/*
* Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/core_names.h>
#include <openssl/core_dispatch.h>
#include <openssl/rand.h>
#include <openssl/params.h>
/* For TLS1_3_VERSION */
#include <openssl/ssl.h>
#include "internal/nelem.h"
static OSSL_FUNC_keymgmt_import_fn xor_import;
static OSSL_FUNC_keymgmt_import_types_fn xor_import_types;
static OSSL_FUNC_keymgmt_export_fn xor_export;
static OSSL_FUNC_keymgmt_export_types_fn xor_export_types;
int tls_provider_init(const OSSL_CORE_HANDLE *handle,
const OSSL_DISPATCH *in,
const OSSL_DISPATCH **out,
void **provctx);
#define XOR_KEY_SIZE 32
/*
* Top secret. This algorithm only works if no one knows what this number is.
* Please don't tell anyone what it is.
*
* This algorithm is for testing only - don't really use it!
*/
static const unsigned char private_constant[XOR_KEY_SIZE] = {
0xd3, 0x6b, 0x54, 0xec, 0x5b, 0xac, 0x89, 0x96, 0x8c, 0x2c, 0x66, 0xa5,
0x67, 0x0d, 0xe3, 0xdd, 0x43, 0x69, 0xbc, 0x83, 0x3d, 0x60, 0xc7, 0xb8,
0x2b, 0x1c, 0x5a, 0xfd, 0xb5, 0xcd, 0xd0, 0xf8
};
typedef struct xorkey_st {
unsigned char privkey[XOR_KEY_SIZE];
unsigned char pubkey[XOR_KEY_SIZE];
int hasprivkey;
int haspubkey;
} XORKEY;
/* Key Management for the dummy XOR KEX and KEM algorithms */
static OSSL_FUNC_keymgmt_new_fn xor_newdata;
static OSSL_FUNC_keymgmt_free_fn xor_freedata;
static OSSL_FUNC_keymgmt_has_fn xor_has;
static OSSL_FUNC_keymgmt_dup_fn xor_dup;
static OSSL_FUNC_keymgmt_gen_init_fn xor_gen_init;
static OSSL_FUNC_keymgmt_gen_set_params_fn xor_gen_set_params;
static OSSL_FUNC_keymgmt_gen_settable_params_fn xor_gen_settable_params;
static OSSL_FUNC_keymgmt_gen_fn xor_gen;
static OSSL_FUNC_keymgmt_gen_cleanup_fn xor_gen_cleanup;
static OSSL_FUNC_keymgmt_get_params_fn xor_get_params;
static OSSL_FUNC_keymgmt_gettable_params_fn xor_gettable_params;
static OSSL_FUNC_keymgmt_set_params_fn xor_set_params;
static OSSL_FUNC_keymgmt_settable_params_fn xor_settable_params;
/*
* Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys
* together. Don't use this!
*/
static OSSL_FUNC_keyexch_newctx_fn xor_newctx;
static OSSL_FUNC_keyexch_init_fn xor_init;
static OSSL_FUNC_keyexch_set_peer_fn xor_set_peer;
static OSSL_FUNC_keyexch_derive_fn xor_derive;
static OSSL_FUNC_keyexch_freectx_fn xor_freectx;
static OSSL_FUNC_keyexch_dupctx_fn xor_dupctx;
/*
* Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX.
* Don't use this!
*/
static OSSL_FUNC_kem_newctx_fn xor_newctx;
static OSSL_FUNC_kem_freectx_fn xor_freectx;
static OSSL_FUNC_kem_dupctx_fn xor_dupctx;
static OSSL_FUNC_kem_encapsulate_init_fn xor_init;
static OSSL_FUNC_kem_encapsulate_fn xor_encapsulate;
static OSSL_FUNC_kem_decapsulate_init_fn xor_init;
static OSSL_FUNC_kem_decapsulate_fn xor_decapsulate;
/*
* We define 2 dummy TLS groups called "xorgroup" and "xorkemgroup" for test
* purposes
*/
struct tls_group_st {
unsigned int group_id; /* for "tls-group-id", see provider-base(7) */
unsigned int secbits;
unsigned int mintls;
unsigned int maxtls;
unsigned int mindtls;
unsigned int maxdtls;
unsigned int is_kem; /* boolean */
};
#define XORGROUP_NAME "xorgroup"
#define XORGROUP_NAME_INTERNAL "xorgroup-int"
static struct tls_group_st xor_group = {
0, /* group_id, set by randomize_tls_group_id() */
128, /* secbits */
TLS1_3_VERSION, /* mintls */
0, /* maxtls */
-1, /* mindtls */
-1, /* maxdtls */
0 /* is_kem */
};
#define XORKEMGROUP_NAME "xorkemgroup"
#define XORKEMGROUP_NAME_INTERNAL "xorkemgroup-int"
static struct tls_group_st xor_kemgroup = {
0, /* group_id, set by randomize_tls_group_id() */
128, /* secbits */
TLS1_3_VERSION, /* mintls */
0, /* maxtls */
-1, /* mindtls */
-1, /* maxdtls */
1 /* is_kem */
};
#define ALGORITHM "XOR"
static const OSSL_PARAM xor_group_params[] = {
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME,
XORGROUP_NAME, sizeof(XORGROUP_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL,
XORGROUP_NAME_INTERNAL,
sizeof(XORGROUP_NAME_INTERNAL)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM,
sizeof(ALGORITHM)),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_group.group_id),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS,
&xor_group.secbits),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_group.mintls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_group.maxtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_group.mindtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_group.maxdtls),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_group.is_kem),
OSSL_PARAM_END
};
static const OSSL_PARAM xor_kemgroup_params[] = {
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME,
XORKEMGROUP_NAME, sizeof(XORKEMGROUP_NAME)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL,
XORKEMGROUP_NAME_INTERNAL,
sizeof(XORKEMGROUP_NAME_INTERNAL)),
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM,
sizeof(ALGORITHM)),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_kemgroup.group_id),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS,
&xor_kemgroup.secbits),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_kemgroup.mintls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_kemgroup.maxtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_kemgroup.mindtls),
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_kemgroup.maxdtls),
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_kemgroup.is_kem),
OSSL_PARAM_END
};
#define NUM_DUMMY_GROUPS 50
static char *dummy_group_names[NUM_DUMMY_GROUPS];
static int tls_prov_get_capabilities(void *provctx, const char *capability,
OSSL_CALLBACK *cb, void *arg)
{
int ret;
int i;
const char *dummy_base = "dummy";
const size_t dummy_name_max_size = strlen(dummy_base) + 3;
if (strcmp(capability, "TLS-GROUP") != 0) {
/* We don't support this capability */
return 0;
}
/* Register our 2 groups */
ret = cb(xor_group_params, arg);
ret &= cb(xor_kemgroup_params, arg);
/*
* Now register some dummy groups > GROUPLIST_INCREMENT (== 40) as defined
* in ssl/t1_lib.c, to make sure we exercise the code paths for registering
* large numbers of groups.
*/
for (i = 0; i < NUM_DUMMY_GROUPS; i++) {
OSSL_PARAM dummygroup[OSSL_NELEM(xor_group_params)];
memcpy(dummygroup, xor_group_params, sizeof(xor_group_params));
/* Give the dummy group a unique name */
if (dummy_group_names[i] == NULL) {
dummy_group_names[i] = OPENSSL_zalloc(dummy_name_max_size);
if (dummy_group_names[i] == NULL)
return 0;
BIO_snprintf(dummy_group_names[i],
dummy_name_max_size,
"%s%d", dummy_base, i);
}
dummygroup[0].data = dummy_group_names[i];
dummygroup[0].data_size = strlen(dummy_group_names[i]) + 1;
ret &= cb(dummygroup, arg);
}
return ret;
}
/*
* Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys
* together. Don't use this!
*/
typedef struct {
XORKEY *key;
XORKEY *peerkey;
void *provctx;
} PROV_XOR_CTX;
static void *xor_newctx(void *provctx)
{
PROV_XOR_CTX *pxorctx = OPENSSL_zalloc(sizeof(PROV_XOR_CTX));
if (pxorctx == NULL)
return NULL;
pxorctx->provctx = provctx;
return pxorctx;
}
static int xor_init(void *vpxorctx, void *vkey,
ossl_unused const OSSL_PARAM params[])
{
PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx;
if (pxorctx == NULL || vkey == NULL)
return 0;
pxorctx->key = vkey;
return 1;
}
static int xor_set_peer(void *vpxorctx, void *vpeerkey)
{
PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx;
if (pxorctx == NULL || vpeerkey == NULL)
return 0;
pxorctx->peerkey = vpeerkey;
return 1;
}
static int xor_derive(void *vpxorctx, unsigned char *secret, size_t *secretlen,
size_t outlen)
{
PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx;
int i;
if (pxorctx->key == NULL || pxorctx->peerkey == NULL)
return 0;
*secretlen = XOR_KEY_SIZE;
if (secret == NULL)
return 1;
if (outlen < XOR_KEY_SIZE)
return 0;
for (i = 0; i < XOR_KEY_SIZE; i++)
secret[i] = pxorctx->key->privkey[i] ^ pxorctx->peerkey->pubkey[i];
return 1;
}
static void xor_freectx(void *pxorctx)
{
OPENSSL_free(pxorctx);
}
static void *xor_dupctx(void *vpxorctx)
{
PROV_XOR_CTX *srcctx = (PROV_XOR_CTX *)vpxorctx;
PROV_XOR_CTX *dstctx;
dstctx = OPENSSL_zalloc(sizeof(*srcctx));
if (dstctx == NULL)
return NULL;
*dstctx = *srcctx;
return dstctx;
}
static const OSSL_DISPATCH xor_keyexch_functions[] = {
{ OSSL_FUNC_KEYEXCH_NEWCTX, (void (*)(void))xor_newctx },
{ OSSL_FUNC_KEYEXCH_INIT, (void (*)(void))xor_init },
{ OSSL_FUNC_KEYEXCH_DERIVE, (void (*)(void))xor_derive },
{ OSSL_FUNC_KEYEXCH_SET_PEER, (void (*)(void))xor_set_peer },
{ OSSL_FUNC_KEYEXCH_FREECTX, (void (*)(void))xor_freectx },
{ OSSL_FUNC_KEYEXCH_DUPCTX, (void (*)(void))xor_dupctx },
{ 0, NULL }
};
static const OSSL_ALGORITHM tls_prov_keyexch[] = {
/*
* Obviously this is not FIPS approved, but in order to test in conjuction
* with the FIPS provider we pretend that it is.
*/
{ "XOR", "provider=tls-provider,fips=yes", xor_keyexch_functions },
{ NULL, NULL, NULL }
};
/*
* Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX.
* Don't use this!
*/
static int xor_encapsulate(void *vpxorctx,
unsigned char *ct, size_t *ctlen,
unsigned char *ss, size_t *sslen)
{
/*
* We are building this around a KEX:
*
* 1. we generate ephemeral keypair
* 2. we encode our ephemeral pubkey as the outgoing ct
* 3. we derive using our ephemeral privkey in combination with the peer
* pubkey from the ctx; the result is our ss.
*/
int rv = 0;
void *genctx = NULL, *derivectx = NULL;
XORKEY *ourkey = NULL;
PROV_XOR_CTX *pxorctx = vpxorctx;
if (ct == NULL || ss == NULL) {
/* Just return sizes */
if (ctlen == NULL && sslen == NULL)
return 0;
if (ctlen != NULL)
*ctlen = XOR_KEY_SIZE;
if (sslen != NULL)
*sslen = XOR_KEY_SIZE;
return 1;
}
/* 1. Generate keypair */
genctx = xor_gen_init(pxorctx->provctx, OSSL_KEYMGMT_SELECT_KEYPAIR, NULL);
if (genctx == NULL)
goto end;
ourkey = xor_gen(genctx, NULL, NULL);
if (ourkey == NULL)
goto end;
/* 2. Encode ephemeral pubkey as ct */
memcpy(ct, ourkey->pubkey, XOR_KEY_SIZE);
*ctlen = XOR_KEY_SIZE;
/* 3. Derive ss via KEX */
derivectx = xor_newctx(pxorctx->provctx);
if (derivectx == NULL
|| !xor_init(derivectx, ourkey, NULL)
|| !xor_set_peer(derivectx, pxorctx->key)
|| !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE))
goto end;
rv = 1;
end:
xor_gen_cleanup(genctx);
xor_freedata(ourkey);
xor_freectx(derivectx);
return rv;
}
static int xor_decapsulate(void *vpxorctx,
unsigned char *ss, size_t *sslen,
const unsigned char *ct, size_t ctlen)
{
/*
* We are building this around a KEX:
*
* - ct is our peer's pubkey
* - decapsulate is just derive.
*/
int rv = 0;
void *derivectx = NULL;
XORKEY *peerkey = NULL;
PROV_XOR_CTX *pxorctx = vpxorctx;
if (ss == NULL) {
/* Just return size */
if (sslen == NULL)
return 0;
*sslen = XOR_KEY_SIZE;
return 1;
}
if (ctlen != XOR_KEY_SIZE)
return 0;
peerkey = xor_newdata(pxorctx->provctx);
if (peerkey == NULL)
goto end;
memcpy(peerkey->pubkey, ct, XOR_KEY_SIZE);
/* Derive ss via KEX */
derivectx = xor_newctx(pxorctx->provctx);
if (derivectx == NULL
|| !xor_init(derivectx, pxorctx->key, NULL)
|| !xor_set_peer(derivectx, peerkey)
|| !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE))
goto end;
rv = 1;
end:
xor_freedata(peerkey);
xor_freectx(derivectx);
return rv;
}
static const OSSL_DISPATCH xor_kem_functions[] = {
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))xor_newctx },
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))xor_freectx },
{ OSSL_FUNC_KEM_DUPCTX, (void (*)(void))xor_dupctx },
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT, (void (*)(void))xor_init },
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))xor_encapsulate },
{ OSSL_FUNC_KEM_DECAPSULATE_INIT, (void (*)(void))xor_init },
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))xor_decapsulate },
{ 0, NULL }
};
static const OSSL_ALGORITHM tls_prov_kem[] = {
/*
* Obviously this is not FIPS approved, but in order to test in conjuction
* with the FIPS provider we pretend that it is.
*/
{ "XOR", "provider=tls-provider,fips=yes", xor_kem_functions },
{ NULL, NULL, NULL }
};
/* Key Management for the dummy XOR key exchange algorithm */
static void *xor_newdata(void *provctx)
{
return OPENSSL_zalloc(sizeof(XORKEY));
}
static void xor_freedata(void *keydata)
{
OPENSSL_free(keydata);
}
static int xor_has(const void *vkey, int selection)
{
const XORKEY *key = vkey;
int ok = 0;
if (key != NULL) {
ok = 1;
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0)
ok = ok && key->haspubkey;
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0)
ok = ok && key->hasprivkey;
}
return ok;
}
static void *xor_dup(const void *vfromkey, int selection)
{
XORKEY *tokey = xor_newdata(NULL);
const XORKEY *fromkey = vfromkey;
int ok = 0;
if (tokey != NULL && fromkey != NULL) {
ok = 1;
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
if (fromkey->haspubkey) {
memcpy(tokey->pubkey, fromkey->pubkey, XOR_KEY_SIZE);
tokey->haspubkey = 1;
} else {
tokey->haspubkey = 0;
}
}
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
if (fromkey->hasprivkey) {
memcpy(tokey->privkey, fromkey->privkey, XOR_KEY_SIZE);
tokey->hasprivkey = 1;
} else {
tokey->hasprivkey = 0;
}
}
}
if (!ok) {
xor_freedata(tokey);
tokey = NULL;
}
return tokey;
}
static ossl_inline int xor_get_params(void *vkey, OSSL_PARAM params[])
{
XORKEY *key = vkey;
OSSL_PARAM *p;
if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_BITS)) != NULL
&& !OSSL_PARAM_set_int(p, XOR_KEY_SIZE))
return 0;
if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_SECURITY_BITS)) != NULL
&& !OSSL_PARAM_set_int(p, xor_group.secbits))
return 0;
if ((p = OSSL_PARAM_locate(params,
OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY)) != NULL) {
if (p->data_type != OSSL_PARAM_OCTET_STRING)
return 0;
p->return_size = XOR_KEY_SIZE;
if (p->data != NULL && p->data_size >= XOR_KEY_SIZE)
memcpy(p->data, key->pubkey, XOR_KEY_SIZE);
}
return 1;
}
static const OSSL_PARAM xor_params[] = {
OSSL_PARAM_int(OSSL_PKEY_PARAM_BITS, NULL),
OSSL_PARAM_int(OSSL_PKEY_PARAM_SECURITY_BITS, NULL),
OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *xor_gettable_params(void *provctx)
{
return xor_params;
}
static int xor_set_params(void *vkey, const OSSL_PARAM params[])
{
XORKEY *key = vkey;
const OSSL_PARAM *p;
p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_OCTET_STRING
|| p->data_size != XOR_KEY_SIZE)
return 0;
memcpy(key->pubkey, p->data, XOR_KEY_SIZE);
key->haspubkey = 1;
}
return 1;
}
static const OSSL_PARAM xor_known_settable_params[] = {
OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *xor_settable_params(void *provctx)
{
return xor_known_settable_params;
}
struct xor_gen_ctx {
int selection;
OSSL_LIB_CTX *libctx;
};
static void *xor_gen_init(void *provctx, int selection,
const OSSL_PARAM params[])
{
struct xor_gen_ctx *gctx = NULL;
if ((selection & (OSSL_KEYMGMT_SELECT_KEYPAIR
| OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS)) == 0)
return NULL;
if ((gctx = OPENSSL_zalloc(sizeof(*gctx))) != NULL)
gctx->selection = selection;
/* Our provctx is really just an OSSL_LIB_CTX */
gctx->libctx = (OSSL_LIB_CTX *)provctx;
if (!xor_gen_set_params(gctx, params)) {
OPENSSL_free(gctx);
return NULL;
}
return gctx;
}
static int xor_gen_set_params(void *genctx, const OSSL_PARAM params[])
{
struct xor_gen_ctx *gctx = genctx;
const OSSL_PARAM *p;
if (gctx == NULL)
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_GROUP_NAME);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING
|| (strcmp(p->data, XORGROUP_NAME_INTERNAL) != 0
&& strcmp(p->data, XORKEMGROUP_NAME_INTERNAL) != 0))
return 0;
}
return 1;
}
static const OSSL_PARAM *xor_gen_settable_params(ossl_unused void *genctx,
ossl_unused void *provctx)
{
static OSSL_PARAM settable[] = {
OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, NULL, 0),
OSSL_PARAM_END
};
return settable;
}
static void *xor_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg)
{
struct xor_gen_ctx *gctx = genctx;
XORKEY *key = OPENSSL_zalloc(sizeof(*key));
size_t i;
if (key == NULL)
return NULL;
if ((gctx->selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) {
if (RAND_bytes_ex(gctx->libctx, key->privkey, XOR_KEY_SIZE, 0) <= 0) {
OPENSSL_free(key);
return NULL;
}
for (i = 0; i < XOR_KEY_SIZE; i++)
key->pubkey[i] = key->privkey[i] ^ private_constant[i];
key->hasprivkey = 1;
key->haspubkey = 1;
}
return key;
}
/* IMPORT + EXPORT */
static int xor_import(void *vkey, int select, const OSSL_PARAM params[])
{
XORKEY *key = vkey;
const OSSL_PARAM *param_priv_key, *param_pub_key;
unsigned char privkey[XOR_KEY_SIZE];
unsigned char pubkey[XOR_KEY_SIZE];
void *pprivkey = privkey, *ppubkey = pubkey;
size_t priv_len = 0, pub_len = 0;
int res = 0;
if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0)
return 0;
memset(privkey, 0, sizeof(privkey));
memset(pubkey, 0, sizeof(pubkey));
param_priv_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PRIV_KEY);
param_pub_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PUB_KEY);
if ((param_priv_key != NULL
&& !OSSL_PARAM_get_octet_string(param_priv_key, &pprivkey,
sizeof(privkey), &priv_len))
|| (param_pub_key != NULL
&& !OSSL_PARAM_get_octet_string(param_pub_key, &ppubkey,
sizeof(pubkey), &pub_len)))
goto err;
if (priv_len > 0) {
memcpy(key->privkey, privkey, priv_len);
key->hasprivkey = 1;
}
if (pub_len > 0) {
memcpy(key->pubkey, pubkey, pub_len);
key->haspubkey = 1;
}
res = 1;
err:
return res;
}
static int xor_export(void *vkey, int select, OSSL_CALLBACK *param_cb,
void *cbarg)
{
XORKEY *key = vkey;
OSSL_PARAM params[3], *p = params;
if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0)
return 0;
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PRIV_KEY,
key->privkey,
sizeof(key->privkey));
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
key->pubkey, sizeof(key->pubkey));
*p++ = OSSL_PARAM_construct_end();
return param_cb(params, cbarg);
}
static const OSSL_PARAM xor_key_types[] = {
OSSL_PARAM_BN(OSSL_PKEY_PARAM_PUB_KEY, NULL, 0),
OSSL_PARAM_BN(OSSL_PKEY_PARAM_PRIV_KEY, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *xor_import_types(int select)
{
return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL;
}
static const OSSL_PARAM *xor_export_types(int select)
{
return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL;
}
static void xor_gen_cleanup(void *genctx)
{
OPENSSL_free(genctx);
}
static const OSSL_DISPATCH xor_keymgmt_functions[] = {
{ OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newdata },
{ OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init },
{ OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params },
{ OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS,
(void (*)(void))xor_gen_settable_params },
{ OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_gen },
{ OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup },
{ OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params },
{ OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params },
{ OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params },
{ OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params },
{ OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has },
{ OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup },
{ OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freedata },
{ OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import },
{ OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types },
{ OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export },
{ OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types },
{ 0, NULL }
};
static const OSSL_ALGORITHM tls_prov_keymgmt[] = {
/*
* Obviously this is not FIPS approved, but in order to test in conjuction
* with the FIPS provider we pretend that it is.
*/
{ "XOR", "provider=tls-provider,fips=yes", xor_keymgmt_functions },
{ NULL, NULL, NULL }
};
static const OSSL_ALGORITHM *tls_prov_query(void *provctx, int operation_id,
int *no_cache)
{
*no_cache = 0;
switch (operation_id) {
case OSSL_OP_KEYMGMT:
return tls_prov_keymgmt;
case OSSL_OP_KEYEXCH:
return tls_prov_keyexch;
case OSSL_OP_KEM:
return tls_prov_kem;
}
return NULL;
}
static void tls_prov_teardown(void *provctx)
{
int i;
OSSL_LIB_CTX_free(provctx);
for (i = 0; i < NUM_DUMMY_GROUPS; i++) {
OPENSSL_free(dummy_group_names[i]);
dummy_group_names[i] = NULL;
}
}
/* Functions we provide to the core */
static const OSSL_DISPATCH tls_prov_dispatch_table[] = {
{ OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))tls_prov_teardown },
{ OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))tls_prov_query },
{ OSSL_FUNC_PROVIDER_GET_CAPABILITIES, (void (*)(void))tls_prov_get_capabilities },
{ 0, NULL }
};
static
unsigned int randomize_tls_group_id(OSSL_LIB_CTX *libctx)
{
/*
* Randomise the group_id we're going to use to ensure we don't interoperate
* with anything but ourselves.
*/
unsigned int group_id;
static unsigned int mem[10] = { 0 };
static int in_mem = 0;
int i;
retry:
if (RAND_bytes_ex(libctx, (unsigned char *)&group_id, sizeof(group_id), 0) <= 0)
return 0;
/*
* Ensure group_id is within the IANA Reserved for private use range
* (65024-65279)
*/
group_id %= 65279 - 65024;
group_id += 65024;
/* Ensure we did not already issue this group_id */
for (i = 0; i < in_mem; i++)
if (mem[i] == group_id)
goto retry;
/* Add this group_id to the list of ids issued by this function */
mem[in_mem++] = group_id;
return group_id;
}
int tls_provider_init(const OSSL_CORE_HANDLE *handle,
const OSSL_DISPATCH *in,
const OSSL_DISPATCH **out,
void **provctx)
{
OSSL_LIB_CTX *libctx = OSSL_LIB_CTX_new();
if (libctx == NULL)
return 0;
*provctx = libctx;
/*
* Randomise the group_id we're going to use to ensure we don't interoperate
* with anything but ourselves.
*/
xor_group.group_id = randomize_tls_group_id(libctx);
xor_kemgroup.group_id = randomize_tls_group_id(libctx);
*out = tls_prov_dispatch_table;
return 1;
}