endif
MMCI_WRITE(sc, MMCI_COMMAND_REG, 0);
MMCI_WRITE(sc, MMCI_MASK0_REG, 0);
MMCI_WRITE(sc, MMCI_CLEAR_REG, 0xffffffff);
MMCI_WRITE(sc, MMCI_MASK0_REG, PLMMC_INT_DATA_MASK | PLMMC_INT_CMD_MASK);
if (cmd->c_flags & SCF_RSP_PRESENT)
cmdval |= MMCI_COMMAND_RESPONSE;
if (cmd->c_flags & SCF_RSP_136)
cmdval |= MMCI_COMMAND_LONGRSP;
uint32_t arg = cmd->c_arg;
if (xferlen > 0) {
unsigned int nblks = xferlen / cmd->c_blklen;
if (nblks == 0 || (xferlen % cmd->c_blklen) != 0)
++nblks;
const uint32_t dir = (cmd->c_flags & SCF_CMD_READ) ? 1 : 0;
const uint32_t blksize = ffs(cmd->c_blklen) - 1;
MMCI_WRITE(sc, MMCI_DATA_TIMER_REG, 0xffffffff);
MMCI_WRITE(sc, MMCI_DATA_LENGTH_REG, nblks * cmd->c_blklen);
MMCI_WRITE(sc, MMCI_DATA_CTRL_REG,
__SHIFTIN(dir, MMCI_DATA_CTRL_DIRECTION) |
__SHIFTIN(blksize, MMCI_DATA_CTRL_BLOCKSIZE) |
MMCI_DATA_CTRL_ENABLE);
/* Adjust blkno if necessary */
u_int blkoff =
(cmd->c_datalen - cmd->c_resid) / SDMMC_SECTOR_SIZE;
if (!ISSET(cmd->c_flags, SCF_XFER_SDHC))
blkoff <<= SDMMC_SECTOR_SIZE_SB;
arg += blkoff;
}
MMCI_WRITE(sc, MMCI_ARGUMENT_REG, arg);
MMCI_WRITE(sc, MMCI_COMMAND_REG, cmdval | cmd->c_opcode);
if (xferlen > 0) {
cmd->c_error = plmmc_pio_transfer(sc, cmd, xferlen);
if (cmd->c_error) {
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev,
"MMCI_STATUS_REG = %08x\n", MMCI_READ(sc, MMCI_STATUS_REG));
#endif
device_printf(sc->sc_dev,
"error (%d) waiting for xfer\n", cmd->c_error);
goto done;
}
}
if ((cmd->c_flags & SCF_RSP_PRESENT) && cmd->c_resid == 0) {
cmd->c_error = plmmc_wait_cmd(sc);
if (cmd->c_error) {
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev,
"error (%d) waiting for resp\n", cmd->c_error);
#endif
goto done;
}
if (cmd->c_flags & SCF_RSP_136) {
cmd->c_resp[3] = MMCI_READ(sc, MMCI_RESP0_REG);
cmd->c_resp[2] = MMCI_READ(sc, MMCI_RESP1_REG);
cmd->c_resp[1] = MMCI_READ(sc, MMCI_RESP2_REG);
cmd->c_resp[0] = MMCI_READ(sc, MMCI_RESP3_REG);
if (cmd->c_flags & SCF_RSP_CRC) {
cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
(cmd->c_resp[1] << 24);
cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
(cmd->c_resp[2] << 24);
cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
(cmd->c_resp[3] << 24);
cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
}
} else {
cmd->c_resp[0] = MMCI_READ(sc, MMCI_RESP0_REG);
}
}
done:
sc->sc_cmd = NULL;
MMCI_WRITE(sc, MMCI_COMMAND_REG, 0);
MMCI_WRITE(sc, MMCI_MASK0_REG, 0);
MMCI_WRITE(sc, MMCI_CLEAR_REG, 0xffffffff);
MMCI_WRITE(sc, MMCI_DATA_CNT_REG, 0);
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev, "status = %#x\n", sc->sc_intr_status);
#endif
}
static void
plmmc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct plmmc_softc *sc = sch;
#ifdef PLMMC_DEBUG
device_printf(sc->sc_dev, "opcode %d flags %#x data %p datalen %d\n",
cmd->c_opcode, cmd->c_flags, cmd->c_data, cmd->c_datalen);
#endif
mutex_enter(&sc->sc_lock);
cmd->c_resid = cmd->c_datalen;
cmd->c_buf = cmd->c_data;
do {
plmmc_do_command(sch, cmd);
if (cmd->c_resid > 0 && cmd->c_error == 0) {
/*
* Multi block transfer and there is still data
* remaining. Send a stop cmd between transfers.
*/
struct sdmmc_command stop_cmd;
memset(&stop_cmd, 0, sizeof(stop_cmd));
stop_cmd.c_opcode = MMC_STOP_TRANSMISSION;
stop_cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B |
SCF_RSP_SPI_R1B;
plmmc_do_command(sch, &stop_cmd);
}
} while (cmd->c_resid > 0 && cmd->c_error == 0);
cmd->c_flags |= SCF_ITSDONE;
mutex_exit(&sc->sc_lock);
}
static void
plmmc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
{
}
static void
plmmc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
}