Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
/*	$NetBSD: subr_thmap.c,v 1.13 2023/04/11 13:06:21 riastradh Exp $	*/

/*-
 * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Upstream: https://github.com/rmind/thmap/
 */

/*
 * Concurrent trie-hash map.
 *
 * The data structure is conceptually a radix trie on hashed keys.
 * Keys are hashed using a 32-bit function.  The root level is a special
 * case: it is managed using the compare-and-swap (CAS) atomic operation
 * and has a fanout of 64.  The subsequent levels are constructed using
 * intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
 * are created, more blocks of the 32-bit hash value might be generated
 * by incrementing the seed parameter of the hash function.
 *
 * Concurrency
 *
 * - READERS: Descending is simply walking through the slot values of
 *   the intermediate nodes.  It is lock-free as there is no intermediate
 *   state: the slot is either empty or has a pointer to the child node.
 *   The main assumptions here are the following:
 *
 *   i) modifications must preserve consistency with the respect to the
 *   readers i.e. the readers can only see the valid node values;
 *
 *   ii) any invalid view must "fail" the reads, e.g. by making them
 *   re-try from the root; this is a case for deletions and is achieved
 *   using the NODE_DELETED flag.
 *
 *   iii) the node destruction must be synchronized with the readers,
 *   e.g. by using the Epoch-based reclamation or other techniques.
 *
 * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
 *   is implemented using the NODE_LOCKED bit) -- it provides mutual
 *   exclusion amongst concurrent writers.  The lock order for the nodes
 *   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
 *   constraint here is that parent pointer never changes.
 *
 * - DELETES: In addition to writer's locking, the deletion keeps the
 *   intermediate nodes in a valid state and sets the NODE_DELETED flag,
 *   to indicate that the readers must re-start the walk from the root.
 *   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
 *   The leaf nodes just stay as-is until they are reclaimed.
 *
 * - ROOT LEVEL: The root level is a special case, as it is implemented
 *   as an array (rather than intermediate node).  The root-level slot can
 *   only be set using CAS and it can only be set to a valid intermediate
 *   node.  The root-level slot can only be cleared when the node it points
 *   at becomes empty, is locked and marked as NODE_DELETED (this causes
 *   the insert/delete operations to re-try until the slot is set to NULL).
 *
 * References:
 *
 *	W. Litwin, 1981, Trie Hashing.
 *	Proceedings of the 1981 ACM SIGMOD, p. 19-29
 *	https://dl.acm.org/citation.cfm?id=582322
 *
 *	P. L. Lehman and S. B. Yao.
 *	Efficient locking for concurrent operations on B-trees.
 *	ACM TODS, 6(4):650-670, 1981
 *	https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
 */

#ifdef _KERNEL
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/thmap.h>
#include <sys/kmem.h>
#include <sys/lock.h>
#include <sys/atomic.h>
#include <sys/hash.h>
#include <sys/cprng.h>
#define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
#else
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stddef.h>
#include <inttypes.h>
#include <string.h>
#include <limits.h>
#define THMAP_RCSID(a) __RCSID(a)

#include "thmap.h"
#include "utils.h"
#endif

THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.13 2023/04/11 13:06:21 riastradh Exp $");

#include <crypto/blake2/blake2s.h>

/*
 * NetBSD kernel wrappers
 */
#ifdef _KERNEL
#define	ASSERT KASSERT
#define	atomic_thread_fence(x) membar_release() /* only used for release order */
#define	atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \
    (atomic_cas_32((p), *(e), (n)) == *(e))
#define	atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \
    (atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e))
#define	atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n))
#define	murmurhash3 murmurhash2
#endif

/*
 * The root level fanout is 64 (indexed by the last 6 bits of the hash
 * value XORed with the length).  Each subsequent level, represented by
 * intermediate nodes, has a fanout of 16 (using 4 bits).
 *
 * The hash function produces 32-bit values.
 */

#define	HASHVAL_SEEDLEN	(16)
#define	HASHVAL_BITS	(32)
#define	HASHVAL_MOD	(HASHVAL_BITS - 1)
#define	HASHVAL_SHIFT	(5)

#define	ROOT_BITS	(6)
#define	ROOT_SIZE	(1 << ROOT_BITS)
#define	ROOT_MASK	(ROOT_SIZE - 1)
#define	ROOT_MSBITS	(HASHVAL_BITS - ROOT_BITS)

#define	LEVEL_BITS	(4)
#define	LEVEL_SIZE	(1 << LEVEL_BITS)
#define	LEVEL_MASK	(LEVEL_SIZE - 1)

/*
 * Instead of raw pointers, we use offsets from the base address.
 * This accommodates the use of this data structure in shared memory,
 * where mappings can be in different address spaces.
 *
 * The pointers must be aligned, since pointer tagging is used to
 * differentiate the intermediate nodes from leaves.  We reserve the
 * least significant bit.
 */
typedef uintptr_t thmap_ptr_t;
typedef uintptr_t atomic_thmap_ptr_t;			// C11 _Atomic

#define	THMAP_NULL		((thmap_ptr_t)0)

#define	THMAP_LEAF_BIT		(0x1)

#define	THMAP_ALIGNED_P(p)	(((uintptr_t)(p) & 3) == 0)
#define	THMAP_ALIGN(p)		((uintptr_t)(p) & ~(uintptr_t)3)
#define	THMAP_INODE_P(p)	(((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)

#define	THMAP_GETPTR(th, p)	((void *)((th)->baseptr + (uintptr_t)(p)))
#define	THMAP_GETOFF(th, p)	((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
#define	THMAP_NODE(th, p)	THMAP_GETPTR(th, THMAP_ALIGN(p))

/*
 * State field.
 */

#define	NODE_LOCKED		(1U << 31)		// lock (writers)
#define	NODE_DELETED		(1U << 30)		// node deleted
#define	NODE_COUNT(s)		((s) & 0x3fffffff)	// slot count mask

/*
 * There are two types of nodes:
 * - Intermediate nodes -- arrays pointing to another level or a leaf;
 * - Leaves, which store a key-value pair.
 */

typedef struct {
	uint32_t		state;			// C11 _Atomic
	thmap_ptr_t		parent;
	atomic_thmap_ptr_t	slots[LEVEL_SIZE];
} thmap_inode_t;

#define	THMAP_INODE_LEN	sizeof(thmap_inode_t)

typedef struct {
	thmap_ptr_t	key;
	size_t		len;
	void *		val;
} thmap_leaf_t;

typedef struct {
	const uint8_t *	seed;		// secret seed
	unsigned	rslot;		// root-level slot index
	unsigned	level;		// current level in the tree
	unsigned	hashidx;	// current hash index (block of bits)
	uint32_t	hashval;	// current hash value
} thmap_query_t;

typedef struct {
	uintptr_t	addr;
	size_t		len;
	void *		next;
} thmap_gc_t;

#define	THMAP_ROOT_LEN	(sizeof(thmap_ptr_t) * ROOT_SIZE)

struct thmap {
	uintptr_t		baseptr;
	atomic_thmap_ptr_t *	root;
	unsigned		flags;
	const thmap_ops_t *	ops;
	thmap_gc_t *		gc_list;		// C11 _Atomic
	uint8_t			seed[HASHVAL_SEEDLEN];
};

static void	stage_mem_gc(thmap_t *, uintptr_t, size_t);

/*
 * A few low-level helper routines.
 */

static uintptr_t
alloc_wrapper(size_t len)
{
	return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
}

static void
free_wrapper(uintptr_t addr, size_t len)
{
	kmem_intr_free((void *)addr, len);
}

static const thmap_ops_t thmap_default_ops = {
	.alloc = alloc_wrapper,
	.free = free_wrapper
};

/*
 * NODE LOCKING.
 */

static inline bool __diagused
node_locked_p(thmap_inode_t *node)
{
	return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0;
}

static void
lock_node(thmap_inode_t *node)
{
	unsigned bcount = SPINLOCK_BACKOFF_MIN;
	uint32_t s;
again:
	s = atomic_load_relaxed(&node->state);
	if (s & NODE_LOCKED) {
		SPINLOCK_BACKOFF(bcount);
		goto again;
	}
	/* Acquire from prior release in unlock_node.() */
	if (!atomic_compare_exchange_weak_explicit_32(&node->state,
	    &s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) {
		bcount = SPINLOCK_BACKOFF_MIN;
		goto again;
	}
}

static void
unlock_node(thmap_inode_t *node)
{
	uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED;

	ASSERT(node_locked_p(node));
	/* Release to subsequent acquire in lock_node(). */
	atomic_store_release(&node->state, s);
}

/*
 * HASH VALUE AND KEY OPERATIONS.
 */

static inline uint32_t
hash(const uint8_t seed[static HASHVAL_SEEDLEN], const void *key, size_t len,
    uint32_t level)
{
	struct blake2s B;
	uint32_t h;

	if (level == 0)
		return murmurhash3(key, len, 0);

	/*
	 * Byte order is not significant here because this is
	 * intentionally secret and independent for each thmap.
	 *
	 * XXX We get 32 bytes of output at a time; we could march
	 * through them sequentially rather than throwing away 28 bytes
	 * and recomputing BLAKE2 each time.  But the number of
	 * iterations ought to be geometric in the collision
	 * probability at each level which should be very small anyway.
	 */
	blake2s_init(&B, sizeof h, seed, HASHVAL_SEEDLEN);
	blake2s_update(&B, &level, sizeof level);
	blake2s_update(&B, key, len);
	blake2s_final(&B, &h);

	return h;
}

static inline void
hashval_init(thmap_query_t *query, const uint8_t seed[static HASHVAL_SEEDLEN],
    const void * restrict key, size_t len)
{
	const uint32_t hashval = hash(seed, key, len, 0);

	query->seed = seed;
	query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
	query->level = 0;
	query->hashval = hashval;
	query->hashidx = 0;
}

/*
 * hashval_getslot: given the key, compute the hash (if not already cached)
 * and return the offset for the current level.
 */
static unsigned
hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
{
	const unsigned offset = query->level * LEVEL_BITS;
	const unsigned shift = offset & HASHVAL_MOD;
	const unsigned i = offset >> HASHVAL_SHIFT;

	if (query->hashidx != i) {
		/* Generate a hash value for a required range. */
		query->hashval = hash(query->seed, key, len, i);
		query->hashidx = i;
	}
	return (query->hashval >> shift) & LEVEL_MASK;
}

static unsigned
hashval_getleafslot(const thmap_t *thmap,
    const thmap_leaf_t *leaf, unsigned level)
{
	const void *key = THMAP_GETPTR(thmap, leaf->key);
	const unsigned offset = level * LEVEL_BITS;
	const unsigned shift = offset & HASHVAL_MOD;
	const unsigned i = offset >> HASHVAL_SHIFT;

	return (hash(thmap->seed, key, leaf->len, i) >> shift) & LEVEL_MASK;
}

static inline unsigned
hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
    const thmap_leaf_t *leaf)
{
	if (__predict_true(query->hashidx == 0)) {
		return query->hashval & LEVEL_MASK;
	}
	return hashval_getleafslot(thmap, leaf, 0);
}

static bool
key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
    const void * restrict key, size_t len)
{
	const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
	return len == leaf->len && memcmp(key, leafkey, len) == 0;
}

/*
 * INTER-NODE OPERATIONS.
 */

static thmap_inode_t *
node_create(thmap_t *thmap, thmap_inode_t *parent)
{
	thmap_inode_t *node;
	uintptr_t p;

	p = thmap->ops->alloc(THMAP_INODE_LEN);
	if (!p) {
		return NULL;
	}
	node = THMAP_GETPTR(thmap, p);
	ASSERT(THMAP_ALIGNED_P(node));

	memset(node, 0, THMAP_INODE_LEN);
	if (parent) {
		/* Not yet published, no need for ordering. */
		atomic_store_relaxed(&node->state, NODE_LOCKED);
		node->parent = THMAP_GETOFF(thmap, parent);
	}
	return node;
}

static void
node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
{
	ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
	ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL);

	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE);

	/*
	 * If node is public already, caller is responsible for issuing
	 * release fence; if node is not public, no ordering is needed.
	 * Hence relaxed ordering.
	 */
	atomic_store_relaxed(&node->slots[slot], child);
	atomic_store_relaxed(&node->state,
	    atomic_load_relaxed(&node->state) + 1);
}

static void
node_remove(thmap_inode_t *node, unsigned slot)
{
	ASSERT(node_locked_p(node));
	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
	ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL);

	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0);
	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE);

	/* Element will be GC-ed later; no need for ordering here. */
	atomic_store_relaxed(&node->slots[slot], THMAP_NULL);
	atomic_store_relaxed(&node->state,
	    atomic_load_relaxed(&node->state) - 1);
}

/*
 * LEAF OPERATIONS.
 */

static thmap_leaf_t *
leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
{
	thmap_leaf_t *leaf;
	uintptr_t leaf_off, key_off;

	leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
	if (!leaf_off) {
		return NULL;
	}
	leaf = THMAP_GETPTR(thmap, leaf_off);
	ASSERT(THMAP_ALIGNED_P(leaf));

	if ((thmap->flags & THMAP_NOCOPY) == 0) {
		/*
		 * Copy the key.
		 */
		key_off = thmap->ops->alloc(len);
		if (!key_off) {
			thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
			return NULL;
		}
		memcpy(THMAP_GETPTR(thmap, key_off), key, len);
		leaf->key = key_off;
	} else {
		/* Otherwise, we use a reference. */
		leaf->key = (uintptr_t)key;
	}
	leaf->len = len;
	leaf->val = val;
	return leaf;
}

static void
leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
{
	if ((thmap->flags & THMAP_NOCOPY) == 0) {
		thmap->ops->free(leaf->key, leaf->len);
	}
	thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
}

static thmap_leaf_t *
get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
{
	thmap_ptr_t node;

	/* Consume from prior release in thmap_put(). */
	node = atomic_load_consume(&parent->slots[slot]);
	if (THMAP_INODE_P(node)) {
		return NULL;
	}
	return THMAP_NODE(thmap, node);
}

/*
 * ROOT OPERATIONS.
 */

/*
 * root_try_put: Try to set a root pointer at query->rslot.
 *
 * => Implies release operation on success.
 * => Implies no ordering on failure.
 */
static inline int
root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
{
	thmap_ptr_t expected;
	const unsigned i = query->rslot;
	thmap_inode_t *node;
	thmap_ptr_t nptr;
	unsigned slot;

	/*
	 * Must pre-check first.  No ordering required because we will
	 * check again before taking any actions, and start over if
	 * this changes from null.
	 */
	if (atomic_load_relaxed(&thmap->root[i])) {
		return EEXIST;
	}

	/*
	 * Create an intermediate node.  Since there is no parent set,
	 * it will be created unlocked and the CAS operation will
	 * release it to readers.
	 */
	node = node_create(thmap, NULL);
	if (__predict_false(node == NULL)) {
		return ENOMEM;
	}
	slot = hashval_getl0slot(thmap, query, leaf);
	node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
	nptr = THMAP_GETOFF(thmap, node);
again:
	if (atomic_load_relaxed(&thmap->root[i])) {
		thmap->ops->free(nptr, THMAP_INODE_LEN);
		return EEXIST;
	}
	/* Release to subsequent consume in find_edge_node(). */
	expected = THMAP_NULL;
	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected,
	    nptr, memory_order_release, memory_order_relaxed)) {
		goto again;
	}
	return 0;
}

/*
 * find_edge_node: given the hash, traverse the tree to find the edge node.
 *
 * => Returns an aligned (clean) pointer to the parent node.
 * => Returns the slot number and sets current level.
 */
static thmap_inode_t *
find_edge_node(const thmap_t *thmap, thmap_query_t *query,
    const void * restrict key, size_t len, unsigned *slot)
{
	thmap_ptr_t root_slot;
	thmap_inode_t *parent;
	thmap_ptr_t node;
	unsigned off;

	ASSERT(query->level == 0);

	/* Consume from prior release in root_try_put(). */
	root_slot = atomic_load_consume(&thmap->root[query->rslot]);
	parent = THMAP_NODE(thmap, root_slot);
	if (!parent) {
		return NULL;
	}
descend:
	off = hashval_getslot(query, key, len);
	/* Consume from prior release in thmap_put(). */
	node = atomic_load_consume(&parent->slots[off]);

	/* Descend the tree until we find a leaf or empty slot. */
	if (node && THMAP_INODE_P(node)) {
		parent = THMAP_NODE(thmap, node);
		query->level++;
		goto descend;
	}
	/*
	 * NODE_DELETED does not become stale until GC runs, which
	 * cannot happen while we are in the middle of an operation,
	 * hence relaxed ordering.
	 */
	if (atomic_load_relaxed(&parent->state) & NODE_DELETED) {
		return NULL;
	}
	*slot = off;
	return parent;
}

/*
 * find_edge_node_locked: traverse the tree, like find_edge_node(),
 * but attempt to lock the edge node.
 *
 * => Returns NULL if the deleted node is found.  This indicates that
 *    the caller must re-try from the root, as the root slot might have
 *    changed too.
 */
static thmap_inode_t *
find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
    const void * restrict key, size_t len, unsigned *slot)
{
	thmap_inode_t *node;
	thmap_ptr_t target;
retry:
	/*
	 * Find the edge node and lock it!  Re-check the state since
	 * the tree might change by the time we acquire the lock.
	 */
	node = find_edge_node(thmap, query, key, len, slot);
	if (!node) {
		/* The root slot is empty -- let the caller decide. */
		query->level = 0;
		return NULL;
	}
	lock_node(node);
	if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) {
		/*
		 * The node has been deleted.  The tree might have a new
		 * shape now, therefore we must re-start from the root.
		 */
		unlock_node(node);
		query->level = 0;
		return NULL;
	}
	target = atomic_load_relaxed(&node->slots[*slot]);
	if (__predict_false(target && THMAP_INODE_P(target))) {
		/*
		 * The target slot has been changed and it is now an
		 * intermediate node.  Re-start from the top internode.
		 */
		unlock_node(node);
		query->level = 0;
		goto retry;
	}
	return node;
}

/*
 * thmap_get: lookup a value given the key.
 */
void *
thmap_get(thmap_t *thmap, const void *key, size_t len)
{
	thmap_query_t query;
	thmap_inode_t *parent;
	thmap_leaf_t *leaf;
	unsigned slot;

	hashval_init(&query, thmap->seed, key, len);
	parent = find_edge_node(thmap, &query, key, len, &slot);
	if (!parent) {
		return NULL;
	}
	leaf = get_leaf(thmap, parent, slot);
	if (!leaf) {
		return NULL;
	}
	if (!key_cmp_p(thmap, leaf, key, len)) {
		return NULL;
	}
	return leaf->val;
}

/*
 * thmap_put: insert a value given the key.
 *
 * => If the key is already present, return the associated value.
 * => Otherwise, on successful insert, return the given value.
 */
void *
thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
{
	thmap_query_t query;
	thmap_leaf_t *leaf, *other;
	thmap_inode_t *parent, *child;
	unsigned slot, other_slot;
	thmap_ptr_t target;

	/*
	 * First, pre-allocate and initialize the leaf node.
	 */
	leaf = leaf_create(thmap, key, len, val);
	if (__predict_false(!leaf)) {
		return NULL;
	}
	hashval_init(&query, thmap->seed, key, len);
retry:
	/*
	 * Try to insert into the root first, if its slot is empty.
	 */
	switch (root_try_put(thmap, &query, leaf)) {
	case 0:
		/* Success: the leaf was inserted; no locking involved. */
		return val;
	case EEXIST:
		break;
	case ENOMEM:
		return NULL;
	default:
		__unreachable();
	}

	/*
	 * Release node via store in node_insert (*) to subsequent
	 * consume in get_leaf() or find_edge_node().
	 */
	atomic_thread_fence(memory_order_release);

	/*
	 * Find the edge node and the target slot.
	 */
	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
	if (!parent) {
		goto retry;
	}
	target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset
	if (THMAP_INODE_P(target)) {
		/*
		 * Empty slot: simply insert the new leaf.  The release
		 * fence is already issued for us.
		 */
		target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
		node_insert(parent, slot, target); /* (*) */
		goto out;
	}

	/*
	 * Collision or duplicate.
	 */
	other = THMAP_NODE(thmap, target);
	if (key_cmp_p(thmap, other, key, len)) {
		/*
		 * Duplicate.  Free the pre-allocated leaf and
		 * return the present value.
		 */
		leaf_free(thmap, leaf);
		val = other->val;
		goto out;
	}
descend:
	/*
	 * Collision -- expand the tree.  Create an intermediate node
	 * which will be locked (NODE_LOCKED) for us.  At this point,
	 * we advance to the next level.
	 */
	child = node_create(thmap, parent);
	if (__predict_false(!child)) {
		leaf_free(thmap, leaf);
		val = NULL;
		goto out;
	}
	query.level++;

	/*
	 * Insert the other (colliding) leaf first.  The new child is
	 * not yet published, so memory order is relaxed.
	 */
	other_slot = hashval_getleafslot(thmap, other, query.level);
	target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
	node_insert(child, other_slot, target);

	/*
	 * Insert the intermediate node into the parent node.
	 * It becomes the new parent for the our new leaf.
	 *
	 * Ensure that stores to the child (and leaf) reach global
	 * visibility before it gets inserted to the parent, as
	 * consumed by get_leaf() or find_edge_node().
	 */
	atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child));

	unlock_node(parent);
	ASSERT(node_locked_p(child));
	parent = child;

	/*
	 * Get the new slot and check for another collision
	 * at the next level.
	 */
	slot = hashval_getslot(&query, key, len);
	if (slot == other_slot) {
		/* Another collision -- descend and expand again. */
		goto descend;
	}

	/*
	 * Insert our new leaf once we expanded enough.  The release
	 * fence is already issued for us.
	 */
	target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
	node_insert(parent, slot, target); /* (*) */
out:
	unlock_node(parent);
	return val;
}

/*
 * thmap_del: remove the entry given the key.
 */
void *
thmap_del(thmap_t *thmap, const void *key, size_t len)
{
	thmap_query_t query;
	thmap_leaf_t *leaf;
	thmap_inode_t *parent;
	unsigned slot;
	void *val;

	hashval_init(&query, thmap->seed, key, len);
	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
	if (!parent) {
		/* Root slot empty: not found. */
		return NULL;
	}
	leaf = get_leaf(thmap, parent, slot);
	if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
		/* Not found. */
		unlock_node(parent);
		return NULL;
	}

	/* Remove the leaf. */
	ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot]))
	    == leaf);
	node_remove(parent, slot);

	/*
	 * Collapse the levels if removing the last item.
	 */
	while (query.level &&
	    NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
		thmap_inode_t *node = parent;

		ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED);

		/*
		 * Ascend one level up.
		 * => Mark our current parent as deleted.
		 * => Lock the parent one level up.
		 */
		query.level--;
		slot = hashval_getslot(&query, key, len);
		parent = THMAP_NODE(thmap, node->parent);
		ASSERT(parent != NULL);

		lock_node(parent);
		ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED)
		    == 0);

		/*
		 * Lock is exclusive, so nobody else can be writing at
		 * the same time, and no need for atomic R/M/W, but
		 * readers may read without the lock and so need atomic
		 * load/store.  No ordering here needed because the
		 * entry itself stays valid until GC.
		 */
		atomic_store_relaxed(&node->state,
		    atomic_load_relaxed(&node->state) | NODE_DELETED);
		unlock_node(node); // memory_order_release

		ASSERT(THMAP_NODE(thmap,
		    atomic_load_relaxed(&parent->slots[slot])) == node);
		node_remove(parent, slot);

		/* Stage the removed node for G/C. */
		stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
	}

	/*
	 * If the top node is empty, then we need to remove it from the
	 * root level.  Mark the node as deleted and clear the slot.
	 *
	 * Note: acquiring the lock on the top node effectively prevents
	 * the root slot from changing.
	 */
	if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
		const unsigned rslot = query.rslot;
		const thmap_ptr_t nptr =
		    atomic_load_relaxed(&thmap->root[rslot]);

		ASSERT(query.level == 0);
		ASSERT(parent->parent == THMAP_NULL);
		ASSERT(THMAP_GETOFF(thmap, parent) == nptr);

		/* Mark as deleted and remove from the root-level slot. */
		atomic_store_relaxed(&parent->state,
		    atomic_load_relaxed(&parent->state) | NODE_DELETED);
		atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL);

		stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
	}
	unlock_node(parent);

	/*
	 * Save the value and stage the leaf for G/C.
	 */
	val = leaf->val;
	if ((thmap->flags & THMAP_NOCOPY) == 0) {
		stage_mem_gc(thmap, leaf->key, leaf->len);
	}
	stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
	return val;
}

/*
 * G/C routines.
 */

static void
stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
{
	thmap_gc_t *head, *gc;

	gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP);
	gc->addr = addr;
	gc->len = len;
retry:
	head = atomic_load_relaxed(&thmap->gc_list);
	gc->next = head; // not yet published

	/* Release to subsequent acquire in thmap_stage_gc(). */
	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc,
	    memory_order_release, memory_order_relaxed)) {
		goto retry;
	}
}

void *
thmap_stage_gc(thmap_t *thmap)
{
	/* Acquire from prior release in stage_mem_gc(). */
	return atomic_exchange_explicit(&thmap->gc_list, NULL,
	    memory_order_acquire);
}

void
thmap_gc(thmap_t *thmap, void *ref)
{
	thmap_gc_t *gc = ref;

	while (gc) {
		thmap_gc_t *next = gc->next;
		thmap->ops->free(gc->addr, gc->len);
		kmem_intr_free(gc, sizeof(thmap_gc_t));
		gc = next;
	}
}

/*
 * thmap_create: construct a new trie-hash map object.
 */
thmap_t *
thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
{
	thmap_t *thmap;
	uintptr_t root;

	/*
	 * Setup the map object.
	 */
	if (!THMAP_ALIGNED_P(baseptr)) {
		return NULL;
	}
	thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
	thmap->baseptr = baseptr;
	thmap->ops = ops ? ops : &thmap_default_ops;
	thmap->flags = flags;

	if ((thmap->flags & THMAP_SETROOT) == 0) {
		/* Allocate the root level. */
		root = thmap->ops->alloc(THMAP_ROOT_LEN);
		thmap->root = THMAP_GETPTR(thmap, root);
		if (!thmap->root) {
			kmem_free(thmap, sizeof(thmap_t));
			return NULL;
		}
		memset(thmap->root, 0, THMAP_ROOT_LEN);
	}

	cprng_strong(kern_cprng, thmap->seed, sizeof thmap->seed, 0);

	return thmap;
}

int
thmap_setroot(thmap_t *thmap, uintptr_t root_off)
{
	if (thmap->root) {
		return -1;
	}
	thmap->root = THMAP_GETPTR(thmap, root_off);
	return 0;
}

uintptr_t
thmap_getroot(const thmap_t *thmap)
{
	return THMAP_GETOFF(thmap, thmap->root);
}

void
thmap_destroy(thmap_t *thmap)
{
	uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
	void *ref;

	ref = thmap_stage_gc(thmap);
	thmap_gc(thmap, ref);

	if ((thmap->flags & THMAP_SETROOT) == 0) {
		thmap->ops->free(root, THMAP_ROOT_LEN);
	}
	kmem_free(thmap, sizeof(thmap_t));
}