/* $NetBSD: evp-pkcs11.c,v 1.4 2023/06/19 21:41:43 christos Exp $ */
/*
* Copyright (c) 2015-2016, Secure Endpoints Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* PKCS#11 provider */
#include <config.h>
#include <krb5/roken.h>
#include <assert.h>
#ifdef HAVE_DLFCN_H
#include <dlfcn.h>
#ifndef RTLD_LAZY
#define RTLD_LAZY 0
#endif
#ifndef RTLD_LOCAL
#define RTLD_LOCAL 0
#endif
#ifndef RTLD_GROUP
#define RTLD_GROUP 0
#endif
#ifndef RTLD_NODELETE
#define RTLD_NODELETE 0
#endif
#else
#error PKCS11 support requires dlfcn.h
#endif
#include <krb5/heimbase.h>
#include <evp.h>
#include <evp-hcrypto.h>
#include <evp-pkcs11.h>
#include <ref/pkcs11.h>
#if __sun && !defined(PKCS11_MODULE_PATH)
# ifdef _LP64
# define PKCS11_MODULE_PATH "/usr/lib/64/libpkcs11.so"
# else
# define PKCS11_MODULE_PATH "/usr/lib/libpkcs11.so"
# endif
#elif defined(__linux__)
/*
* XXX We should have an autoconf check for OpenCryptoki and such
* things. However, there's no AC_CHECK_OBJECT(), and we'd have to
* write one. Today I'm feeling lazy. Another possibility would be to
* have a symlink from the libdir we'll install into, and then we could
* dlopen() that on all platforms.
*
* XXX Also, we should pick an appropriate shared object based on 32- vs
* 64-bits.
*/
# define PKCS11_MODULE_PATH "/usr/lib/pkcs11/PKCS11_API.so"
#endif
static CK_FUNCTION_LIST_PTR p11_module;
static int
p11_cleanup(EVP_CIPHER_CTX *ctx);
struct pkcs11_cipher_ctx {
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hSecret;
};
struct pkcs11_md_ctx {
CK_SESSION_HANDLE hSession;
};
static void *pkcs11_module_handle;
static CK_RV
p11_module_load(CK_FUNCTION_LIST_PTR_PTR ppFunctionList)
{
CK_RV rv;
CK_RV (*C_GetFunctionList_fn)(CK_FUNCTION_LIST_PTR_PTR);
*ppFunctionList = NULL;
if (!issuid()) {
char *pkcs11ModulePath = getenv("PKCS11_MODULE_PATH");
if (pkcs11ModulePath != NULL) {
pkcs11_module_handle =
dlopen(pkcs11ModulePath,
RTLD_LAZY | RTLD_LOCAL | RTLD_GROUP | RTLD_NODELETE);
if (pkcs11_module_handle == NULL)
fprintf(stderr, "p11_module_load(%s): %s\n", pkcs11ModulePath, dlerror());
}
}
#ifdef PKCS11_MODULE_PATH
if (pkcs11_module_handle == NULL) {
pkcs11_module_handle =
dlopen(PKCS11_MODULE_PATH,
RTLD_LAZY | RTLD_LOCAL | RTLD_GROUP | RTLD_NODELETE);
if (pkcs11_module_handle == NULL)
fprintf(stderr, "p11_module_load(%s): %s\n", PKCS11_MODULE_PATH, dlerror());
}
#endif
if (pkcs11_module_handle == NULL)
return CKR_LIBRARY_LOAD_FAILED;
C_GetFunctionList_fn = (CK_RV (*)(CK_FUNCTION_LIST_PTR_PTR))
dlsym(pkcs11_module_handle, "C_GetFunctionList");
if (C_GetFunctionList_fn == NULL) {
dlclose(pkcs11_module_handle);
return CKR_LIBRARY_LOAD_FAILED;
}
rv = C_GetFunctionList_fn(ppFunctionList);
if (rv != CKR_OK) {
dlclose(pkcs11_module_handle);
return rv;
}
return CKR_OK;
}
static void
p11_module_load_once(void *context)
{
p11_module_load((CK_FUNCTION_LIST_PTR_PTR)context);
}
static CK_RV
p11_module_init(void)
{
static heim_base_once_t once = HEIM_BASE_ONCE_INIT;
CK_RV rv;
heim_base_once_f(&once, &p11_module, p11_module_load_once);
if (p11_module == NULL)
return CKR_LIBRARY_LOAD_FAILED;
/*
* Call C_Initialize() on every call, because it will be invalid after fork().
* Caching the initialization status using a once control and invalidating it
* on fork provided no measurable performance benefit on Solaris 11. Other
* approaches would not be thread-safe or would involve more intrusive code
* changes, such as exposing heimbase's atomics.
*/
rv = p11_module->C_Initialize(NULL);
if (rv == CKR_CRYPTOKI_ALREADY_INITIALIZED)
rv = CKR_OK;
return rv;
}
static CK_RV
p11_session_init(CK_MECHANISM_TYPE mechanismType,
CK_SESSION_HANDLE_PTR phSession,
CK_FLAGS *pFlags)
{
CK_RV rv;
CK_ULONG i, ulSlotCount = 0;
CK_SLOT_ID_PTR pSlotList = NULL;
CK_MECHANISM_INFO info;
if (phSession != NULL)
*phSession = CK_INVALID_HANDLE;
*pFlags = 0;
rv = p11_module_init();
if (rv != CKR_OK)
goto cleanup;
assert(p11_module != NULL);
rv = p11_module->C_GetSlotList(CK_FALSE, NULL, &ulSlotCount);
if (rv != CKR_OK)
goto cleanup;
pSlotList = (CK_SLOT_ID_PTR)calloc(ulSlotCount, sizeof(CK_SLOT_ID));
if (pSlotList == NULL) {
rv = CKR_HOST_MEMORY;
goto cleanup;
}
rv = p11_module->C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount);
if (rv != CKR_OK)
goto cleanup;
/*
* Note that this approach of using the first slot that supports the desired
* mechanism may not always be what the user wants (for example it may prefer
* software to hardware crypto). We're going to assume that this code will be
* principally used on Solaris (which has a meta-slot provider that sorts by
* hardware first) or in situations where the user can configure the slots in
* order of provider preference. In the future we should make this configurable.
*/
for (i = 0; i < ulSlotCount; i++) {
rv = p11_module->C_GetMechanismInfo(pSlotList[i], mechanismType, &info);
if (rv == CKR_OK) {
*pFlags = info.flags;
break;
}
}
if (i == ulSlotCount) {
rv = CKR_MECHANISM_INVALID;
goto cleanup;
}
if (phSession != NULL) {
rv = p11_module->C_OpenSession(pSlotList[i], CKF_SERIAL_SESSION, NULL, NULL, phSession);
if (rv != CKR_OK)
goto cleanup;
}
cleanup:
free(pSlotList);
return rv;
}
static int
p11_mech_available_p(CK_MECHANISM_TYPE mechanismType, CK_FLAGS reqFlags)
{
CK_RV rv;
CK_FLAGS flags;
rv = p11_session_init(mechanismType, NULL, &flags);
if (rv != CKR_OK)
return 0;
return (flags & reqFlags) == reqFlags;
}
static CK_KEY_TYPE
p11_key_type_for_mech(CK_MECHANISM_TYPE mechanismType)
{
CK_KEY_TYPE keyType = 0;
switch (mechanismType) {
case CKM_RC2_CBC:
keyType = CKK_RC2;
break;
case CKM_RC4:
keyType = CKK_RC4;
break;
case CKM_DES_CBC:
keyType = CKK_DES;
break;
case CKM_DES3_CBC:
keyType = CKK_DES3;
break;
case CKM_AES_CBC:
case CKM_AES_CFB8:
keyType = CKK_AES;
break;
case CKM_CAMELLIA_CBC:
keyType = CKK_CAMELLIA;
break;
default:
assert(0 && "Unknown PKCS#11 mechanism type");
break;
}
return keyType;
}
static int
p11_key_init(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv,
int encp)
{
CK_RV rv;
CK_BBOOL bFalse = CK_FALSE;
CK_BBOOL bTrue = CK_TRUE;
CK_MECHANISM_TYPE mechanismType = (CK_MECHANISM_TYPE)ctx->cipher->app_data;
CK_KEY_TYPE keyType = p11_key_type_for_mech(mechanismType);
CK_OBJECT_CLASS objectClass = CKO_SECRET_KEY;
CK_ATTRIBUTE_TYPE op = encp ? CKA_ENCRYPT : CKA_DECRYPT;
CK_ATTRIBUTE attributes[] = {
{ CKA_EXTRACTABLE, &bFalse, sizeof(bFalse) },
{ CKA_CLASS, &objectClass, sizeof(objectClass) },
{ CKA_KEY_TYPE, &keyType, sizeof(keyType) },
{ CKA_TOKEN, &bFalse, sizeof(bFalse) },
{ CKA_PRIVATE, &bFalse, sizeof(bFalse) },
{ CKA_SENSITIVE, &bTrue, sizeof(bTrue) },
{ CKA_VALUE, (void *)key, ctx->key_len },
{ op, &bTrue, sizeof(bTrue) }
};
CK_MECHANISM mechanism = {
mechanismType,
ctx->cipher->iv_len ? ctx->iv : NULL,
ctx->cipher->iv_len
};
struct pkcs11_cipher_ctx *p11ctx = (struct pkcs11_cipher_ctx *)ctx->cipher_data;
CK_FLAGS flags;
rv = CKR_OK;
if (p11ctx->hSession != CK_INVALID_HANDLE && key != NULL)
p11_cleanup(ctx); /* refresh session with new key */
if (p11ctx->hSession == CK_INVALID_HANDLE) {
rv = p11_session_init(mechanismType, &p11ctx->hSession, &flags);
if (rv != CKR_OK)
goto cleanup;
if ((flags & (CKF_ENCRYPT|CKF_DECRYPT)) != (CKF_ENCRYPT|CKF_DECRYPT)) {
rv = CKR_MECHANISM_INVALID;
goto cleanup;
}
}
if (key != NULL) {
assert(p11_module != NULL);
assert(p11ctx->hSecret == CK_INVALID_HANDLE);
rv = p11_module->C_CreateObject(p11ctx->hSession, attributes,
sizeof(attributes) / sizeof(attributes[0]),
&p11ctx->hSecret);
if (rv != CKR_OK)
goto cleanup;
}
if (p11ctx->hSecret != CK_INVALID_HANDLE) {
if (op == CKA_ENCRYPT)
rv = p11_module->C_EncryptInit(p11ctx->hSession, &mechanism, p11ctx->hSecret);
else
rv = p11_module->C_DecryptInit(p11ctx->hSession, &mechanism, p11ctx->hSecret);
if (rv != CKR_OK)
goto cleanup;
}
cleanup:
if (rv != CKR_OK)
p11_cleanup(ctx);
return rv == CKR_OK;
}
static int
p11_do_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
unsigned int size)
{
struct pkcs11_cipher_ctx *p11ctx = (struct pkcs11_cipher_ctx *)ctx->cipher_data;
CK_RV rv;
CK_ULONG ulCipherTextLen = size;
assert(p11_module != NULL);
assert(EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_STREAM_CIPHER ||
(size % ctx->cipher->block_size) == 0);
if (ctx->encrypt)
rv = p11_module->C_EncryptUpdate(p11ctx->hSession, (unsigned char *)in, size, out, &ulCipherTextLen);
else
rv = p11_module->C_DecryptUpdate(p11ctx->hSession, (unsigned char *)in, size, out, &ulCipherTextLen);
return rv == CKR_OK;
}
static int
p11_cleanup(EVP_CIPHER_CTX *ctx)
{
struct pkcs11_cipher_ctx *p11ctx = (struct pkcs11_cipher_ctx *)ctx->cipher_data;
if (p11ctx->hSecret != CK_INVALID_HANDLE) {
p11_module->C_DestroyObject(p11ctx->hSession, p11ctx->hSecret);
p11ctx->hSecret = CK_INVALID_HANDLE;
}
if (p11ctx->hSession != CK_INVALID_HANDLE) {
p11_module->C_CloseSession(p11ctx->hSession);
p11ctx->hSession = CK_INVALID_HANDLE;
}
return 1;
}
static int
p11_md_cleanup(EVP_MD_CTX *ctx);
static int
p11_md_hash_init(CK_MECHANISM_TYPE mechanismType, EVP_MD_CTX *ctx)
{
struct pkcs11_md_ctx *p11ctx = (struct pkcs11_md_ctx *)ctx;
CK_RV rv;
CK_FLAGS flags;
CK_MECHANISM mechanism = { mechanismType, NULL, 0 };
if (p11ctx->hSession != CK_INVALID_HANDLE)
p11_md_cleanup(ctx);
rv = p11_session_init(mechanismType, &p11ctx->hSession, &flags);
if (rv != CKR_OK)
goto cleanup;
if ((flags & CKF_DIGEST) != CKF_DIGEST) {
rv = CKR_MECHANISM_INVALID;
goto cleanup;
}
assert(p11_module != NULL);
rv = p11_module->C_DigestInit(p11ctx->hSession, &mechanism);
cleanup:
return rv == CKR_OK;
}
static int
p11_md_update(EVP_MD_CTX *ctx, const void *data, size_t length)
{
struct pkcs11_md_ctx *p11ctx = (struct pkcs11_md_ctx *)ctx;
CK_RV rv;
assert(p11_module != NULL);
assert(data != NULL || length == 0);
rv = p11_module->C_DigestUpdate(p11ctx->hSession,
data ? (CK_BYTE_PTR)data : (CK_BYTE_PTR)"",
length);
return rv == CKR_OK;
}
static int
p11_md_final(void *digest, EVP_MD_CTX *ctx)
{
struct pkcs11_md_ctx *p11ctx = (struct pkcs11_md_ctx *)ctx;
CK_RV rv;
CK_ULONG digestLen = 0;
assert(p11_module != NULL);
rv = p11_module->C_DigestFinal(p11ctx->hSession, NULL, &digestLen);
if (rv == CKR_OK)
rv = p11_module->C_DigestFinal(p11ctx->hSession, digest, &digestLen);
return rv == CKR_OK;
}
static int
p11_md_cleanup(EVP_MD_CTX *ctx)
{
struct pkcs11_md_ctx *p11ctx = (struct pkcs11_md_ctx *)ctx;
CK_RV rv;
assert(p11_module != NULL);
rv = p11_module->C_CloseSession(p11ctx->hSession);
if (rv == CKR_OK)
p11ctx->hSession = CK_INVALID_HANDLE;
return rv == CKR_OK;
}
#define PKCS11_CIPHER_ALGORITHM(name, mechanismType, block_size, \
key_len, iv_len, flags) \
\
static EVP_CIPHER \
pkcs11_##name = { \
0, \
block_size, \
key_len, \
iv_len, \
(flags) | EVP_CIPH_ALWAYS_CALL_INIT, \
p11_key_init, \
p11_do_cipher, \
p11_cleanup, \
sizeof(struct pkcs11_cipher_ctx), \
NULL, \
NULL, \
NULL, \
(void *)mechanismType \
}; \
\
const EVP_CIPHER * \
hc_EVP_pkcs11_##name(void) \
{ \
if (p11_mech_available_p(mechanismType, CKF_ENCRYPT|CKF_DECRYPT)) \
return &pkcs11_##name; \
else \
return NULL; \
} \
\
static void \
pkcs11_hcrypto_##name##_init_once(void *context) \
{ \
const EVP_CIPHER *cipher; \
\
cipher = hc_EVP_pkcs11_ ##name(); \
if (cipher == NULL && HCRYPTO_FALLBACK) \
cipher = hc_EVP_hcrypto_ ##name(); \
\
*((const EVP_CIPHER **)context) = cipher; \
} \
\
const EVP_CIPHER * \
hc_EVP_pkcs11_hcrypto_##name(void) \
{ \
static const EVP_CIPHER *__cipher; \
static heim_base_once_t __init = HEIM_BASE_ONCE_INIT; \
\
heim_base_once_f(&__init, &__cipher, \
pkcs11_hcrypto_##name##_init_once); \
\
return __cipher; \
}
#define PKCS11_MD_ALGORITHM(name, mechanismType, hash_size, block_size) \
\
static int p11_##name##_init(EVP_MD_CTX *ctx) \
{ \
return p11_md_hash_init(mechanismType, ctx); \
} \
\
const EVP_MD * \
hc_EVP_pkcs11_##name(void) \
{ \
static struct hc_evp_md name = { \
hash_size, \
block_size, \
sizeof(struct pkcs11_md_ctx), \
p11_##name##_init, \
p11_md_update, \
p11_md_final, \
p11_md_cleanup \
}; \
\
if (p11_mech_available_p(mechanismType, CKF_DIGEST)) \
return &name; \
else \
return NULL; \
} \
\
static void \
pkcs11_hcrypto_##name##_init_once(void *context) \
{ \
const EVP_MD *md; \
\
md = hc_EVP_pkcs11_ ##name(); \
if (md == NULL && HCRYPTO_FALLBACK) \
md = hc_EVP_hcrypto_ ##name(); \
\
*((const EVP_MD **)context) = md; \
} \
\
const EVP_MD * \
hc_EVP_pkcs11_hcrypto_##name(void) \
{ \
static const EVP_MD *__md; \
static heim_base_once_t __init = HEIM_BASE_ONCE_INIT; \
\
heim_base_once_f(&__init, &__md, \
pkcs11_hcrypto_##name##_init_once); \
\
return __md; \
}
#define PKCS11_MD_ALGORITHM_UNAVAILABLE(name) \
\
const EVP_MD * \
hc_EVP_pkcs11_##name(void) \
{ \
return NULL; \
} \
\
const EVP_MD * \
hc_EVP_pkcs11_hcrypto_##name(void) \
{ \
return hc_EVP_hcrypto_ ##name(); \
}
/**
* The triple DES cipher type (PKCS#11 provider)
*
* @return the DES-EDE3-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(des_ede3_cbc,
CKM_DES3_CBC,
8,
24,
8,
EVP_CIPH_CBC_MODE)
/**
* The DES cipher type (PKCS#11 provider)
*
* @return the DES-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(des_cbc,
CKM_DES_CBC,
8,
8,
8,
EVP_CIPH_CBC_MODE)
/**
* The AES-128 cipher type (PKCS#11 provider)
*
* @return the AES-128-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(aes_128_cbc,
CKM_AES_CBC,
16,
16,
16,
EVP_CIPH_CBC_MODE)
/**
* The AES-192 cipher type (PKCS#11 provider)
*
* @return the AES-192-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(aes_192_cbc,
CKM_AES_CBC,
16,
24,
16,
EVP_CIPH_CBC_MODE)
/**
* The AES-256 cipher type (PKCS#11 provider)
*
* @return the AES-256-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(aes_256_cbc,
CKM_AES_CBC,
16,
32,
16,
EVP_CIPH_CBC_MODE)
/**
* The AES-128 CFB8 cipher type (PKCS#11 provider)
*
* @return the AES-128-CFB8 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(aes_128_cfb8,
CKM_AES_CFB8,
16,
16,
16,
EVP_CIPH_CFB8_MODE)
/**
* The AES-192 CFB8 cipher type (PKCS#11 provider)
*
* @return the AES-192-CFB8 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(aes_192_cfb8,
CKM_AES_CFB8,
16,
24,
16,
EVP_CIPH_CFB8_MODE)
/**
* The AES-256 CFB8 cipher type (PKCS#11 provider)
*
* @return the AES-256-CFB8 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(aes_256_cfb8,
CKM_AES_CFB8,
16,
32,
16,
EVP_CIPH_CFB8_MODE)
/**
* The RC2 cipher type - PKCS#11
*
* @return the RC2 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(rc2_cbc,
CKM_RC2_CBC,
8,
16,
8,
EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH)
/**
* The RC2-40 cipher type - PKCS#11
*
* @return the RC2-40 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(rc2_40_cbc,
CKM_RC2_CBC,
8,
5,
8,
EVP_CIPH_CBC_MODE)
/**
* The RC2-64 cipher type - PKCS#11
*
* @return the RC2-64 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(rc2_64_cbc,
CKM_RC2_CBC,
8,
8,
8,
EVP_CIPH_CBC_MODE)
/**
* The Camellia-128 cipher type - PKCS#11
*
* @return the Camellia-128 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(camellia_128_cbc,
CKM_CAMELLIA_CBC,
16,
16,
16,
EVP_CIPH_CBC_MODE)
/**
* The Camellia-198 cipher type - PKCS#11
*
* @return the Camellia-198 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(camellia_192_cbc,
CKM_CAMELLIA_CBC,
16,
24,
16,
EVP_CIPH_CBC_MODE)
/**
* The Camellia-256 cipher type - PKCS#11
*
* @return the Camellia-256 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(camellia_256_cbc,
CKM_CAMELLIA_CBC,
16,
32,
16,
EVP_CIPH_CBC_MODE)
/**
* The RC4 cipher type (PKCS#11 provider)
*
* @return the RC4 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(rc4,
CKM_RC4,
1,
16,
0,
EVP_CIPH_STREAM_CIPHER | EVP_CIPH_VARIABLE_LENGTH)
/**
* The RC4-40 cipher type (PKCS#11 provider)
*
* @return the RC4 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
PKCS11_CIPHER_ALGORITHM(rc4_40,
CKM_RC4,
1,
5,
0,
EVP_CIPH_STREAM_CIPHER | EVP_CIPH_VARIABLE_LENGTH)
#ifdef CKM_MD4 /* non-standard extension */
PKCS11_MD_ALGORITHM(md4, CKM_MD4, 16, 64)
#else
PKCS11_MD_ALGORITHM_UNAVAILABLE(md4)
#endif
PKCS11_MD_ALGORITHM(md5, CKM_MD5, 16, 64)
PKCS11_MD_ALGORITHM(sha1, CKM_SHA_1, 20, 64)
PKCS11_MD_ALGORITHM(sha256, CKM_SHA256, 32, 64)
PKCS11_MD_ALGORITHM(sha384, CKM_SHA384, 48, 128)
PKCS11_MD_ALGORITHM(sha512, CKM_SHA512, 64, 128)