Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
/*	$NetBSD: linux_dma_resv.c,v 1.22 2022/02/15 22:51:03 riastradh Exp $	*/

/*-
 * Copyright (c) 2018 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Taylor R. Campbell.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: linux_dma_resv.c,v 1.22 2022/02/15 22:51:03 riastradh Exp $");

#include <sys/param.h>
#include <sys/poll.h>
#include <sys/select.h>

#include <linux/dma-fence.h>
#include <linux/dma-resv.h>
#include <linux/seqlock.h>
#include <linux/ww_mutex.h>

DEFINE_WW_CLASS(reservation_ww_class __cacheline_aligned);

static struct dma_resv_list *
objlist_tryalloc(uint32_t n)
{
	struct dma_resv_list *list;

	list = kmem_alloc(offsetof(typeof(*list), shared[n]), KM_NOSLEEP);
	if (list == NULL)
		return NULL;
	list->shared_max = n;

	return list;
}

static struct dma_resv_list *
objlist_alloc(uint32_t n)
{
	struct dma_resv_list *list;

	list = kmem_alloc(offsetof(typeof(*list), shared[n]), KM_SLEEP);
	list->shared_max = n;

	return list;
}

static void
objlist_free(struct dma_resv_list *list)
{
	uint32_t n = list->shared_max;

	kmem_free(list, offsetof(typeof(*list), shared[n]));
}

static void
objlist_free_cb(struct rcu_head *rcu)
{
	struct dma_resv_list *list = container_of(rcu,
	    struct dma_resv_list, rol_rcu);

	objlist_free(list);
}

static void
objlist_defer_free(struct dma_resv_list *list)
{

	call_rcu(&list->rol_rcu, objlist_free_cb);
}

/*
 * dma_resv_init(robj)
 *
 *	Initialize a reservation object.  Caller must later destroy it
 *	with dma_resv_fini.
 */
void
dma_resv_init(struct dma_resv *robj)
{

	ww_mutex_init(&robj->lock, &reservation_ww_class);
	seqcount_init(&robj->seq);
	robj->fence_excl = NULL;
	robj->fence = NULL;
	robj->robj_prealloc = NULL;
}

/*
 * dma_resv_fini(robj)
 *
 *	Destroy a reservation object, freeing any memory that had been
 *	allocated for it.  Caller must have exclusive access to it.
 */
void
dma_resv_fini(struct dma_resv *robj)
{
	unsigned i;

	if (robj->robj_prealloc) {
		objlist_free(robj->robj_prealloc);
		robj->robj_prealloc = NULL; /* paranoia */
	}
	if (robj->fence) {
		for (i = 0; i < robj->fence->shared_count; i++) {
			dma_fence_put(robj->fence->shared[i]);
			robj->fence->shared[i] = NULL; /* paranoia */
		}
		objlist_free(robj->fence);
		robj->fence = NULL; /* paranoia */
	}
	if (robj->fence_excl) {
		dma_fence_put(robj->fence_excl);
		robj->fence_excl = NULL; /* paranoia */
	}
	ww_mutex_destroy(&robj->lock);
}

/*
 * dma_resv_lock(robj, ctx)
 *
 *	Acquire a reservation object's lock.  Return 0 on success,
 *	-EALREADY if caller already holds it, -EDEADLK if a
 *	higher-priority owner holds it and the caller must back out and
 *	retry.
 */
int
dma_resv_lock(struct dma_resv *robj,
    struct ww_acquire_ctx *ctx)
{

	return ww_mutex_lock(&robj->lock, ctx);
}

/*
 * dma_resv_lock_slow(robj, ctx)
 *
 *	Acquire a reservation object's lock.  Caller must not hold
 *	this lock or any others -- this is to be used in slow paths
 *	after dma_resv_lock or dma_resv_lock_interruptible has failed
 *	and the caller has backed out all other locks.
 */
void
dma_resv_lock_slow(struct dma_resv *robj,
    struct ww_acquire_ctx *ctx)
{

	ww_mutex_lock_slow(&robj->lock, ctx);
}

/*
 * dma_resv_lock_interruptible(robj, ctx)
 *
 *	Acquire a reservation object's lock.  Return 0 on success,
 *	-EALREADY if caller already holds it, -EDEADLK if a
 *	higher-priority owner holds it and the caller must back out and
 *	retry, -EINTR if interrupted.
 */
int
dma_resv_lock_interruptible(struct dma_resv *robj,
    struct ww_acquire_ctx *ctx)
{

	return ww_mutex_lock_interruptible(&robj->lock, ctx);
}

/*
 * dma_resv_lock_slow_interruptible(robj, ctx)
 *
 *	Acquire a reservation object's lock.  Caller must not hold
 *	this lock or any others -- this is to be used in slow paths
 *	after dma_resv_lock or dma_resv_lock_interruptible has failed
 *	and the caller has backed out all other locks.  Return 0 on
 *	success, -EINTR if interrupted.
 */
int
dma_resv_lock_slow_interruptible(struct dma_resv *robj,
    struct ww_acquire_ctx *ctx)
{

	return ww_mutex_lock_slow_interruptible(&robj->lock, ctx);
}

/*
 * dma_resv_trylock(robj)
 *
 *	Try to acquire a reservation object's lock without blocking.
 *	Return true on success, false on failure.
 */
bool
dma_resv_trylock(struct dma_resv *robj)
{

	return ww_mutex_trylock(&robj->lock);
}

/*
 * dma_resv_locking_ctx(robj)
 *
 *	Return a pointer to the ww_acquire_ctx used by the owner of
 *	the reservation object's lock, or NULL if it is either not
 *	owned or if it is locked without context.
 */
struct ww_acquire_ctx *
dma_resv_locking_ctx(struct dma_resv *robj)
{

	return ww_mutex_locking_ctx(&robj->lock);
}

/*
 * dma_resv_unlock(robj)
 *
 *	Release a reservation object's lock.
 */
void
dma_resv_unlock(struct dma_resv *robj)
{

	return ww_mutex_unlock(&robj->lock);
}

/*
 * dma_resv_is_locked(robj)
 *
 *	True if robj is locked.
 */
bool
dma_resv_is_locked(struct dma_resv *robj)
{

	return ww_mutex_is_locked(&robj->lock);
}

/*
 * dma_resv_held(robj)
 *
 *	True if robj is locked.
 */
bool
dma_resv_held(struct dma_resv *robj)
{

	return ww_mutex_is_locked(&robj->lock);
}

/*
 * dma_resv_assert_held(robj)
 *
 *	Panic if robj is not held, in DIAGNOSTIC builds.
 */
void
dma_resv_assert_held(struct dma_resv *robj)
{

	KASSERT(dma_resv_held(robj));
}

/*
 * dma_resv_get_excl(robj)
 *
 *	Return a pointer to the exclusive fence of the reservation
 *	object robj.
 *
 *	Caller must have robj locked.
 */
struct dma_fence *
dma_resv_get_excl(struct dma_resv *robj)
{

	KASSERT(dma_resv_held(robj));
	return robj->fence_excl;
}

/*
 * dma_resv_get_list(robj)
 *
 *	Return a pointer to the shared fence list of the reservation
 *	object robj.
 *
 *	Caller must have robj locked.
 */
struct dma_resv_list *
dma_resv_get_list(struct dma_resv *robj)
{

	KASSERT(dma_resv_held(robj));
	return robj->fence;
}

/*
 * dma_resv_reserve_shared(robj, num_fences)
 *
 *	Reserve space in robj to add num_fences shared fences.  To be
 *	used only once before calling dma_resv_add_shared_fence.
 *
 *	Caller must have robj locked.
 *
 *	Internally, we start with room for four entries and double if
 *	we don't have enough.  This is not guaranteed.
 */
int
dma_resv_reserve_shared(struct dma_resv *robj, unsigned int num_fences)
{
	struct dma_resv_list *list, *prealloc;
	uint32_t n, nalloc;

	KASSERT(dma_resv_held(robj));

	list = robj->fence;
	prealloc = robj->robj_prealloc;

	/* If there's an existing list, check it for space.  */
	if (list) {
		/* If there's too many already, give up.  */
		if (list->shared_count > UINT32_MAX - num_fences)
			return -ENOMEM;

		/* Add some more. */
		n = list->shared_count + num_fences;

		/* If there's enough for one more, we're done.  */
		if (n <= list->shared_max)
			return 0;
	} else {
		/* No list already.  We need space for num_fences.  */
		n = num_fences;
	}

	/* If not, maybe there's a preallocated list ready.  */
	if (prealloc != NULL) {
		/* If there's enough room in it, stop here.  */
		if (n <= prealloc->shared_max)
			return 0;

		/* Try to double its capacity.  */
		nalloc = n > UINT32_MAX/2 ? UINT32_MAX : 2*n;
		prealloc = objlist_alloc(nalloc);

		/* Swap the new preallocated list and free the old one.  */
		objlist_free(robj->robj_prealloc);
		robj->robj_prealloc = prealloc;
	} else {
		/* Start with some spare.  */
		nalloc = n > UINT32_MAX/2 ? UINT32_MAX : MAX(2*n, 4);
		prealloc = objlist_alloc(nalloc);

		/* Save the new preallocated list.  */
		robj->robj_prealloc = prealloc;
	}

	/* Success!  */
	return 0;
}

struct dma_resv_write_ticket {
};

/*
 * dma_resv_write_begin(robj, ticket)
 *
 *	Begin an atomic batch of writes to robj, and initialize opaque
 *	ticket for it.  The ticket must be passed to
 *	dma_resv_write_commit to commit the writes.
 *
 *	Caller must have robj locked.
 *
 *	Implies membar_producer, i.e. store-before-store barrier.  Does
 *	NOT serve as an acquire operation, however.
 */
static void
dma_resv_write_begin(struct dma_resv *robj,
    struct dma_resv_write_ticket *ticket)
{

	KASSERT(dma_resv_held(robj));

	write_seqcount_begin(&robj->seq);
}

/*
 * dma_resv_write_commit(robj, ticket)
 *
 *	Commit an atomic batch of writes to robj begun with the call to
 *	dma_resv_write_begin that returned ticket.
 *
 *	Caller must have robj locked.
 *
 *	Implies membar_producer, i.e. store-before-store barrier.  Does
 *	NOT serve as a release operation, however.
 */
static void
dma_resv_write_commit(struct dma_resv *robj,
    struct dma_resv_write_ticket *ticket)
{

	KASSERT(dma_resv_held(robj));

	write_seqcount_end(&robj->seq);
}

struct dma_resv_read_ticket {
	unsigned version;
};

/*
 * dma_resv_read_begin(robj, ticket)
 *
 *	Begin a read section, and initialize opaque ticket for it.  The
 *	ticket must be passed to dma_resv_read_exit, and the
 *	caller must be prepared to retry reading if it fails.
 */
static void
dma_resv_read_begin(const struct dma_resv *robj,
    struct dma_resv_read_ticket *ticket)
{

	ticket->version = read_seqcount_begin(&robj->seq);
}

/*
 * dma_resv_read_valid(robj, ticket)
 *
 *	Test whether the read sections are valid.  Return true on
 *	success, or false on failure if the read ticket has been
 *	invalidated.
 */
static bool
dma_resv_read_valid(const struct dma_resv *robj,
    struct dma_resv_read_ticket *ticket)
{

	return !read_seqcount_retry(&robj->seq, ticket->version);
}

/*
 * dma_resv_get_shared_reader(robj, listp, shared_countp, ticket)
 *
 *	Set *listp and *shared_countp to a snapshot of the pointer to
 *	and length of the shared fence list of robj and return true, or
 *	set them to NULL/0 and return false if a writer intervened so
 *	the caller must start over.
 *
 *	Both *listp and *shared_countp are unconditionally initialized
 *	on return.  They may be NULL/0 even on success, if there is no
 *	shared list at the moment.  Does not take any fence references.
 */
static bool
dma_resv_get_shared_reader(const struct dma_resv *robj,
    const struct dma_resv_list **listp, unsigned *shared_countp,
    struct dma_resv_read_ticket *ticket)
{
	struct dma_resv_list *list;
	unsigned shared_count = 0;

	/*
	 * Get the list and, if it is present, its length.  If the list
	 * is present, it has a valid length.  The atomic_load_consume
	 * pairs with the membar_producer in dma_resv_write_begin.
	 */
	list = atomic_load_consume(&robj->fence);
	shared_count = list ? atomic_load_relaxed(&list->shared_count) : 0;

	/*
	 * We are done reading from robj and list.  Validate our
	 * parking ticket.  If it's invalid, do not pass go and do not
	 * collect $200.
	 */
	if (!dma_resv_read_valid(robj, ticket))
		goto fail;

	/* Success!  */
	*listp = list;
	*shared_countp = shared_count;
	return true;

fail:	*listp = NULL;
	*shared_countp = 0;
	return false;
}

/*
 * dma_resv_get_excl_reader(robj, fencep, ticket)
 *
 *	Set *fencep to the exclusive fence of robj and return true, or
 *	set it to NULL and return false if either
 *	(a) a writer intervened, or
 *	(b) the fence is scheduled to be destroyed after this RCU grace
 *	    period,
 *	in either case meaning the caller must restart.
 *
 *	The value of *fencep is unconditionally initialized on return.
 *	It may be NULL, if there is no exclusive fence at the moment.
 *	If nonnull, *fencep is referenced; caller must dma_fence_put.
 */
static bool
dma_resv_get_excl_reader(const struct dma_resv *robj,
    struct dma_fence **fencep,
    struct dma_resv_read_ticket *ticket)
{
	struct dma_fence *fence;

	/*
	 * Get the candidate fence pointer.  The atomic_load_consume
	 * pairs with the membar_consumer in dma_resv_write_begin.
	 */
	fence = atomic_load_consume(&robj->fence_excl);

	/*
	 * The load of robj->fence_excl is atomic, but the caller may
	 * have previously loaded the shared fence list and should
	 * restart if its view of the entire dma_resv object is not a
	 * consistent snapshot.
	 */
	if (!dma_resv_read_valid(robj, ticket))
		goto fail;

	/*
	 * If the fence is already scheduled to away after this RCU
	 * read section, give up.  Otherwise, take a reference so it
	 * won't go away until after dma_fence_put.
	 */
	if (fence != NULL &&
	    (fence = dma_fence_get_rcu(fence)) == NULL)
		goto fail;

	/* Success!  */
	*fencep = fence;
	return true;

fail:	*fencep = NULL;
	return false;
}

/*
 * dma_resv_add_excl_fence(robj, fence)
 *
 *	Empty and release all of robj's shared fences, and clear and
 *	release its exclusive fence.  If fence is nonnull, acquire a
 *	reference to it and save it as robj's exclusive fence.
 *
 *	Caller must have robj locked.
 */
void
dma_resv_add_excl_fence(struct dma_resv *robj,
    struct dma_fence *fence)
{
	struct dma_fence *old_fence = robj->fence_excl;
	struct dma_resv_list *old_list = robj->fence;
	uint32_t old_shared_count;
	struct dma_resv_write_ticket ticket;

	KASSERT(dma_resv_held(robj));

	/*
	 * If we are setting rather than just removing a fence, acquire
	 * a reference for ourselves.
	 */
	if (fence)
		(void)dma_fence_get(fence);

	/* If there are any shared fences, remember how many.  */
	if (old_list)
		old_shared_count = old_list->shared_count;

	/* Begin an update.  Implies membar_producer for fence.  */
	dma_resv_write_begin(robj, &ticket);

	/* Replace the fence and zero the shared count.  */
	atomic_store_relaxed(&robj->fence_excl, fence);
	if (old_list)
		old_list->shared_count = 0;

	/* Commit the update.  */
	dma_resv_write_commit(robj, &ticket);

	/* Release the old exclusive fence, if any.  */
	if (old_fence) {
		dma_fence_put(old_fence);
		old_fence = NULL; /* paranoia */
	}

	/* Release any old shared fences.  */
	if (old_list) {
		while (old_shared_count--) {
			dma_fence_put(old_list->shared[old_shared_count]);
			/* paranoia */
			old_list->shared[old_shared_count] = NULL;
		}
	}
}

/*
 * dma_resv_add_shared_fence(robj, fence)
 *
 *	Acquire a reference to fence and add it to robj's shared list.
 *	If any fence was already added with the same context number,
 *	release it and replace it by this one.
 *
 *	Caller must have robj locked, and must have preceded with a
 *	call to dma_resv_reserve_shared for each shared fence
 *	added.
 */
void
dma_resv_add_shared_fence(struct dma_resv *robj,
    struct dma_fence *fence)
{
	struct dma_resv_list *list = robj->fence;
	struct dma_resv_list *prealloc = robj->robj_prealloc;
	struct dma_resv_write_ticket ticket;
	struct dma_fence *replace = NULL;
	uint32_t i;

	KASSERT(dma_resv_held(robj));

	/* Acquire a reference to the fence.  */
	KASSERT(fence != NULL);
	(void)dma_fence_get(fence);

	/* Check for a preallocated replacement list.  */
	if (prealloc == NULL) {
		/*
		 * If there is no preallocated replacement list, then
		 * there must be room in the current list.
		 */
		KASSERT(list != NULL);
		KASSERT(list->shared_count < list->shared_max);

		/* Begin an update.  Implies membar_producer for fence.  */
		dma_resv_write_begin(robj, &ticket);

		/* Find a fence with the same context number.  */
		for (i = 0; i < list->shared_count; i++) {
			if (list->shared[i]->context == fence->context) {
				replace = list->shared[i];
				atomic_store_relaxed(&list->shared[i], fence);
				break;
			}
		}

		/* If we didn't find one, add it at the end.  */
		if (i == list->shared_count) {
			atomic_store_relaxed(&list->shared[list->shared_count],
			    fence);
			atomic_store_relaxed(&list->shared_count,
			    list->shared_count + 1);
		}

		/* Commit the update.  */
		dma_resv_write_commit(robj, &ticket);
	} else {
		/*
		 * There is a preallocated replacement list.  There may
		 * not be a current list.  If not, treat it as a zero-
		 * length list.
		 */
		uint32_t shared_count = (list == NULL? 0 : list->shared_count);

		/* There had better be room in the preallocated list.  */
		KASSERT(shared_count < prealloc->shared_max);

		/*
		 * Copy the fences over, but replace if we find one
		 * with the same context number.
		 */
		for (i = 0; i < shared_count; i++) {
			if (replace == NULL &&
			    list->shared[i]->context == fence->context) {
				replace = list->shared[i];
				prealloc->shared[i] = fence;
			} else {
				prealloc->shared[i] = list->shared[i];
			}
		}
		prealloc->shared_count = shared_count;

		/* If we didn't find one, add it at the end.  */
		if (replace == NULL) {
			KASSERT(prealloc->shared_count < prealloc->shared_max);
			prealloc->shared[prealloc->shared_count++] = fence;
		}

		/*
		 * Now ready to replace the list.  Begin an update.
		 * Implies membar_producer for fence and prealloc.
		 */
		dma_resv_write_begin(robj, &ticket);

		/* Replace the list.  */
		atomic_store_relaxed(&robj->fence, prealloc);
		robj->robj_prealloc = NULL;

		/* Commit the update.  */
		dma_resv_write_commit(robj, &ticket);

		/*
		 * If there is an old list, free it when convenient.
		 * (We are not in a position at this point to sleep
		 * waiting for activity on all CPUs.)
		 */
		if (list)
			objlist_defer_free(list);
	}

	/* Release a fence if we replaced it.  */
	if (replace) {
		dma_fence_put(replace);
		replace = NULL;	/* paranoia */
	}
}

/*
 * dma_resv_get_excl_rcu(robj)
 *
 *	Note: Caller need not call this from an RCU read section.
 */
struct dma_fence *
dma_resv_get_excl_rcu(const struct dma_resv *robj)
{
	struct dma_fence *fence;

	rcu_read_lock();
	fence = dma_fence_get_rcu_safe(&robj->fence_excl);
	rcu_read_unlock();

	return fence;
}

/*
 * dma_resv_get_fences_rcu(robj, fencep, nsharedp, sharedp)
 *
 *	Get a snapshot of the exclusive and shared fences of robj.  The
 *	shared fences are returned as a pointer *sharedp to an array,
 *	to be freed by the caller with kfree, of *nsharedp elements.
 *	If fencep is null, then add the exclusive fence, if any, at the
 *	end of the array instead.
 *
 *	Returns zero on success, negative (Linux-style) error code on
 *	failure.  On failure, *fencep, *nsharedp, and *sharedp are
 *	untouched.
 */
int
dma_resv_get_fences_rcu(const struct dma_resv *robj,
    struct dma_fence **fencep, unsigned *nsharedp, struct dma_fence ***sharedp)
{
	const struct dma_resv_list *list = NULL;
	struct dma_fence *fence = NULL;
	struct dma_fence **shared = NULL;
	unsigned shared_alloc = 0, shared_count, i;
	struct dma_resv_read_ticket ticket;

top:	KASSERT(fence == NULL);

	/* Enter an RCU read section and get a read ticket.  */
	rcu_read_lock();
	dma_resv_read_begin(robj, &ticket);

	/* If there is a shared list, grab it.  */
	if (!dma_resv_get_shared_reader(robj, &list, &shared_count, &ticket))
		goto restart;
	if (list != NULL) {

		/*
		 * Avoid arithmetic overflow with `+ 1' below.
		 * Strictly speaking we don't need this if the caller
		 * specified fencep or if there is no exclusive fence,
		 * but it is simpler to not have to consider those
		 * cases.
		 */
		KASSERT(shared_count <= list->shared_max);
		if (list->shared_max == UINT_MAX)
			return -ENOMEM;

		/* Check whether we have a buffer.  */
		if (shared == NULL) {
			/*
			 * We don't have a buffer yet.  Try to allocate
			 * one without waiting.
			 */
			shared_alloc = list->shared_max + 1;
			shared = kcalloc(shared_alloc, sizeof(shared[0]),
			    GFP_NOWAIT);
			if (shared == NULL) {
				/*
				 * Couldn't do it immediately.  Back
				 * out of RCU and allocate one with
				 * waiting.
				 */
				rcu_read_unlock();
				shared = kcalloc(shared_alloc,
				    sizeof(shared[0]), GFP_KERNEL);
				if (shared == NULL)
					return -ENOMEM;
				goto top;
			}
		} else if (shared_alloc < list->shared_max + 1) {
			/*
			 * We have a buffer but it's too small.  We're
			 * already racing in this case, so just back
			 * out and wait to allocate a bigger one.
			 */
			shared_alloc = list->shared_max + 1;
			rcu_read_unlock();
			kfree(shared);
			shared = kcalloc(shared_alloc, sizeof(shared[0]),
			    GFP_KERNEL);
			if (shared == NULL)
				return -ENOMEM;
			goto top;
		}

		/*
		 * We got a buffer large enough.  Copy into the buffer
		 * and record the number of elements.  Could safely use
		 * memcpy here, because even if we race with a writer
		 * it'll invalidate the read ticket and we'll start
		 * over, but atomic_load in a loop will pacify kcsan.
		 */
		for (i = 0; i < shared_count; i++)
			shared[i] = atomic_load_relaxed(&list->shared[i]);

		/* If anything changed while we were copying, restart.  */
		if (!dma_resv_read_valid(robj, &ticket))
			goto restart;
	}

	/* If there is an exclusive fence, grab it.  */
	KASSERT(fence == NULL);
	if (!dma_resv_get_excl_reader(robj, &fence, &ticket))
		goto restart;

	/*
	 * Try to get a reference to all of the shared fences.
	 */
	for (i = 0; i < shared_count; i++) {
		if (dma_fence_get_rcu(atomic_load_relaxed(&shared[i])) == NULL)
			goto put_restart;
	}

	/* Success!  */
	rcu_read_unlock();
	KASSERT(shared_count <= shared_alloc);
	KASSERT(shared_alloc == 0 || shared_count < shared_alloc);
	KASSERT(shared_alloc <= UINT_MAX);
	if (fencep) {
		*fencep = fence;
	} else if (fence) {
		if (shared_count) {
			shared[shared_count++] = fence;
		} else {
			shared = kmalloc(sizeof(shared[0]), GFP_KERNEL);
			shared[0] = fence;
			shared_count = 1;
		}
	}
	*nsharedp = shared_count;
	*sharedp = shared;
	return 0;

put_restart:
	/* Back out.  */
	while (i --> 0) {
		dma_fence_put(shared[i]);
		shared[i] = NULL; /* paranoia */
	}
	if (fence) {
		dma_fence_put(fence);
		fence = NULL;
	}

restart:
	KASSERT(fence == NULL);
	rcu_read_unlock();
	goto top;
}

/*
 * dma_resv_copy_fences(dst, src)
 *
 *	Copy the exclusive fence and all the shared fences from src to
 *	dst.
 *
 *	Caller must have dst locked.
 */
int
dma_resv_copy_fences(struct dma_resv *dst_robj,
    const struct dma_resv *src_robj)
{
	const struct dma_resv_list *src_list;
	struct dma_resv_list *dst_list = NULL;
	struct dma_resv_list *old_list;
	struct dma_fence *fence = NULL;
	struct dma_fence *old_fence;
	uint32_t shared_count, i;
	struct dma_resv_read_ticket read_ticket;
	struct dma_resv_write_ticket write_ticket;

	KASSERT(dma_resv_held(dst_robj));

top:	KASSERT(fence == NULL);

	/* Enter an RCU read section and get a read ticket.  */
	rcu_read_lock();
	dma_resv_read_begin(src_robj, &read_ticket);

	/* Get the shared list.  */
	if (!dma_resv_get_shared_reader(src_robj, &src_list, &shared_count,
		&read_ticket))
		goto restart;
	if (src_list) {
		/* Allocate a new list, if necessary.  */
		if (dst_list == NULL)
			dst_list = objlist_tryalloc(shared_count);
		if (dst_list == NULL || dst_list->shared_max < shared_count) {
			rcu_read_unlock();
			if (dst_list) {
				objlist_free(dst_list);
				dst_list = NULL;
			}
			dst_list = objlist_alloc(shared_count);
			dst_list->shared_count = 0; /* paranoia */
			goto top;
		}

		/* Copy over all fences that are not yet signalled.  */
		dst_list->shared_count = 0;
		for (i = 0; i < shared_count; i++) {
			KASSERT(fence == NULL);
			fence = atomic_load_relaxed(&src_list->shared[i]);
			if ((fence = dma_fence_get_rcu(fence)) == NULL)
				goto restart;
			if (dma_fence_is_signaled(fence)) {
				dma_fence_put(fence);
				fence = NULL;
				continue;
			}
			dst_list->shared[dst_list->shared_count++] = fence;
			fence = NULL;
		}

		/* If anything changed while we were copying, restart.  */
		if (!dma_resv_read_valid(src_robj, &read_ticket))
			goto restart;
	}

	/* Get the exclusive fence.  */
	KASSERT(fence == NULL);
	if (!dma_resv_get_excl_reader(src_robj, &fence, &read_ticket))
		goto restart;

	/* All done with src; exit the RCU read section.  */
	rcu_read_unlock();

	/*
	 * We now have a snapshot of the shared and exclusive fences of
	 * src_robj and we have acquired references to them so they
	 * won't go away.  Transfer them over to dst_robj, releasing
	 * references to any that were there.
	 */

	/* Get the old shared and exclusive fences, if any.  */
	old_list = dst_robj->fence;
	old_fence = dst_robj->fence_excl;

	/*
	 * Begin an update.  Implies membar_producer for dst_list and
	 * fence.
	 */
	dma_resv_write_begin(dst_robj, &write_ticket);

	/* Replace the fences.  */
	atomic_store_relaxed(&dst_robj->fence, dst_list);
	atomic_store_relaxed(&dst_robj->fence_excl, fence);

	/* Commit the update.  */
	dma_resv_write_commit(dst_robj, &write_ticket);

	/* Release the old exclusive fence, if any.  */
	if (old_fence) {
		dma_fence_put(old_fence);
		old_fence = NULL; /* paranoia */
	}

	/* Release any old shared fences.  */
	if (old_list) {
		for (i = old_list->shared_count; i --> 0;) {
			dma_fence_put(old_list->shared[i]);
			old_list->shared[i] = NULL; /* paranoia */
		}
		objlist_free(old_list);
		old_list = NULL; /* paranoia */
	}

	/* Success!  */
	return 0;

restart:
	KASSERT(fence == NULL);
	rcu_read_unlock();
	if (dst_list) {
		for (i = dst_list->shared_count; i --> 0;) {
			dma_fence_put(dst_list->shared[i]);
			dst_list->shared[i] = NULL; /* paranoia */
		}
		/* reuse dst_list allocation for the next attempt */
	}
	goto top;
}

/*
 * dma_resv_test_signaled_rcu(robj, shared)
 *
 *	If shared is true, test whether all of the shared fences are
 *	signalled, or if there are none, test whether the exclusive
 *	fence is signalled.  If shared is false, test only whether the
 *	exclusive fence is signalled.
 *
 *	XXX Why does this _not_ test the exclusive fence if shared is
 *	true only if there are no shared fences?  This makes no sense.
 */
bool
dma_resv_test_signaled_rcu(const struct dma_resv *robj,
    bool shared)
{
	struct dma_resv_read_ticket ticket;
	const struct dma_resv_list *list;
	struct dma_fence *fence = NULL;
	uint32_t i, shared_count;
	bool signaled = true;

top:	KASSERT(fence == NULL);

	/* Enter an RCU read section and get a read ticket.  */
	rcu_read_lock();
	dma_resv_read_begin(robj, &ticket);

	/* If shared is requested and there is a shared list, test it.  */
	if (shared) {
		if (!dma_resv_get_shared_reader(robj, &list, &shared_count,
			&ticket))
			goto restart;
	} else {
		list = NULL;
		shared_count = 0;
	}
	if (list != NULL) {
		/*
		 * For each fence, if it is going away, restart.
		 * Otherwise, acquire a reference to it to test whether
		 * it is signalled.  Stop if we find any that is not
		 * signalled.
		 */
		for (i = 0; i < shared_count; i++) {
			KASSERT(fence == NULL);
			fence = atomic_load_relaxed(&list->shared[i]);
			if ((fence = dma_fence_get_rcu(fence)) == NULL)
				goto restart;
			signaled &= dma_fence_is_signaled(fence);
			dma_fence_put(fence);
			fence = NULL;
			if (!signaled)
				goto out;
		}

		/* If anything changed while we were testing, restart.  */
		if (!dma_resv_read_valid(robj, &ticket))
			goto restart;
	}
	if (shared_count)
		goto out;

	/* If there is an exclusive fence, test it.  */
	KASSERT(fence == NULL);
	if (!dma_resv_get_excl_reader(robj, &fence, &ticket))
		goto restart;
	if (fence != NULL) {
		/* Test whether it is signalled.  If no, stop.  */
		signaled &= dma_fence_is_signaled(fence);
		dma_fence_put(fence);
		fence = NULL;
		if (!signaled)
			goto out;
	}

out:	KASSERT(fence == NULL);
	rcu_read_unlock();
	return signaled;

restart:
	KASSERT(fence == NULL);
	rcu_read_unlock();
	goto top;
}

/*
 * dma_resv_wait_timeout_rcu(robj, shared, intr, timeout)
 *
 *	If shared is true, wait for all of the shared fences to be
 *	signalled, or if there are none, wait for the exclusive fence
 *	to be signalled.  If shared is false, wait only for the
 *	exclusive fence to be signalled.  If timeout is zero, don't
 *	wait, only test.
 *
 *	XXX Why does this _not_ wait for the exclusive fence if shared
 *	is true only if there are no shared fences?  This makes no
 *	sense.
 */
long
dma_resv_wait_timeout_rcu(const struct dma_resv *robj,
    bool shared, bool intr, unsigned long timeout)
{
	struct dma_resv_read_ticket ticket;
	const struct dma_resv_list *list;
	struct dma_fence *fence = NULL;
	uint32_t i, shared_count;
	long ret;

	if (timeout == 0)
		return dma_resv_test_signaled_rcu(robj, shared);

top:	KASSERT(fence == NULL);

	/* Enter an RCU read section and get a read ticket.  */
	rcu_read_lock();
	dma_resv_read_begin(robj, &ticket);

	/* If shared is requested and there is a shared list, wait on it.  */
	if (shared) {
		if (!dma_resv_get_shared_reader(robj, &list, &shared_count,
			&ticket))
			goto restart;
	} else {
		list = NULL;
		shared_count = 0;
	}
	if (list != NULL) {
		/*
		 * For each fence, if it is going away, restart.
		 * Otherwise, acquire a reference to it to test whether
		 * it is signalled.  Stop and wait if we find any that
		 * is not signalled.
		 */
		for (i = 0; i < shared_count; i++) {
			KASSERT(fence == NULL);
			fence = atomic_load_relaxed(&list->shared[i]);
			if ((fence = dma_fence_get_rcu(fence)) == NULL)
				goto restart;
			if (!dma_fence_is_signaled(fence))
				goto wait;
			dma_fence_put(fence);
			fence = NULL;
		}

		/* If anything changed while we were testing, restart.  */
		if (!dma_resv_read_valid(robj, &ticket))
			goto restart;
	}
	if (shared_count)
		goto out;

	/* If there is an exclusive fence, test it.  */
	KASSERT(fence == NULL);
	if (!dma_resv_get_excl_reader(robj, &fence, &ticket))
		goto restart;
	if (fence != NULL) {
		/* Test whether it is signalled.  If no, wait.  */
		if (!dma_fence_is_signaled(fence))
			goto wait;
		dma_fence_put(fence);
		fence = NULL;
	}

out:	/* Success!  Return the number of ticks left.  */
	rcu_read_unlock();
	KASSERT(fence == NULL);
	return timeout;

restart:
	KASSERT(fence == NULL);
	rcu_read_unlock();
	goto top;

wait:
	/*
	 * Exit the RCU read section, wait for it, and release the
	 * fence when we're done.  If we time out or fail, bail.
	 * Otherwise, go back to the top.
	 */
	KASSERT(fence != NULL);
	rcu_read_unlock();
	ret = dma_fence_wait_timeout(fence, intr, timeout);
	dma_fence_put(fence);
	fence = NULL;
	if (ret <= 0)
		return ret;
	KASSERT(ret <= timeout);
	timeout = ret;
	goto top;
}

/*
 * dma_resv_poll_init(rpoll, lock)
 *
 *	Initialize reservation poll state.
 */
void
dma_resv_poll_init(struct dma_resv_poll *rpoll)
{

	mutex_init(&rpoll->rp_lock, MUTEX_DEFAULT, IPL_VM);
	selinit(&rpoll->rp_selq);
	rpoll->rp_claimed = 0;
}

/*
 * dma_resv_poll_fini(rpoll)
 *
 *	Release any resource associated with reservation poll state.
 */
void
dma_resv_poll_fini(struct dma_resv_poll *rpoll)
{

	KASSERT(rpoll->rp_claimed == 0);
	seldestroy(&rpoll->rp_selq);
	mutex_destroy(&rpoll->rp_lock);
}

/*
 * dma_resv_poll_cb(fence, fcb)
 *
 *	Callback to notify a reservation poll that a fence has
 *	completed.  Notify any waiters and allow the next poller to
 *	claim the callback.
 *
 *	If one thread is waiting for the exclusive fence only, and we
 *	spuriously notify them about a shared fence, tough.
 */
static void
dma_resv_poll_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
{
	struct dma_resv_poll *rpoll = container_of(fcb,
	    struct dma_resv_poll, rp_fcb);

	mutex_enter(&rpoll->rp_lock);
	selnotify(&rpoll->rp_selq, 0, NOTE_SUBMIT);
	rpoll->rp_claimed = 0;
	mutex_exit(&rpoll->rp_lock);
}

/*
 * dma_resv_do_poll(robj, events, rpoll)
 *
 *	Poll for reservation object events using the reservation poll
 *	state in rpoll:
 *
 *	- POLLOUT	wait for all fences shared and exclusive
 *	- POLLIN	wait for the exclusive fence
 *
 *	Return the subset of events in events that are ready.  If any
 *	are requested but not ready, arrange to be notified with
 *	selnotify when they are.
 */
int
dma_resv_do_poll(const struct dma_resv *robj, int events,
    struct dma_resv_poll *rpoll)
{
	struct dma_resv_read_ticket ticket;
	const struct dma_resv_list *list;
	struct dma_fence *fence = NULL;
	uint32_t i, shared_count;
	int revents;
	bool recorded = false;	/* curlwp is on the selq */
	bool claimed = false;	/* we claimed the callback */
	bool callback = false;	/* we requested a callback */

	/*
	 * Start with the maximal set of events that could be ready.
	 * We will eliminate the events that are definitely not ready
	 * as we go at the same time as we add callbacks to notify us
	 * that they may be ready.
	 */
	revents = events & (POLLIN|POLLOUT);
	if (revents == 0)
		return 0;

top:	KASSERT(fence == NULL);

	/* Enter an RCU read section and get a read ticket.  */
	rcu_read_lock();
	dma_resv_read_begin(robj, &ticket);

	/* If we want to wait for all fences, get the shared list.  */
	if (events & POLLOUT) {
		if (!dma_resv_get_shared_reader(robj, &list, &shared_count,
			&ticket))
			goto restart;
	} else {
		list = NULL;
		shared_count = 0;
	}
	if (list != NULL) do {
		/*
		 * For each fence, if it is going away, restart.
		 * Otherwise, acquire a reference to it to test whether
		 * it is signalled.  Stop and request a callback if we
		 * find any that is not signalled.
		 */
		for (i = 0; i < shared_count; i++) {
			KASSERT(fence == NULL);
			fence = atomic_load_relaxed(&list->shared[i]);
			if ((fence = dma_fence_get_rcu(fence)) == NULL)
				goto restart;
			if (!dma_fence_is_signaled(fence)) {
				dma_fence_put(fence);
				fence = NULL;
				break;
			}
			dma_fence_put(fence);
			fence = NULL;
		}

		/* If all shared fences have been signalled, move on.  */
		if (i == shared_count)
			break;

		/* Put ourselves on the selq if we haven't already.  */
		if (!recorded)
			goto record;

		/*
		 * If someone else claimed the callback, or we already
		 * requested it, we're guaranteed to be notified, so
		 * assume the event is not ready.
		 */
		if (!claimed || callback) {
			revents &= ~POLLOUT;
			break;
		}

		/*
		 * Otherwise, find the first fence that is not
		 * signalled, request the callback, and clear POLLOUT
		 * from the possible ready events.  If they are all
		 * signalled, leave POLLOUT set; we will simulate the
		 * callback later.
		 */
		for (i = 0; i < shared_count; i++) {
			KASSERT(fence == NULL);
			fence = atomic_load_relaxed(&list->shared[i]);
			if ((fence = dma_fence_get_rcu(fence)) == NULL)
				goto restart;
			if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
				dma_resv_poll_cb)) {
				dma_fence_put(fence);
				fence = NULL;
				revents &= ~POLLOUT;
				callback = true;
				break;
			}
			dma_fence_put(fence);
			fence = NULL;
		}
	} while (0);

	/* We always wait for at least the exclusive fence, so get it.  */
	KASSERT(fence == NULL);
	if (!dma_resv_get_excl_reader(robj, &fence, &ticket))
		goto restart;
	if (fence != NULL) do {
		/*
		 * Test whether it is signalled.  If not, stop and
		 * request a callback.
		 */
		if (dma_fence_is_signaled(fence))
			break;

		/* Put ourselves on the selq if we haven't already.  */
		if (!recorded) {
			dma_fence_put(fence);
			fence = NULL;
			goto record;
		}

		/*
		 * If someone else claimed the callback, or we already
		 * requested it, we're guaranteed to be notified, so
		 * assume the event is not ready.
		 */
		if (!claimed || callback) {
			revents = 0;
			break;
		}

		/*
		 * Otherwise, try to request the callback, and clear
		 * all possible ready events.  If the fence has been
		 * signalled in the interim, leave the events set; we
		 * will simulate the callback later.
		 */
		if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
			dma_resv_poll_cb)) {
			revents = 0;
			callback = true;
			break;
		}
	} while (0);
	if (fence != NULL) {
		dma_fence_put(fence);
		fence = NULL;
	}

	/* All done reading the fences.  */
	rcu_read_unlock();

	if (claimed && !callback) {
		/*
		 * We claimed the callback but we didn't actually
		 * request it because a fence was signalled while we
		 * were claiming it.  Call it ourselves now.  The
		 * callback doesn't use the fence nor rely on holding
		 * any of the fence locks, so this is safe.
		 */
		dma_resv_poll_cb(NULL, &rpoll->rp_fcb);
	}
	return revents;

restart:
	KASSERT(fence == NULL);
	rcu_read_unlock();
	goto top;

record:
	KASSERT(fence == NULL);
	rcu_read_unlock();
	mutex_enter(&rpoll->rp_lock);
	selrecord(curlwp, &rpoll->rp_selq);
	if (!rpoll->rp_claimed)
		claimed = rpoll->rp_claimed = true;
	mutex_exit(&rpoll->rp_lock);
	recorded = true;
	goto top;
}

/*
 * dma_resv_kqfilter(robj, kn, rpoll)
 *
 *	Kqueue filter for reservation objects.  Currently not
 *	implemented because the logic to implement it is nontrivial,
 *	and userland will presumably never use it, so it would be
 *	dangerous to add never-tested complex code paths to the kernel.
 */
int
dma_resv_kqfilter(const struct dma_resv *robj,
    struct knote *kn, struct dma_resv_poll *rpoll)
{

	return EINVAL;
}