/* $NetBSD: if_cas.c,v 1.47 2022/09/24 18:12:42 thorpej Exp $ */
/* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
/*
*
* Copyright (C) 2007 Mark Kettenis.
* Copyright (C) 2001 Eduardo Horvath.
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Driver for Sun Cassini ethernet controllers.
*
* There are basically two variants of this chip: Cassini and
* Cassini+. We can distinguish between the two by revision: 0x10 and
* up are Cassini+. The most important difference is that Cassini+
* has a second RX descriptor ring. Cassini+ will not work without
* configuring that second ring. However, since we don't use it we
* don't actually fill the descriptors, and only hand off the first
* four to the chip.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.47 2022/09/24 18:12:42 thorpej Exp $");
#ifndef _MODULE
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/module.h>
#include <machine/endian.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#endif
#include <net/bpf.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/rndsource.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#include <prop/proplib.h>
#include <dev/pci/if_casreg.h>
#include <dev/pci/if_casvar.h>
#define TRIES 10000
static bool cas_estintr(struct cas_softc *sc, int);
bool cas_shutdown(device_t, int);
static bool cas_suspend(device_t, const pmf_qual_t *);
static bool cas_resume(device_t, const pmf_qual_t *);
static int cas_detach(device_t, int);
static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
int cas_match(device_t, cfdata_t, void *);
void cas_attach(device_t, device_t, void *);
CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
DVF_DETACH_SHUTDOWN);
int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
void cas_config(struct cas_softc *, const uint8_t *);
void cas_start(struct ifnet *);
void cas_stop(struct ifnet *, int);
int cas_ioctl(struct ifnet *, u_long, void *);
void cas_tick(void *);
void cas_watchdog(struct ifnet *);
int cas_init(struct ifnet *);
void cas_init_regs(struct cas_softc *);
int cas_ringsize(int);
int cas_cringsize(int);
int cas_meminit(struct cas_softc *);
void cas_mifinit(struct cas_softc *);
int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
uint32_t, uint32_t);
void cas_reset(struct cas_softc *);
int cas_reset_rx(struct cas_softc *);
int cas_reset_tx(struct cas_softc *);
int cas_disable_rx(struct cas_softc *);
int cas_disable_tx(struct cas_softc *);
void cas_rxdrain(struct cas_softc *);
int cas_add_rxbuf(struct cas_softc *, int);
void cas_iff(struct cas_softc *);
int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
/* MII methods & callbacks */
int cas_mii_readreg(device_t, int, int, uint16_t*);
int cas_mii_writereg(device_t, int, int, uint16_t);
void cas_mii_statchg(struct ifnet *);
int cas_pcs_readreg(device_t, int, int, uint16_t *);
int cas_pcs_writereg(device_t, int, int, uint16_t);
int cas_mediachange(struct ifnet *);
void cas_mediastatus(struct ifnet *, struct ifmediareq *);
int cas_eint(struct cas_softc *, u_int);
int cas_rint(struct cas_softc *);
int cas_tint(struct cas_softc *, uint32_t);
int cas_pint(struct cas_softc *);
int cas_intr(void *);
#ifdef CAS_DEBUG
#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
printf x
#else
#define DPRINTF(sc, x) /* nothing */
#endif
static const struct device_compatible_entry compat_data[] = {
{ .id = PCI_ID_CODE(PCI_VENDOR_SUN,
PCI_PRODUCT_SUN_CASSINI),
.value = CAS_CAS },
{ .id = PCI_ID_CODE(PCI_VENDOR_NS,
PCI_PRODUCT_NS_SATURN),
.value = CAS_SATURN },
PCI_COMPAT_EOL
};
#define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
#define CAS_PHY_INTERFACE "phy-interface"
#define CAS_PHY_TYPE "phy-type"
#define CAS_PHY_TYPE_PCS "pcs"
int
cas_match(device_t parent, cfdata_t cf, void *aux)
{
struct pci_attach_args *pa = aux;
return pci_compatible_match(pa, compat_data);
}
#define PROMHDR_PTR_DATA 0x18
#define PROMDATA_PTR_VPD 0x08
#define PROMDATA_DATA2 0x0a
static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
static const uint8_t cas_promdat[] = {
'P', 'C', 'I', 'R',
PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
};
static const uint8_t cas_promdat_ns[] = {
'P', 'C', 'I', 'R',
PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
};
static const uint8_t cas_promdat2[] = {
0x18, 0x00, /* structure length */
0x00, /* structure revision */
0x00, /* interface revision */
PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
PCI_CLASS_NETWORK /* class code */
};
#define CAS_LMA_MAXNUM 4
int
cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
uint8_t *enaddr)
{
struct pci_vpd_largeres *res;
struct pci_vpd *vpd;
bus_space_handle_t romh;
bus_space_tag_t romt;
bus_size_t romsize = 0;
uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
bool pcs[4] = {false, false, false, false};
uint8_t buf[32], *desc;
pcireg_t address;
int dataoff, vpdoff, len, lma = 0, phy = 0;
int i, rv = -1;
if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
&romt, &romh, NULL, &romsize))
return (-1);
address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
address |= PCI_MAPREG_ROM_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
goto fail;
dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
if (dataoff < 0x1c)
goto fail;
bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
goto fail;
vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
if (vpdoff < 0x1c)
goto fail;
next:
bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
if (!PCI_VPDRES_ISLARGE(buf[0]))
goto fail;
res = (struct pci_vpd_largeres *)buf;
vpdoff += sizeof(*res);
len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
/* Skip identifier string. */
vpdoff += len;
goto next;
case PCI_VPDRES_TYPE_VPD:
#ifdef CAS_DEBUG
printf("\n");
for (i = 0; i < len; i++) {
uint8_t byte;
if (i % 16 == 0)
printf("%04x :", i);
byte = bus_space_read_1(romt, romh, vpdoff + i);
printf(" %02x", byte);
if (i % 16 == 15)
printf("\n");
}
printf("\n");
#endif
while (len > 0) {
bus_space_read_region_1(romt, romh, vpdoff,
buf, sizeof(buf));
vpd = (struct pci_vpd *)buf;
vpdoff += sizeof(*vpd) + vpd->vpd_len;
len -= sizeof(*vpd) + vpd->vpd_len;
/*
* We're looking for an "Enhanced" VPD...
*/
if (vpd->vpd_key0 != 'Z')
continue;
desc = buf + sizeof(*vpd);
/*
* ...which is an instance property...
*/
if (desc[0] != 'I')
continue;
desc += 3;
if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
/*
* ...that's a byte array with the proper
* length for a MAC address...
*/
desc += 2;
/*
* ...named "local-mac-address".
*/
if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
continue;
desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
if (lma == CAS_LMA_MAXNUM)
continue;
memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
lma++;
rv = 0;
continue;
} else if (desc[0] == 'S') {
size_t k;
/* String */
desc += 2;
#ifdef CAS_DEBUG
/* ...named "pcs". */
printf("STR: \"%s\"\n", desc);
if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
continue;
desc += sizeof(CAS_PHY_TYPE_PCS);
printf("STR: \"%s\"\n", desc);
#endif
/* ...named "phy-interface" or "phy-type". */
if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
k = sizeof(CAS_PHY_INTERFACE);
else if (strcmp(desc, CAS_PHY_TYPE) == 0)
k = sizeof(CAS_PHY_TYPE);
else
continue;
desc += k;
#ifdef CAS_DEBUG
printf("STR: \"%s\"\n", desc);
#endif
if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
pcs[phy] = true;
phy++;
continue;
}
}
break;
default:
goto fail;
}
/*
* Multi port card has bridge chip. The device number is fixed:
* e.g.
* p0: 005:00:0
* p1: 005:01:0
* p2: 006:02:0
* p3: 006:03:0
*/
if (enaddr != 0) {
i = 0;
if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
&& (pa->pa_device < lma))
i = pa->pa_device;
memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
}
if (pcs[pa->pa_device])
sc->sc_flags |= CAS_SERDES;
fail:
if (romsize != 0)
bus_space_unmap(romt, romh, romsize);
address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
address &= ~PCI_MAPREG_ROM_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
return (rv);
}
void
cas_attach(device_t parent, device_t self, void *aux)
{
struct pci_attach_args *pa = aux;
const struct device_compatible_entry *dce;
struct cas_softc *sc = device_private(self);
prop_data_t data;
uint8_t enaddr[ETHER_ADDR_LEN];
sc->sc_dev = self;
pci_aprint_devinfo(pa, NULL);
sc->sc_rev = PCI_REVISION(pa->pa_class);
if (pci_dma64_available(pa))
sc->sc_dmatag = pa->pa_dmat64;
else
sc->sc_dmatag = pa->pa_dmat;
dce = pci_compatible_lookup(pa, compat_data);
KASSERT(dce != NULL);
sc->sc_variant = (u_int)dce->value;
aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
#define PCI_CAS_BASEADDR 0x10
if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map device registers\n");
return;
}
if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
"mac-address")) != NULL)
memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN);
if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
memset(enaddr, 0, sizeof(enaddr));
}
sc->sc_burst = 16; /* XXX */
sc->sc_att_stage = CAS_ATT_BACKEND_0;
if (pci_intr_map(pa, &sc->sc_handle) != 0) {
aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
return;
}
sc->sc_pc = pa->pa_pc;
if (!cas_estintr(sc, CAS_INTR_PCI)) {
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
return;
}
sc->sc_att_stage = CAS_ATT_BACKEND_1;
/*
* call the main configure
*/
cas_config(sc, enaddr);
if (pmf_device_register1(sc->sc_dev,
cas_suspend, cas_resume, cas_shutdown))
pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
else
aprint_error_dev(sc->sc_dev,
"could not establish power handlers\n");
sc->sc_att_stage = CAS_ATT_FINISHED;
/*FALLTHROUGH*/
}
/*
* cas_config:
*
* Attach a Cassini interface to the system.
*/
void
cas_config(struct cas_softc *sc, const uint8_t *enaddr)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data *mii = &sc->sc_mii;
struct mii_softc *child;
uint32_t reg;
int i, error;
/* Make sure the chip is stopped. */
ifp->if_softc = sc;
cas_reset(sc);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmatag,
sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
1, &sc->sc_cdnseg, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate control data, error = %d\n",
error);
cas_partial_detach(sc, CAS_ATT_0);
}
/* XXX should map this in with correct endianness */
if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
sc->sc_cdnseg, sizeof(struct cas_control_data),
(void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map control data, error = %d\n", error);
cas_partial_detach(sc, CAS_ATT_1);
}
if ((error = bus_dmamap_create(sc->sc_dmatag,
sizeof(struct cas_control_data), 1,
sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create control data DMA map, error = %d\n",
error);
cas_partial_detach(sc, CAS_ATT_2);
}
if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct cas_control_data), NULL,
0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load control data DMA map, error = %d\n",
error);
cas_partial_detach(sc, CAS_ATT_3);
}
memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < CAS_NRXDESC; i++) {
bus_dma_segment_t seg;
char *kva;
int rseg;
if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to alloc rx DMA mem %d, error = %d\n",
i, error);
cas_partial_detach(sc, CAS_ATT_5);
}
sc->sc_rxsoft[i].rxs_dmaseg = seg;
if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to alloc rx DMA mem %d, error = %d\n",
i, error);
cas_partial_detach(sc, CAS_ATT_5);
}
sc->sc_rxsoft[i].rxs_kva = kva;
if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create rx DMA map %d, error = %d\n",
i, error);
cas_partial_detach(sc, CAS_ATT_5);
}
if ((error = bus_dmamap_load(sc->sc_dmatag,
sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load rx DMA map %d, error = %d\n",
i, error);
cas_partial_detach(sc, CAS_ATT_5);
}
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < CAS_NTXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sc_txd[i].sd_map)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create tx DMA map %d, error = %d\n",
i, error);
cas_partial_detach(sc, CAS_ATT_6);
}
sc->sc_txd[i].sd_mbuf = NULL;
}
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
/* Announce ourselves. */
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
ether_sprintf(enaddr));
aprint_naive(": Ethernet controller\n");
/* Get RX FIFO size */
sc->sc_rxfifosize = 16 * 1024;
/* Initialize ifnet structure. */
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = cas_start;
ifp->if_ioctl = cas_ioctl;
ifp->if_watchdog = cas_watchdog;
ifp->if_stop = cas_stop;
ifp->if_init = cas_init;
IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
IFQ_SET_READY(&ifp->if_snd);
/* Initialize ifmedia structures and MII info */
mii->mii_ifp = ifp;
mii->mii_readreg = cas_mii_readreg;
mii->mii_writereg = cas_mii_writereg;
mii->mii_statchg = cas_mii_statchg;
ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
sc->sc_ethercom.ec_mii = mii;
bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
cas_mifinit(sc);
if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
bus_space_write_4(sc->sc_memt, sc->sc_memh,
CAS_MIF_CONFIG, sc->sc_mif_config);
}
/* Enable/unfreeze the GMII pins of Saturn. */
if (sc->sc_variant == CAS_SATURN) {
reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
reg |= CAS_SATURN_PCFG_FSI;
bus_space_write_4(sc->sc_memt, sc->sc_memh,
CAS_SATURN_PCFG, reg);
/* Read to flush */
bus_space_read_4(sc->sc_memt, sc->sc_memh,
CAS_SATURN_PCFG);
DELAY(10000);
}
}
mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
child = LIST_FIRST(&mii->mii_phys);
if (child == NULL &&
sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
/*
* Try the external PCS SERDES if we didn't find any
* MII devices.
*/
bus_space_write_4(sc->sc_memt, sc->sc_memh,
CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
bus_space_write_4(sc->sc_memt, sc->sc_memh,
CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
mii->mii_readreg = cas_pcs_readreg;
mii->mii_writereg = cas_pcs_writereg;
mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_NOISOLATE);
}
child = LIST_FIRST(&mii->mii_phys);
if (child == NULL) {
/* No PHY attached */
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
} else {
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `phy number'
* mapping. We'll use this mapping in media change
* requests to determine which phy to use to program
* the MIF configuration register.
*/
for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
/*
* Note: we support just two PHYs: the built-in
* internal device and an external on the MII
* connector.
*/
if (child->mii_phy > 1 || child->mii_inst > 1) {
aprint_error_dev(sc->sc_dev,
"cannot accommodate MII device %s"
" at phy %d, instance %d\n",
device_xname(child->mii_dev),
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
/*
* XXX - we can really do the following ONLY if the
* phy indeed has the auto negotiation capability!!
*/
ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
}
/* claim 802.1q capability */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Attach the interface. */
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, enaddr);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "interrupts");
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
return;
}
int
cas_detach(device_t self, int flags)
{
int i;
struct cas_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
switch (sc->sc_att_stage) {
case CAS_ATT_FINISHED:
bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
pmf_device_deregister(self);
cas_stop(&sc->sc_ethercom.ec_if, 1);
evcnt_detach(&sc->sc_ev_intr);
rnd_detach_source(&sc->rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
callout_destroy(&sc->sc_tick_ch);
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
ifmedia_fini(&sc->sc_mii.mii_media);
/*FALLTHROUGH*/
case CAS_ATT_MII:
case CAS_ATT_7:
case CAS_ATT_6:
for (i = 0; i < CAS_NTXDESC; i++) {
if (sc->sc_txd[i].sd_map != NULL)
bus_dmamap_destroy(sc->sc_dmatag,
sc->sc_txd[i].sd_map);
}
/*FALLTHROUGH*/
case CAS_ATT_5:
for (i = 0; i < CAS_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_unload(sc->sc_dmatag,
sc->sc_rxsoft[i].rxs_dmamap);
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmatag,
sc->sc_rxsoft[i].rxs_dmamap);
if (sc->sc_rxsoft[i].rxs_kva != NULL)
bus_dmamem_unmap(sc->sc_dmatag,
sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
/* XXX need to check that bus_dmamem_alloc suceeded
if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
*/
bus_dmamem_free(sc->sc_dmatag,
&(sc->sc_rxsoft[i].rxs_dmaseg), 1);
}
bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
/*FALLTHROUGH*/
case CAS_ATT_4:
case CAS_ATT_3:
bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
/*FALLTHROUGH*/
case CAS_ATT_2:
bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
sizeof(struct cas_control_data));
/*FALLTHROUGH*/
case CAS_ATT_1:
bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
/*FALLTHROUGH*/
case CAS_ATT_0:
sc->sc_att_stage = CAS_ATT_0;
/*FALLTHROUGH*/
case CAS_ATT_BACKEND_2:
case CAS_ATT_BACKEND_1:
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
sc->sc_ih = NULL;
}
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
/*FALLTHROUGH*/
case CAS_ATT_BACKEND_0:
break;
}
return 0;
}
static void
cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
{
cfattach_t ca = device_cfattach(sc->sc_dev);
sc->sc_att_stage = stage;
(*ca->ca_detach)(sc->sc_dev, 0);
}
void
cas_tick(void *arg)
{
struct cas_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t mac = sc->sc_memh;
int s;
uint32_t v;
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
/* unload collisions counters */
v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
if_statadd_ref(nsr, if_collisions, v +
bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
if_statadd_ref(nsr, if_oerrors, v);
/* read error counters */
if_statadd_ref(nsr, if_ierrors,
bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
IF_STAT_PUTREF(ifp);
/* clear the hardware counters */
bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
int
cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
uint32_t clr, uint32_t set)
{
int i;
uint32_t reg;
for (i = TRIES; i--; DELAY(100)) {
reg = bus_space_read_4(sc->sc_memt, h, r);
if ((reg & clr) == 0 && (reg & set) == set)
return (1);
}
return (0);
}
void
cas_reset(struct cas_softc *sc)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
int s;
s = splnet();
DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
cas_reset_rx(sc);
cas_reset_tx(sc);
/* Disable interrupts */
bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
/* Do a full reset */
bus_space_write_4(t, h, CAS_RESET,
CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
aprint_error_dev(sc->sc_dev, "cannot reset device\n");
splx(s);
}
/*
* cas_rxdrain:
*
* Drain the receive queue.
*/
void
cas_rxdrain(struct cas_softc *sc)
{
/* Nothing to do yet. */
}
/*
* Reset the whole thing.
*/
void
cas_stop(struct ifnet *ifp, int disable)
{
struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
struct cas_sxd *sd;
uint32_t i;
DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
callout_stop(&sc->sc_tick_ch);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
mii_down(&sc->sc_mii);
cas_reset_rx(sc);
cas_reset_tx(sc);
/*
* Release any queued transmit buffers.
*/
for (i = 0; i < CAS_NTXDESC; i++) {
sd = &sc->sc_txd[i];
if (sd->sd_mbuf != NULL) {
bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
m_freem(sd->sd_mbuf);
sd->sd_mbuf = NULL;
}
}
sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
if (disable)
cas_rxdrain(sc);
}
/*
* Reset the receiver
*/
int
cas_reset_rx(struct cas_softc *sc)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
cas_disable_rx(sc);
bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
/* Wait till it finishes */
if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
/* Wait 5ms extra. */
delay(5000);
/* Finally, reset the ERX */
bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
/* Wait till it finishes */
if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
return (1);
}
return (0);
}
/*
* Reset the transmitter
*/
int
cas_reset_tx(struct cas_softc *sc)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
cas_disable_tx(sc);
bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
/* Wait till it finishes */
if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
/* Wait 5ms extra. */
delay(5000);
/* Finally, reset the ETX */
bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
/* Wait till it finishes */
if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
return (1);
}
return (0);
}
/*
* Disable receiver.
*/
int
cas_disable_rx(struct cas_softc *sc)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
uint32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
cfg &= ~CAS_MAC_RX_ENABLE;
bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
/* Wait for it to finish */
return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
}
/*
* Disable transmitter.
*/
int
cas_disable_tx(struct cas_softc *sc)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
uint32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
cfg &= ~CAS_MAC_TX_ENABLE;
bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
/* Wait for it to finish */
return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
}
/*
* Initialize interface.
*/
int
cas_meminit(struct cas_softc *sc)
{
int i;
/*
* Initialize the transmit descriptor ring.
*/
for (i = 0; i < CAS_NTXDESC; i++) {
sc->sc_txdescs[i].cd_flags = 0;
sc->sc_txdescs[i].cd_addr = 0;
}
CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < CAS_NRXDESC; i++)
CAS_INIT_RXDESC(sc, i, i);
sc->sc_rxdptr = 0;
sc->sc_rxptr = 0;
/*
* Initialize the receive completion ring.
*/
for (i = 0; i < CAS_NRXCOMP; i++) {
sc->sc_rxcomps[i].cc_word[0] = 0;
sc->sc_rxcomps[i].cc_word[1] = 0;
sc->sc_rxcomps[i].cc_word[2] = 0;
sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
CAS_CDRXCSYNC(sc, i,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (0);
}
int
cas_ringsize(int sz)
{
switch (sz) {
case 32:
return CAS_RING_SZ_32;
case 64:
return CAS_RING_SZ_64;
case 128:
return CAS_RING_SZ_128;
case 256:
return CAS_RING_SZ_256;
case 512:
return CAS_RING_SZ_512;
case 1024:
return CAS_RING_SZ_1024;
case 2048:
return CAS_RING_SZ_2048;
case 4096:
return CAS_RING_SZ_4096;
case 8192:
return CAS_RING_SZ_8192;
default:
aprint_error("cas: invalid Receive Descriptor ring size %d\n",
sz);
return CAS_RING_SZ_32;
}
}
int
cas_cringsize(int sz)
{
int i;
for (i = 0; i < 9; i++)
if (sz == (128 << i))
return i;
aprint_error("cas: invalid completion ring size %d\n", sz);
return 128;
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
int
cas_init(struct ifnet *ifp)
{
struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
int s;
u_int max_frame_size;
uint32_t v;
s = splnet();
DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
cas_stop(ifp, 0);
cas_reset(sc);
DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
/* Re-initialize the MIF */
cas_mifinit(sc);
/* step 3. Setup data structures in host memory */
cas_meminit(sc);
/* step 4. TX MAC registers & counters */
cas_init_regs(sc);
max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
/* step 5. RX MAC registers & counters */
cas_iff(sc);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0)));
bus_space_write_4(t, h, CAS_TX_RING_PTR_LO,
BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0)));
KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0)));
bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO,
BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0)));
KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0)));
bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO,
BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0)));
if (CAS_PLUS(sc)) {
KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0)));
bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0)));
}
/* step 8. Global Configuration & Interrupt Mask */
cas_estintr(sc, CAS_INTR_REG);
/* step 9. ETX Configuration: use mostly default values */
/* Enable DMA */
v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
bus_space_write_4(t, h, CAS_TX_CONFIG,
v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
bus_space_write_4(t, h, CAS_TX_KICK, 0);
/* step 10. ERX Configuration */
/* Encode Receive Descriptor ring size */
v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
if (CAS_PLUS(sc))
v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
/* Encode Receive Completion ring size */
v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
/* Enable DMA */
bus_space_write_4(t, h, CAS_RX_CONFIG,
v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
/*
* The following value is for an OFF Threshold of about 3/4 full
* and an ON Threshold of 1/4 full.
*/
bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
(3 * sc->sc_rxfifosize / 256) |
((sc->sc_rxfifosize / 256) << 12));
bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
/* step 11. Configure Media */
mii_ifmedia_change(&sc->sc_mii);
/* step 12. RX_MAC Configuration Register */
v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
/* step 14. Issue Transmit Pending command */
/* step 15. Give the receiver a swift kick */
bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
if (CAS_PLUS(sc))
bus_space_write_4(t, h, CAS_RX_KICK2, 4);
/* Start the one second timer. */
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
splx(s);
return (0);
}
void
cas_init_regs(struct cas_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
const u_char *laddr = CLLADDR(ifp->if_sadl);
uint32_t v, r;
/* These regs are not cleared on reset */
sc->sc_inited = 0;
if (!sc->sc_inited) {
/* Load recommended values */
bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
/* Max frame and max burst size */
v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
((laddr[5]<<8)|laddr[4])&0x3ff);
/* Secondary MAC addresses set to 0:0:0:0:0:0 */
for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
bus_space_write_4(t, h, r, 0);
/* MAC control addr set to 0:1:c2:0:1:80 */
bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
/* MAC filter addr set to 0:0:0:0:0:0 */
bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
/* Hash table initialized to 0 */
for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
bus_space_write_4(t, h, r, 0);
sc->sc_inited = 1;
}
/* Counters need to be zeroed */
bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
/* Un-pause stuff */
bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
/*
* Set the station address.
*/
bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
}
/*
* Receive interrupt.
*/
int
cas_rint(struct cas_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
struct cas_rxsoft *rxs;
struct mbuf *m;
uint64_t word[4];
int len, off, idx;
int i, skip;
void *cp;
for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
CAS_CDRXCSYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
/* Stop if the hardware still owns the descriptor. */
if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
break;
len = CAS_RC1_HDR_LEN(word[1]);
if (len > 0) {
off = CAS_RC1_HDR_OFF(word[1]);
idx = CAS_RC1_HDR_IDX(word[1]);
rxs = &sc->sc_rxsoft[idx];
DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
idx, off, len));
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
m = m_devget(cp, len, 0, ifp);
if (word[0] & CAS_RC0_RELEASE_HDR)
cas_add_rxbuf(sc, idx);
if (m != NULL) {
/*
* Pass this up to any BPF listeners, but only
* pass it up the stack if its for us.
*/
m->m_pkthdr.csum_flags = 0;
if_percpuq_enqueue(ifp->if_percpuq, m);
} else
if_statinc(ifp, if_ierrors);
}
len = CAS_RC0_DATA_LEN(word[0]);
if (len > 0) {
off = CAS_RC0_DATA_OFF(word[0]);
idx = CAS_RC0_DATA_IDX(word[0]);
rxs = &sc->sc_rxsoft[idx];
DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
idx, off, len));
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/* XXX We should not be copying the packet here. */
cp = rxs->rxs_kva + off + ETHER_ALIGN;
m = m_devget(cp, len, 0, ifp);
if (word[0] & CAS_RC0_RELEASE_DATA)
cas_add_rxbuf(sc, idx);
if (m != NULL) {
/*
* Pass this up to any BPF listeners, but only
* pass it up the stack if its for us.
*/
m->m_pkthdr.csum_flags = 0;
if_percpuq_enqueue(ifp->if_percpuq, m);
} else
if_statinc(ifp, if_ierrors);
}
if (word[0] & CAS_RC0_SPLIT)
aprint_error_dev(sc->sc_dev, "split packet\n");
skip = CAS_RC0_SKIP(word[0]);
}
while (sc->sc_rxptr != i) {
sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
CAS_DMA_WRITE(CAS_RC3_OWN);
CAS_CDRXCSYNC(sc, sc->sc_rxptr,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
}
bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
return (1);
}
/*
* cas_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
cas_add_rxbuf(struct cas_softc *sc, int idx)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
if ((sc->sc_rxdptr % 4) == 0)
bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
if (++sc->sc_rxdptr == CAS_NRXDESC)
sc->sc_rxdptr = 0;
return (0);
}
int
cas_eint(struct cas_softc *sc, u_int status)
{
char bits[128];
if ((status & CAS_INTR_MIF) != 0) {
DPRINTF(sc, ("%s: link status changed\n",
device_xname(sc->sc_dev)));
return (1);
}
snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
return (1);
}
int
cas_pint(struct cas_softc *sc)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t seb = sc->sc_memh;
uint32_t status;
status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
#ifdef CAS_DEBUG
if (status)
printf("%s: link status changed\n", device_xname(sc->sc_dev));
#endif
return (1);
}
int
cas_intr(void *v)
{
struct cas_softc *sc = (struct cas_softc *)v;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t seb = sc->sc_memh;
uint32_t status;
int r = 0;
#ifdef CAS_DEBUG
char bits[128];
#endif
sc->sc_ev_intr.ev_count++;
status = bus_space_read_4(t, seb, CAS_STATUS);
#ifdef CAS_DEBUG
snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
#endif
DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
device_xname(sc->sc_dev), (status>>19), bits));
if ((status & CAS_INTR_PCS) != 0)
r |= cas_pint(sc);
if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
r |= cas_eint(sc, status);
if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
r |= cas_tint(sc, status);
if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
r |= cas_rint(sc);
/* We should eventually do more than just print out error stats. */
if (status & CAS_INTR_TX_MAC) {
int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
#ifdef CAS_DEBUG
if (txstat & ~CAS_MAC_TX_XMIT_DONE)
printf("%s: MAC tx fault, status %x\n",
device_xname(sc->sc_dev), txstat);
#endif
if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
cas_init(ifp);
}
if (status & CAS_INTR_RX_MAC) {
int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
#ifdef CAS_DEBUG
if (rxstat & ~CAS_MAC_RX_DONE)
printf("%s: MAC rx fault, status %x\n",
device_xname(sc->sc_dev), rxstat);
#endif
/*
* On some chip revisions CAS_MAC_RX_OVERFLOW happen often
* due to a silicon bug so handle them silently.
*/
if (rxstat & CAS_MAC_RX_OVERFLOW) {
if_statinc(ifp, if_ierrors);
cas_init(ifp);
}
#ifdef CAS_DEBUG
else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
printf("%s: MAC rx fault, status %x\n",
device_xname(sc->sc_dev), rxstat);
#endif
}
rnd_add_uint32(&sc->rnd_source, status);
return (r);
}
void
cas_watchdog(struct ifnet *ifp)
{
struct cas_softc *sc = ifp->if_softc;
DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
"CAS_MAC_RX_CONFIG %x\n",
bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
/* Try to get more packets going. */
cas_init(ifp);
}
/*
* Initialize the MII Management Interface
*/
void
cas_mifinit(struct cas_softc *sc)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t mif = sc->sc_memh;
/* Configure the MIF in frame mode */
sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
}
/*
* MII interface
*
* The Cassini MII interface supports at least three different operating modes:
*
* Bitbang mode is implemented using data, clock and output enable registers.
*
* Frame mode is implemented by loading a complete frame into the frame
* register and polling the valid bit for completion.
*
* Polling mode uses the frame register but completion is indicated by
* an interrupt.
*
*/
int
cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
struct cas_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t mif = sc->sc_memh;
int n;
uint32_t v;
#ifdef CAS_DEBUG
if (sc->sc_debug)
printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
#endif
/* Construct the frame command */
v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
CAS_MIF_FRAME_READ;
bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
if (v & CAS_MIF_FRAME_TA0) {
*val = v & CAS_MIF_FRAME_DATA;
return 0;
}
}
printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
return ETIMEDOUT;
}
int
cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
struct cas_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t mif = sc->sc_memh;
int n;
uint32_t v;
#ifdef CAS_DEBUG
if (sc->sc_debug)
printf("cas_mii_writereg: phy %d reg %d val %x\n",
phy, reg, val);
#endif
/* Construct the frame command */
v = CAS_MIF_FRAME_WRITE |
(phy << CAS_MIF_PHY_SHIFT) |
(reg << CAS_MIF_REG_SHIFT) |
(val & CAS_MIF_FRAME_DATA);
bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
if (v & CAS_MIF_FRAME_TA0)
return 0;
}
printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
return ETIMEDOUT;
}
void
cas_mii_statchg(struct ifnet *ifp)
{
struct cas_softc *sc = ifp->if_softc;
#ifdef CAS_DEBUG
int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
#endif
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t mac = sc->sc_memh;
uint32_t v;
#ifdef CAS_DEBUG
if (sc->sc_debug)
printf("cas_mii_statchg: status change: phy = %d\n",
sc->sc_phys[instance]);
#endif
/* Set tx full duplex options */
bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
delay(10000); /* reg must be cleared and delay before changing. */
v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
CAS_MAC_TX_ENABLE;
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
}
bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
/* XIF Configuration */
v = CAS_MAC_XIF_TX_MII_ENA;
v |= CAS_MAC_XIF_LINK_LED;
/* MII needs echo disable if half duplex. */
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
/* turn on full duplex LED */
v |= CAS_MAC_XIF_FDPLX_LED;
else
/* half duplex -- disable echo */
v |= CAS_MAC_XIF_ECHO_DISABL;
switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
case IFM_1000_T: /* Gigabit using GMII interface */
case IFM_1000_SX:
v |= CAS_MAC_XIF_GMII_MODE;
break;
default:
v &= ~CAS_MAC_XIF_GMII_MODE;
}
bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
}
int
cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
{
struct cas_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t pcs = sc->sc_memh;
#ifdef CAS_DEBUG
if (sc->sc_debug)
printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
#endif
if (phy != CAS_PHYAD_EXTERNAL)
return -1;
switch (reg) {
case MII_BMCR:
reg = CAS_MII_CONTROL;
break;
case MII_BMSR:
reg = CAS_MII_STATUS;
break;
case MII_ANAR:
reg = CAS_MII_ANAR;
break;
case MII_ANLPAR:
reg = CAS_MII_ANLPAR;
break;
case MII_EXTSR:
*val = EXTSR_1000XFDX | EXTSR_1000XHDX;
return 0;
default:
return (0);
}
*val = bus_space_read_4(t, pcs, reg) & 0xffff;
return 0;
}
int
cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
{
struct cas_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t pcs = sc->sc_memh;
int reset = 0;
#ifdef CAS_DEBUG
if (sc->sc_debug)
printf("cas_pcs_writereg: phy %d reg %d val %x\n",
phy, reg, val);
#endif
if (phy != CAS_PHYAD_EXTERNAL)
return -1;
if (reg == MII_ANAR)
bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
switch (reg) {
case MII_BMCR:
reset = (val & CAS_MII_CONTROL_RESET);
reg = CAS_MII_CONTROL;
break;
case MII_BMSR:
reg = CAS_MII_STATUS;
break;
case MII_ANAR:
reg = CAS_MII_ANAR;
break;
case MII_ANLPAR:
reg = CAS_MII_ANLPAR;
break;
default:
return 0;
}
bus_space_write_4(t, pcs, reg, val);
if (reset)
cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
if (reg == CAS_MII_ANAR || reset)
bus_space_write_4(t, pcs, CAS_MII_CONFIG,
CAS_MII_CONFIG_ENABLE);
return 0;
}
int
cas_mediachange(struct ifnet *ifp)
{
struct cas_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
return (mii_mediachg(&sc->sc_mii));
}
void
cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct cas_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_active = sc->sc_mii.mii_media_active;
ifmr->ifm_status = sc->sc_mii.mii_media_status;
}
/*
* Process an ioctl request.
*/
int
cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct cas_softc *sc = ifp->if_softc;
int s, error = 0;
s = splnet();
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
error = 0;
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
cas_iff(sc);
}
}
splx(s);
return (error);
}
static bool
cas_suspend(device_t self, const pmf_qual_t *qual)
{
struct cas_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
sc->sc_ih = NULL;
}
return true;
}
static bool
cas_resume(device_t self, const pmf_qual_t *qual)
{
struct cas_softc *sc = device_private(self);
return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
}
static bool
cas_estintr(struct cas_softc *sc, int what)
{
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
const char *intrstr = NULL;
char intrbuf[PCI_INTRSTR_LEN];
/* PCI interrupts */
if (what & CAS_INTR_PCI) {
intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
sizeof(intrbuf));
sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
if (sc->sc_ih == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return false;
}
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
}
/* Interrupt register */
if (what & CAS_INTR_REG) {
bus_space_write_4(t, h, CAS_INTMASK,
~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
CAS_INTR_TX_TAG_ERR |
CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
CAS_INTR_RX_TAG_ERR |
CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
CAS_INTR_BERR));
bus_space_write_4(t, h, CAS_MAC_RX_MASK,
CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
}
return true;
}
bool
cas_shutdown(device_t self, int howto)
{
struct cas_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
cas_stop(ifp, 1);
return true;
}
void
cas_iff(struct cas_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ethercom *ec = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
bus_space_tag_t t = sc->sc_memt;
bus_space_handle_t h = sc->sc_memh;
uint32_t crc, hash[16], rxcfg;
int i;
rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
CAS_MAC_RX_PROMISC_GRP);
ifp->if_flags &= ~IFF_ALLMULTI;
if ((ifp->if_flags & IFF_PROMISC) != 0)
goto update;
/*
* Set up multicast address filter by passing all multicast
* addresses through a crc generator, and then using the
* high order 8 bits as an index into the 256 bit logical
* address filter. The high order 4 bits selects the word,
* while the other 4 bits select the bit within the word
* (where bit 0 is the MSB).
*/
/* Clear hash table */
for (i = 0; i < 16; i++)
hash[i] = 0;
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/* XXX Use ETHER_F_ALLMULTI in future. */
ifp->if_flags |= IFF_ALLMULTI;
ETHER_UNLOCK(ec);
goto update;
}
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 8 most significant bits. */
crc >>= 24;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (15 - (crc & 15));
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
rxcfg |= CAS_MAC_RX_HASH_FILTER;
/* Now load the hash table into the chip (if we are using it) */
for (i = 0; i < 16; i++) {
bus_space_write_4(t, h,
CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
hash[i]);
}
update:
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if (ifp->if_flags & IFF_PROMISC) {
rxcfg |= CAS_MAC_RX_PROMISCUOUS;
/* XXX Use ETHER_F_ALLMULTI in future. */
ifp->if_flags |= IFF_ALLMULTI;
} else
rxcfg |= CAS_MAC_RX_PROMISC_GRP;
}
bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
}
int
cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
{
uint64_t flags;
uint32_t cur, frag, i;
bus_dmamap_t map;
cur = frag = *bixp;
map = sc->sc_txd[cur].sd_map;
if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
BUS_DMA_NOWAIT) != 0) {
return (ENOBUFS);
}
if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
bus_dmamap_unload(sc->sc_dmatag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
for (i = 0; i < map->dm_nsegs; i++) {
sc->sc_txdescs[frag].cd_addr =
CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
(i == 0 ? CAS_TD_START_OF_PACKET : 0) |
((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
CAS_CDTXOFF(frag), sizeof(struct cas_desc),
BUS_DMASYNC_PREWRITE);
cur = frag;
if (++frag == CAS_NTXDESC)
frag = 0;
}
sc->sc_tx_cnt += map->dm_nsegs;
sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
sc->sc_txd[cur].sd_map = map;
sc->sc_txd[cur].sd_mbuf = mhead;
bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
*bixp = frag;
/* sync descriptors */
return (0);
}
/*
* Transmit interrupt.
*/
int
cas_tint(struct cas_softc *sc, uint32_t status)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct cas_sxd *sd;
uint32_t cons, comp;
comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
cons = sc->sc_tx_cons;
while (cons != comp) {
sd = &sc->sc_txd[cons];
if (sd->sd_mbuf != NULL) {
bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
m_freem(sd->sd_mbuf);
sd->sd_mbuf = NULL;
if_statinc(ifp, if_opackets);
}
sc->sc_tx_cnt--;
if (++cons == CAS_NTXDESC)
cons = 0;
}
sc->sc_tx_cons = cons;
if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
ifp->if_flags &= ~IFF_OACTIVE;
if (sc->sc_tx_cnt == 0)
ifp->if_timer = 0;
if_schedule_deferred_start(ifp);
return (1);
}
void
cas_start(struct ifnet *ifp)
{
struct cas_softc *sc = ifp->if_softc;
struct mbuf *m;
uint32_t bix;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
bix = sc->sc_tx_prod;
while (sc->sc_txd[bix].sd_mbuf == NULL) {
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
/*
* If BPF is listening on this interface, let it see the
* packet before we commit it to the wire.
*/
bpf_mtap(ifp, m, BPF_D_OUT);
/*
* Encapsulate this packet and start it going...
* or fail...
*/
if (cas_encap(sc, m, &bix)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
ifp->if_timer = 5;
}
sc->sc_tx_prod = bix;
}
MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_cas_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_cas,
cfattach_ioconf_cas, cfdata_ioconf_cas);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_cas,
cfattach_ioconf_cas, cfdata_ioconf_cas);
#endif
return error;
default:
return ENOTTY;
}
}