Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/xxhash.h"

using namespace clang;

namespace {

struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
  raw_ostream &OS;
  llvm::SmallString<64> Buffer;

  msvc_hashing_ostream(raw_ostream &OS)
      : llvm::raw_svector_ostream(Buffer), OS(OS) {}
  ~msvc_hashing_ostream() override {
    StringRef MangledName = str();
    bool StartsWithEscape = MangledName.startswith("\01");
    if (StartsWithEscape)
      MangledName = MangledName.drop_front(1);
    if (MangledName.size() < 4096) {
      OS << str();
      return;
    }

    llvm::MD5 Hasher;
    llvm::MD5::MD5Result Hash;
    Hasher.update(MangledName);
    Hasher.final(Hash);

    SmallString<32> HexString;
    llvm::MD5::stringifyResult(Hash, HexString);

    if (StartsWithEscape)
      OS << '\01';
    OS << "??@" << HexString << '@';
  }
};

static const DeclContext *
getLambdaDefaultArgumentDeclContext(const Decl *D) {
  if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
    if (RD->isLambda())
      if (const auto *Parm =
              dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
        return Parm->getDeclContext();
  return nullptr;
}

/// Retrieve the declaration context that should be used when mangling
/// the given declaration.
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
  // The ABI assumes that lambda closure types that occur within
  // default arguments live in the context of the function. However, due to
  // the way in which Clang parses and creates function declarations, this is
  // not the case: the lambda closure type ends up living in the context
  // where the function itself resides, because the function declaration itself
  // had not yet been created. Fix the context here.
  if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
    return LDADC;

  // Perform the same check for block literals.
  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
    if (ParmVarDecl *ContextParam =
            dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
      return ContextParam->getDeclContext();
  }

  const DeclContext *DC = D->getDeclContext();
  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
      isa<OMPDeclareMapperDecl>(DC)) {
    return getEffectiveDeclContext(cast<Decl>(DC));
  }

  return DC->getRedeclContext();
}

static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
  return getEffectiveDeclContext(cast<Decl>(DC));
}

static const FunctionDecl *getStructor(const NamedDecl *ND) {
  if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
    return FTD->getTemplatedDecl()->getCanonicalDecl();

  const auto *FD = cast<FunctionDecl>(ND);
  if (const auto *FTD = FD->getPrimaryTemplate())
    return FTD->getTemplatedDecl()->getCanonicalDecl();

  return FD->getCanonicalDecl();
}

/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
/// Microsoft Visual C++ ABI.
class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
  llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
  llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
  SmallString<16> AnonymousNamespaceHash;

public:
  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags);
  bool shouldMangleCXXName(const NamedDecl *D) override;
  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
  void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override;
  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
                                const MethodVFTableLocation &ML,
                                raw_ostream &Out) override;
  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
                   raw_ostream &) override;
  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
                          const ThisAdjustment &ThisAdjustment,
                          raw_ostream &) override;
  void mangleCXXVFTable(const CXXRecordDecl *Derived,
                        ArrayRef<const CXXRecordDecl *> BasePath,
                        raw_ostream &Out) override;
  void mangleCXXVBTable(const CXXRecordDecl *Derived,
                        ArrayRef<const CXXRecordDecl *> BasePath,
                        raw_ostream &Out) override;
  void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
                                       const CXXRecordDecl *DstRD,
                                       raw_ostream &Out) override;
  void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
                          bool IsUnaligned, uint32_t NumEntries,
                          raw_ostream &Out) override;
  void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
                                   raw_ostream &Out) override;
  void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
                              CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
                              int32_t VBPtrOffset, uint32_t VBIndex,
                              raw_ostream &Out) override;
  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
                                        uint32_t NVOffset, int32_t VBPtrOffset,
                                        uint32_t VBTableOffset, uint32_t Flags,
                                        raw_ostream &Out) override;
  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
                                   raw_ostream &Out) override;
  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
                                             raw_ostream &Out) override;
  void
  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
                                     ArrayRef<const CXXRecordDecl *> BasePath,
                                     raw_ostream &Out) override;
  void mangleTypeName(QualType T, raw_ostream &) override;
  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
                                raw_ostream &) override;
  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
  void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
                                           raw_ostream &Out) override;
  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
  void mangleDynamicAtExitDestructor(const VarDecl *D,
                                     raw_ostream &Out) override;
  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
                                 raw_ostream &Out) override;
  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
                             raw_ostream &Out) override;
  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
    const DeclContext *DC = getEffectiveDeclContext(ND);
    if (!DC->isFunctionOrMethod())
      return false;

    // Lambda closure types are already numbered, give out a phony number so
    // that they demangle nicely.
    if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
      if (RD->isLambda()) {
        disc = 1;
        return true;
      }
    }

    // Use the canonical number for externally visible decls.
    if (ND->isExternallyVisible()) {
      disc = getASTContext().getManglingNumber(ND);
      return true;
    }

    // Anonymous tags are already numbered.
    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
      if (!Tag->hasNameForLinkage() &&
          !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
          !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
        return false;
    }

    // Make up a reasonable number for internal decls.
    unsigned &discriminator = Uniquifier[ND];
    if (!discriminator)
      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
    disc = discriminator + 1;
    return true;
  }

  std::string getLambdaString(const CXXRecordDecl *Lambda) override {
    assert(Lambda->isLambda() && "RD must be a lambda!");
    std::string Name("<lambda_");

    Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
    unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
    unsigned LambdaId;
    const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
    const FunctionDecl *Func =
        Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;

    if (Func) {
      unsigned DefaultArgNo =
          Func->getNumParams() - Parm->getFunctionScopeIndex();
      Name += llvm::utostr(DefaultArgNo);
      Name += "_";
    }

    if (LambdaManglingNumber)
      LambdaId = LambdaManglingNumber;
    else
      LambdaId = getLambdaIdForDebugInfo(Lambda);

    Name += llvm::utostr(LambdaId);
    Name += ">";
    return Name;
  }

  unsigned getLambdaId(const CXXRecordDecl *RD) {
    assert(RD->isLambda() && "RD must be a lambda!");
    assert(!RD->isExternallyVisible() && "RD must not be visible!");
    assert(RD->getLambdaManglingNumber() == 0 &&
           "RD must not have a mangling number!");
    std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
        Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
    return Result.first->second;
  }

  unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) {
    assert(RD->isLambda() && "RD must be a lambda!");
    assert(!RD->isExternallyVisible() && "RD must not be visible!");
    assert(RD->getLambdaManglingNumber() == 0 &&
           "RD must not have a mangling number!");
    llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator Result =
        LambdaIds.find(RD);
    // The lambda should exist, but return 0 in case it doesn't.
    if (Result == LambdaIds.end())
      return 0;
    return Result->second;
  }

  /// Return a character sequence that is (somewhat) unique to the TU suitable
  /// for mangling anonymous namespaces.
  StringRef getAnonymousNamespaceHash() const {
    return AnonymousNamespaceHash;
  }

private:
  void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
};

/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
/// Microsoft Visual C++ ABI.
class MicrosoftCXXNameMangler {
  MicrosoftMangleContextImpl &Context;
  raw_ostream &Out;

  /// The "structor" is the top-level declaration being mangled, if
  /// that's not a template specialization; otherwise it's the pattern
  /// for that specialization.
  const NamedDecl *Structor;
  unsigned StructorType;

  typedef llvm::SmallVector<std::string, 10> BackRefVec;
  BackRefVec NameBackReferences;

  typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
  ArgBackRefMap FunArgBackReferences;
  ArgBackRefMap TemplateArgBackReferences;

  typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
  TemplateArgStringMap TemplateArgStrings;
  llvm::StringSaver TemplateArgStringStorage;
  llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;

  typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
  PassObjectSizeArgsSet PassObjectSizeArgs;

  ASTContext &getASTContext() const { return Context.getASTContext(); }

  const bool PointersAre64Bit;

public:
  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };

  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
      : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
        TemplateArgStringStorage(TemplateArgStringStorageAlloc),
        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
                         64) {}

  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
                          const CXXConstructorDecl *D, CXXCtorType Type)
      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
        TemplateArgStringStorage(TemplateArgStringStorageAlloc),
        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
                         64) {}

  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
                          const CXXDestructorDecl *D, CXXDtorType Type)
      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
        TemplateArgStringStorage(TemplateArgStringStorageAlloc),
        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
                         64) {}

  raw_ostream &getStream() const { return Out; }

  void mangle(const NamedDecl *D, StringRef Prefix = "?");
  void mangleName(const NamedDecl *ND);
  void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
  void mangleVariableEncoding(const VarDecl *VD);
  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD,
                               StringRef Prefix = "$");
  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
                                   const CXXMethodDecl *MD,
                                   StringRef Prefix = "$");
  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
                                const MethodVFTableLocation &ML);
  void mangleNumber(int64_t Number);
  void mangleNumber(llvm::APSInt Number);
  void mangleFloat(llvm::APFloat Number);
  void mangleBits(llvm::APInt Number);
  void mangleTagTypeKind(TagTypeKind TK);
  void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
                              ArrayRef<StringRef> NestedNames = None);
  void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
  void mangleType(QualType T, SourceRange Range,
                  QualifierMangleMode QMM = QMM_Mangle);
  void mangleFunctionType(const FunctionType *T,
                          const FunctionDecl *D = nullptr,
                          bool ForceThisQuals = false,
                          bool MangleExceptionSpec = true);
  void mangleNestedName(const NamedDecl *ND);

private:
  bool isStructorDecl(const NamedDecl *ND) const {
    return ND == Structor || getStructor(ND) == Structor;
  }

  bool is64BitPointer(Qualifiers Quals) const {
    LangAS AddrSpace = Quals.getAddressSpace();
    return AddrSpace == LangAS::ptr64 ||
           (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr ||
                                  AddrSpace == LangAS::ptr32_uptr));
  }

  void mangleUnqualifiedName(const NamedDecl *ND) {
    mangleUnqualifiedName(ND, ND->getDeclName());
  }
  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
  void mangleSourceName(StringRef Name);
  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
  void mangleCXXDtorType(CXXDtorType T);
  void mangleQualifiers(Qualifiers Quals, bool IsMember);
  void mangleRefQualifier(RefQualifierKind RefQualifier);
  void manglePointerCVQualifiers(Qualifiers Quals);
  void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);

  void mangleUnscopedTemplateName(const TemplateDecl *ND);
  void
  mangleTemplateInstantiationName(const TemplateDecl *TD,
                                  const TemplateArgumentList &TemplateArgs);
  void mangleObjCMethodName(const ObjCMethodDecl *MD);

  void mangleFunctionArgumentType(QualType T, SourceRange Range);
  void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);

  bool isArtificialTagType(QualType T) const;

  // Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
                                            Qualifiers Quals, \
                                            SourceRange Range);
#include "clang/AST/TypeNodes.inc"
#undef ABSTRACT_TYPE
#undef NON_CANONICAL_TYPE
#undef TYPE

  void mangleType(const TagDecl *TD);
  void mangleDecayedArrayType(const ArrayType *T);
  void mangleArrayType(const ArrayType *T);
  void mangleFunctionClass(const FunctionDecl *FD);
  void mangleCallingConvention(CallingConv CC);
  void mangleCallingConvention(const FunctionType *T);
  void mangleIntegerLiteral(const llvm::APSInt &Number,
                            const NonTypeTemplateParmDecl *PD = nullptr,
                            QualType TemplateArgType = QualType());
  void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD);
  void mangleThrowSpecification(const FunctionProtoType *T);

  void mangleTemplateArgs(const TemplateDecl *TD,
                          const TemplateArgumentList &TemplateArgs);
  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
                         const NamedDecl *Parm);
  void mangleTemplateArgValue(QualType T, const APValue &V,
                              bool WithScalarType = false);

  void mangleObjCProtocol(const ObjCProtocolDecl *PD);
  void mangleObjCLifetime(const QualType T, Qualifiers Quals,
                          SourceRange Range);
  void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
                            SourceRange Range);
};
}

MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
                                                       DiagnosticsEngine &Diags)
    : MicrosoftMangleContext(Context, Diags) {
  // To mangle anonymous namespaces, hash the path to the main source file. The
  // path should be whatever (probably relative) path was passed on the command
  // line. The goal is for the compiler to produce the same output regardless of
  // working directory, so use the uncanonicalized relative path.
  //
  // It's important to make the mangled names unique because, when CodeView
  // debug info is in use, the debugger uses mangled type names to distinguish
  // between otherwise identically named types in anonymous namespaces.
  //
  // These symbols are always internal, so there is no need for the hash to
  // match what MSVC produces. For the same reason, clang is free to change the
  // hash at any time without breaking compatibility with old versions of clang.
  // The generated names are intended to look similar to what MSVC generates,
  // which are something like "?A0x01234567@".
  SourceManager &SM = Context.getSourceManager();
  if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
    // Truncate the hash so we get 8 characters of hexadecimal.
    uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
    AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
  } else {
    // If we don't have a path to the main file, we'll just use 0.
    AnonymousNamespaceHash = "0";
  }
}

bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    LanguageLinkage L = FD->getLanguageLinkage();
    // Overloadable functions need mangling.
    if (FD->hasAttr<OverloadableAttr>())
      return true;

    // The ABI expects that we would never mangle "typical" user-defined entry
    // points regardless of visibility or freestanding-ness.
    //
    // N.B. This is distinct from asking about "main".  "main" has a lot of
    // special rules associated with it in the standard while these
    // user-defined entry points are outside of the purview of the standard.
    // For example, there can be only one definition for "main" in a standards
    // compliant program; however nothing forbids the existence of wmain and
    // WinMain in the same translation unit.
    if (FD->isMSVCRTEntryPoint())
      return false;

    // C++ functions and those whose names are not a simple identifier need
    // mangling.
    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
      return true;

    // C functions are not mangled.
    if (L == CLanguageLinkage)
      return false;
  }

  // Otherwise, no mangling is done outside C++ mode.
  if (!getASTContext().getLangOpts().CPlusPlus)
    return false;

  const VarDecl *VD = dyn_cast<VarDecl>(D);
  if (VD && !isa<DecompositionDecl>(D)) {
    // C variables are not mangled.
    if (VD->isExternC())
      return false;

    // Variables at global scope with internal linkage are not mangled.
    const DeclContext *DC = getEffectiveDeclContext(D);
    // Check for extern variable declared locally.
    if (DC->isFunctionOrMethod() && D->hasLinkage())
      while (!DC->isNamespace() && !DC->isTranslationUnit())
        DC = getEffectiveParentContext(DC);

    if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
        !isa<VarTemplateSpecializationDecl>(D) &&
        D->getIdentifier() != nullptr)
      return false;
  }

  return true;
}

bool
MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
  return true;
}

void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
  // Therefore it's really important that we don't decorate the
  // name with leading underscores or leading/trailing at signs. So, by
  // default, we emit an asm marker at the start so we get the name right.
  // Callers can override this with a custom prefix.

  // <mangled-name> ::= ? <name> <type-encoding>
  Out << Prefix;
  mangleName(D);
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    mangleVariableEncoding(VD);
  else if (isa<MSGuidDecl>(D))
    // MSVC appears to mangle GUIDs as if they were variables of type
    // 'const struct __s_GUID'.
    Out << "3U__s_GUID@@B";
  else if (isa<TemplateParamObjectDecl>(D)) {
    // Template parameter objects don't get a <type-encoding>; their type is
    // specified as part of their value.
  } else
    llvm_unreachable("Tried to mangle unexpected NamedDecl!");
}

void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
                                                     bool ShouldMangle) {
  // <type-encoding> ::= <function-class> <function-type>

  // Since MSVC operates on the type as written and not the canonical type, it
  // actually matters which decl we have here.  MSVC appears to choose the
  // first, since it is most likely to be the declaration in a header file.
  FD = FD->getFirstDecl();

  // We should never ever see a FunctionNoProtoType at this point.
  // We don't even know how to mangle their types anyway :).
  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();

  // extern "C" functions can hold entities that must be mangled.
  // As it stands, these functions still need to get expressed in the full
  // external name.  They have their class and type omitted, replaced with '9'.
  if (ShouldMangle) {
    // We would like to mangle all extern "C" functions using this additional
    // component but this would break compatibility with MSVC's behavior.
    // Instead, do this when we know that compatibility isn't important (in
    // other words, when it is an overloaded extern "C" function).
    if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
      Out << "$$J0";

    mangleFunctionClass(FD);

    mangleFunctionType(FT, FD, false, false);
  } else {
    Out << '9';
  }
}

void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
  // <type-encoding> ::= <storage-class> <variable-type>
  // <storage-class> ::= 0  # private static member
  //                 ::= 1  # protected static member
  //                 ::= 2  # public static member
  //                 ::= 3  # global
  //                 ::= 4  # static local

  // The first character in the encoding (after the name) is the storage class.
  if (VD->isStaticDataMember()) {
    // If it's a static member, it also encodes the access level.
    switch (VD->getAccess()) {
      default:
      case AS_private: Out << '0'; break;
      case AS_protected: Out << '1'; break;
      case AS_public: Out << '2'; break;
    }
  }
  else if (!VD->isStaticLocal())
    Out << '3';
  else
    Out << '4';
  // Now mangle the type.
  // <variable-type> ::= <type> <cvr-qualifiers>
  //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
  // Pointers and references are odd. The type of 'int * const foo;' gets
  // mangled as 'QAHA' instead of 'PAHB', for example.
  SourceRange SR = VD->getSourceRange();
  QualType Ty = VD->getType();
  if (Ty->isPointerType() || Ty->isReferenceType() ||
      Ty->isMemberPointerType()) {
    mangleType(Ty, SR, QMM_Drop);
    manglePointerExtQualifiers(
        Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
    if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
      mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
      // Member pointers are suffixed with a back reference to the member
      // pointer's class name.
      mangleName(MPT->getClass()->getAsCXXRecordDecl());
    } else
      mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
    // Global arrays are funny, too.
    mangleDecayedArrayType(AT);
    if (AT->getElementType()->isArrayType())
      Out << 'A';
    else
      mangleQualifiers(Ty.getQualifiers(), false);
  } else {
    mangleType(Ty, SR, QMM_Drop);
    mangleQualifiers(Ty.getQualifiers(), false);
  }
}

void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
                                                      const ValueDecl *VD,
                                                      StringRef Prefix) {
  // <member-data-pointer> ::= <integer-literal>
  //                       ::= $F <number> <number>
  //                       ::= $G <number> <number> <number>

  int64_t FieldOffset;
  int64_t VBTableOffset;
  MSInheritanceModel IM = RD->getMSInheritanceModel();
  if (VD) {
    FieldOffset = getASTContext().getFieldOffset(VD);
    assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
           "cannot take address of bitfield");
    FieldOffset /= getASTContext().getCharWidth();

    VBTableOffset = 0;

    if (IM == MSInheritanceModel::Virtual)
      FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
  } else {
    FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;

    VBTableOffset = -1;
  }

  char Code = '\0';
  switch (IM) {
  case MSInheritanceModel::Single:      Code = '0'; break;
  case MSInheritanceModel::Multiple:    Code = '0'; break;
  case MSInheritanceModel::Virtual:     Code = 'F'; break;
  case MSInheritanceModel::Unspecified: Code = 'G'; break;
  }

  Out << Prefix << Code;

  mangleNumber(FieldOffset);

  // The C++ standard doesn't allow base-to-derived member pointer conversions
  // in template parameter contexts, so the vbptr offset of data member pointers
  // is always zero.
  if (inheritanceModelHasVBPtrOffsetField(IM))
    mangleNumber(0);
  if (inheritanceModelHasVBTableOffsetField(IM))
    mangleNumber(VBTableOffset);
}

void
MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
                                                     const CXXMethodDecl *MD,
                                                     StringRef Prefix) {
  // <member-function-pointer> ::= $1? <name>
  //                           ::= $H? <name> <number>
  //                           ::= $I? <name> <number> <number>
  //                           ::= $J? <name> <number> <number> <number>

  MSInheritanceModel IM = RD->getMSInheritanceModel();

  char Code = '\0';
  switch (IM) {
  case MSInheritanceModel::Single:      Code = '1'; break;
  case MSInheritanceModel::Multiple:    Code = 'H'; break;
  case MSInheritanceModel::Virtual:     Code = 'I'; break;
  case MSInheritanceModel::Unspecified: Code = 'J'; break;
  }

  // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
  // thunk.
  uint64_t NVOffset = 0;
  uint64_t VBTableOffset = 0;
  uint64_t VBPtrOffset = 0;
  if (MD) {
    Out << Prefix << Code << '?';
    if (MD->isVirtual()) {
      MicrosoftVTableContext *VTContext =
          cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
      MethodVFTableLocation ML =
          VTContext->getMethodVFTableLocation(GlobalDecl(MD));
      mangleVirtualMemPtrThunk(MD, ML);
      NVOffset = ML.VFPtrOffset.getQuantity();
      VBTableOffset = ML.VBTableIndex * 4;
      if (ML.VBase) {
        const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
        VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
      }
    } else {
      mangleName(MD);
      mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
    }

    if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual)
      NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
  } else {
    // Null single inheritance member functions are encoded as a simple nullptr.
    if (IM == MSInheritanceModel::Single) {
      Out << Prefix << "0A@";
      return;
    }
    if (IM == MSInheritanceModel::Unspecified)
      VBTableOffset = -1;
    Out << Prefix << Code;
  }

  if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM))
    mangleNumber(static_cast<uint32_t>(NVOffset));
  if (inheritanceModelHasVBPtrOffsetField(IM))
    mangleNumber(VBPtrOffset);
  if (inheritanceModelHasVBTableOffsetField(IM))
    mangleNumber(VBTableOffset);
}

void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
    const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
  // Get the vftable offset.
  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
      getASTContext().getTargetInfo().getPointerWidth(0));
  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();

  Out << "?_9";
  mangleName(MD->getParent());
  Out << "$B";
  mangleNumber(OffsetInVFTable);
  Out << 'A';
  mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>());
}

void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @

  // Always start with the unqualified name.
  mangleUnqualifiedName(ND);

  mangleNestedName(ND);

  // Terminate the whole name with an '@'.
  Out << '@';
}

void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
  mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false));
}

void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) {
  // MSVC never mangles any integer wider than 64 bits. In general it appears
  // to convert every integer to signed 64 bit before mangling (including
  // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom
  // 64.
  llvm::APInt Value =
      Number.isSigned() ? Number.sextOrSelf(64) : Number.zextOrSelf(64);

  // <non-negative integer> ::= A@              # when Number == 0
  //                        ::= <decimal digit> # when 1 <= Number <= 10
  //                        ::= <hex digit>+ @  # when Number >= 10
  //
  // <number>               ::= [?] <non-negative integer>

  if (Value.isNegative()) {
    Value = -Value;
    Out << '?';
  }
  mangleBits(Value);
}

void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) {
  using llvm::APFloat;

  switch (APFloat::SemanticsToEnum(Number.getSemantics())) {
  case APFloat::S_IEEEsingle: Out << 'A'; break;
  case APFloat::S_IEEEdouble: Out << 'B'; break;

  // The following are all Clang extensions. We try to pick manglings that are
  // unlikely to conflict with MSVC's scheme.
  case APFloat::S_IEEEhalf: Out << 'V'; break;
  case APFloat::S_BFloat: Out << 'W'; break;
  case APFloat::S_x87DoubleExtended: Out << 'X'; break;
  case APFloat::S_IEEEquad: Out << 'Y'; break;
  case APFloat::S_PPCDoubleDouble: Out << 'Z'; break;
  }

  mangleBits(Number.bitcastToAPInt());
}

void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) {
  if (Value == 0)
    Out << "A@";
  else if (Value.uge(1) && Value.ule(10))
    Out << (Value - 1);
  else {
    // Numbers that are not encoded as decimal digits are represented as nibbles
    // in the range of ASCII characters 'A' to 'P'.
    // The number 0x123450 would be encoded as 'BCDEFA'
    llvm::SmallString<32> EncodedNumberBuffer;
    for (; Value != 0; Value.lshrInPlace(4))
      EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue());
    std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end());
    Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size());
    Out << '@';
  }
}

static const TemplateDecl *
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
  // Check if we have a function template.
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
      TemplateArgs = FD->getTemplateSpecializationArgs();
      return TD;
    }
  }

  // Check if we have a class template.
  if (const ClassTemplateSpecializationDecl *Spec =
          dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
    TemplateArgs = &Spec->getTemplateArgs();
    return Spec->getSpecializedTemplate();
  }

  // Check if we have a variable template.
  if (const VarTemplateSpecializationDecl *Spec =
          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
    TemplateArgs = &Spec->getTemplateArgs();
    return Spec->getSpecializedTemplate();
  }

  return nullptr;
}

void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
                                                    DeclarationName Name) {
  //  <unqualified-name> ::= <operator-name>
  //                     ::= <ctor-dtor-name>
  //                     ::= <source-name>
  //                     ::= <template-name>

  // Check if we have a template.
  const TemplateArgumentList *TemplateArgs = nullptr;
  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
    // Function templates aren't considered for name back referencing.  This
    // makes sense since function templates aren't likely to occur multiple
    // times in a symbol.
    if (isa<FunctionTemplateDecl>(TD)) {
      mangleTemplateInstantiationName(TD, *TemplateArgs);
      Out << '@';
      return;
    }

    // Here comes the tricky thing: if we need to mangle something like
    //   void foo(A::X<Y>, B::X<Y>),
    // the X<Y> part is aliased. However, if you need to mangle
    //   void foo(A::X<A::Y>, A::X<B::Y>),
    // the A::X<> part is not aliased.
    // That is, from the mangler's perspective we have a structure like this:
    //   namespace[s] -> type[ -> template-parameters]
    // but from the Clang perspective we have
    //   type [ -> template-parameters]
    //      \-> namespace[s]
    // What we do is we create a new mangler, mangle the same type (without
    // a namespace suffix) to a string using the extra mangler and then use
    // the mangled type name as a key to check the mangling of different types
    // for aliasing.

    // It's important to key cache reads off ND, not TD -- the same TD can
    // be used with different TemplateArgs, but ND uniquely identifies
    // TD / TemplateArg pairs.
    ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND);
    if (Found == TemplateArgBackReferences.end()) {

      TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND);
      if (Found == TemplateArgStrings.end()) {
        // Mangle full template name into temporary buffer.
        llvm::SmallString<64> TemplateMangling;
        llvm::raw_svector_ostream Stream(TemplateMangling);
        MicrosoftCXXNameMangler Extra(Context, Stream);
        Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);

        // Use the string backref vector to possibly get a back reference.
        mangleSourceName(TemplateMangling);

        // Memoize back reference for this type if one exist, else memoize
        // the mangling itself.
        BackRefVec::iterator StringFound =
            llvm::find(NameBackReferences, TemplateMangling);
        if (StringFound != NameBackReferences.end()) {
          TemplateArgBackReferences[ND] =
              StringFound - NameBackReferences.begin();
        } else {
          TemplateArgStrings[ND] =
              TemplateArgStringStorage.save(TemplateMangling.str());
        }
      } else {
        Out << Found->second << '@'; // Outputs a StringRef.
      }
    } else {
      Out << Found->second; // Outputs a back reference (an int).
    }
    return;
  }

  switch (Name.getNameKind()) {
    case DeclarationName::Identifier: {
      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
        mangleSourceName(II->getName());
        break;
      }

      // Otherwise, an anonymous entity.  We must have a declaration.
      assert(ND && "mangling empty name without declaration");

      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
        if (NS->isAnonymousNamespace()) {
          Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
          break;
        }
      }

      if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
        // Decomposition declarations are considered anonymous, and get
        // numbered with a $S prefix.
        llvm::SmallString<64> Name("$S");
        // Get a unique id for the anonymous struct.
        Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1);
        mangleSourceName(Name);
        break;
      }

      if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
        // We must have an anonymous union or struct declaration.
        const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
        assert(RD && "expected variable decl to have a record type");
        // Anonymous types with no tag or typedef get the name of their
        // declarator mangled in.  If they have no declarator, number them with
        // a $S prefix.
        llvm::SmallString<64> Name("$S");
        // Get a unique id for the anonymous struct.
        Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
        mangleSourceName(Name.str());
        break;
      }

      if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) {
        // Mangle a GUID object as if it were a variable with the corresponding
        // mangled name.
        SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
        llvm::raw_svector_ostream GUIDOS(GUID);
        Context.mangleMSGuidDecl(GD, GUIDOS);
        mangleSourceName(GUID);
        break;
      }

      if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
        Out << "?__N";
        mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
                               TPO->getValue());
        break;
      }

      // We must have an anonymous struct.
      const TagDecl *TD = cast<TagDecl>(ND);
      if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
        assert(TD->getDeclContext() == D->getDeclContext() &&
               "Typedef should not be in another decl context!");
        assert(D->getDeclName().getAsIdentifierInfo() &&
               "Typedef was not named!");
        mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
        break;
      }

      if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
        if (Record->isLambda()) {
          llvm::SmallString<10> Name("<lambda_");

          Decl *LambdaContextDecl = Record->getLambdaContextDecl();
          unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
          unsigned LambdaId;
          const ParmVarDecl *Parm =
              dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
          const FunctionDecl *Func =
              Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;

          if (Func) {
            unsigned DefaultArgNo =
                Func->getNumParams() - Parm->getFunctionScopeIndex();
            Name += llvm::utostr(DefaultArgNo);
            Name += "_";
          }

          if (LambdaManglingNumber)
            LambdaId = LambdaManglingNumber;
          else
            LambdaId = Context.getLambdaId(Record);

          Name += llvm::utostr(LambdaId);
          Name += ">";

          mangleSourceName(Name);

          // If the context is a variable or a class member and not a parameter,
          // it is encoded in a qualified name.
          if (LambdaManglingNumber && LambdaContextDecl) {
            if ((isa<VarDecl>(LambdaContextDecl) ||
                 isa<FieldDecl>(LambdaContextDecl)) &&
                !isa<ParmVarDecl>(LambdaContextDecl)) {
              mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
            }
          }
          break;
        }
      }

      llvm::SmallString<64> Name;
      if (DeclaratorDecl *DD =
              Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
        // Anonymous types without a name for linkage purposes have their
        // declarator mangled in if they have one.
        Name += "<unnamed-type-";
        Name += DD->getName();
      } else if (TypedefNameDecl *TND =
                     Context.getASTContext().getTypedefNameForUnnamedTagDecl(
                         TD)) {
        // Anonymous types without a name for linkage purposes have their
        // associate typedef mangled in if they have one.
        Name += "<unnamed-type-";
        Name += TND->getName();
      } else if (isa<EnumDecl>(TD) &&
                 cast<EnumDecl>(TD)->enumerator_begin() !=
                     cast<EnumDecl>(TD)->enumerator_end()) {
        // Anonymous non-empty enums mangle in the first enumerator.
        auto *ED = cast<EnumDecl>(TD);
        Name += "<unnamed-enum-";
        Name += ED->enumerator_begin()->getName();
      } else {
        // Otherwise, number the types using a $S prefix.
        Name += "<unnamed-type-$S";
        Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
      }
      Name += ">";
      mangleSourceName(Name.str());
      break;
    }

    case DeclarationName::ObjCZeroArgSelector:
    case DeclarationName::ObjCOneArgSelector:
    case DeclarationName::ObjCMultiArgSelector: {
      // This is reachable only when constructing an outlined SEH finally
      // block.  Nothing depends on this mangling and it's used only with
      // functinos with internal linkage.
      llvm::SmallString<64> Name;
      mangleSourceName(Name.str());
      break;
    }

    case DeclarationName::CXXConstructorName:
      if (isStructorDecl(ND)) {
        if (StructorType == Ctor_CopyingClosure) {
          Out << "?_O";
          return;
        }
        if (StructorType == Ctor_DefaultClosure) {
          Out << "?_F";
          return;
        }
      }
      Out << "?0";
      return;

    case DeclarationName::CXXDestructorName:
      if (isStructorDecl(ND))
        // If the named decl is the C++ destructor we're mangling,
        // use the type we were given.
        mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
      else
        // Otherwise, use the base destructor name. This is relevant if a
        // class with a destructor is declared within a destructor.
        mangleCXXDtorType(Dtor_Base);
      break;

    case DeclarationName::CXXConversionFunctionName:
      // <operator-name> ::= ?B # (cast)
      // The target type is encoded as the return type.
      Out << "?B";
      break;

    case DeclarationName::CXXOperatorName:
      mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
      break;

    case DeclarationName::CXXLiteralOperatorName: {
      Out << "?__K";
      mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
      break;
    }

    case DeclarationName::CXXDeductionGuideName:
      llvm_unreachable("Can't mangle a deduction guide name!");

    case DeclarationName::CXXUsingDirective:
      llvm_unreachable("Can't mangle a using directive name!");
  }
}

// <postfix> ::= <unqualified-name> [<postfix>]
//           ::= <substitution> [<postfix>]
void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
  const DeclContext *DC = getEffectiveDeclContext(ND);
  while (!DC->isTranslationUnit()) {
    if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
      unsigned Disc;
      if (Context.getNextDiscriminator(ND, Disc)) {
        Out << '?';
        mangleNumber(Disc);
        Out << '?';
      }
    }

    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
      auto Discriminate =
          [](StringRef Name, const unsigned Discriminator,
             const unsigned ParameterDiscriminator) -> std::string {
        std::string Buffer;
        llvm::raw_string_ostream Stream(Buffer);
        Stream << Name;
        if (Discriminator)
          Stream << '_' << Discriminator;
        if (ParameterDiscriminator)
          Stream << '_' << ParameterDiscriminator;
        return Stream.str();
      };

      unsigned Discriminator = BD->getBlockManglingNumber();
      if (!Discriminator)
        Discriminator = Context.getBlockId(BD, /*Local=*/false);

      // Mangle the parameter position as a discriminator to deal with unnamed
      // parameters.  Rather than mangling the unqualified parameter name,
      // always use the position to give a uniform mangling.
      unsigned ParameterDiscriminator = 0;
      if (const auto *MC = BD->getBlockManglingContextDecl())
        if (const auto *P = dyn_cast<ParmVarDecl>(MC))
          if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
            ParameterDiscriminator =
                F->getNumParams() - P->getFunctionScopeIndex();

      DC = getEffectiveDeclContext(BD);

      Out << '?';
      mangleSourceName(Discriminate("_block_invoke", Discriminator,
                                    ParameterDiscriminator));
      // If we have a block mangling context, encode that now.  This allows us
      // to discriminate between named static data initializers in the same
      // scope.  This is handled differently from parameters, which use
      // positions to discriminate between multiple instances.
      if (const auto *MC = BD->getBlockManglingContextDecl())
        if (!isa<ParmVarDecl>(MC))
          if (const auto *ND = dyn_cast<NamedDecl>(MC))
            mangleUnqualifiedName(ND);
      // MS ABI and Itanium manglings are in inverted scopes.  In the case of a
      // RecordDecl, mangle the entire scope hierarchy at this point rather than
      // just the unqualified name to get the ordering correct.
      if (const auto *RD = dyn_cast<RecordDecl>(DC))
        mangleName(RD);
      else
        Out << '@';
      // void __cdecl
      Out << "YAX";
      // struct __block_literal *
      Out << 'P';
      // __ptr64
      if (PointersAre64Bit)
        Out << 'E';
      Out << 'A';
      mangleArtificialTagType(TTK_Struct,
                             Discriminate("__block_literal", Discriminator,
                                          ParameterDiscriminator));
      Out << "@Z";

      // If the effective context was a Record, we have fully mangled the
      // qualified name and do not need to continue.
      if (isa<RecordDecl>(DC))
        break;
      continue;
    } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
      mangleObjCMethodName(Method);
    } else if (isa<NamedDecl>(DC)) {
      ND = cast<NamedDecl>(DC);
      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
        mangle(FD, "?");
        break;
      } else {
        mangleUnqualifiedName(ND);
        // Lambdas in default arguments conceptually belong to the function the
        // parameter corresponds to.
        if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
          DC = LDADC;
          continue;
        }
      }
    }
    DC = DC->getParent();
  }
}

void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
  // Microsoft uses the names on the case labels for these dtor variants.  Clang
  // uses the Itanium terminology internally.  Everything in this ABI delegates
  // towards the base dtor.
  switch (T) {
  // <operator-name> ::= ?1  # destructor
  case Dtor_Base: Out << "?1"; return;
  // <operator-name> ::= ?_D # vbase destructor
  case Dtor_Complete: Out << "?_D"; return;
  // <operator-name> ::= ?_G # scalar deleting destructor
  case Dtor_Deleting: Out << "?_G"; return;
  // <operator-name> ::= ?_E # vector deleting destructor
  // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
  // it.
  case Dtor_Comdat:
    llvm_unreachable("not expecting a COMDAT");
  }
  llvm_unreachable("Unsupported dtor type?");
}

void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
                                                 SourceLocation Loc) {
  switch (OO) {
  //                     ?0 # constructor
  //                     ?1 # destructor
  // <operator-name> ::= ?2 # new
  case OO_New: Out << "?2"; break;
  // <operator-name> ::= ?3 # delete
  case OO_Delete: Out << "?3"; break;
  // <operator-name> ::= ?4 # =
  case OO_Equal: Out << "?4"; break;
  // <operator-name> ::= ?5 # >>
  case OO_GreaterGreater: Out << "?5"; break;
  // <operator-name> ::= ?6 # <<
  case OO_LessLess: Out << "?6"; break;
  // <operator-name> ::= ?7 # !
  case OO_Exclaim: Out << "?7"; break;
  // <operator-name> ::= ?8 # ==
  case OO_EqualEqual: Out << "?8"; break;
  // <operator-name> ::= ?9 # !=
  case OO_ExclaimEqual: Out << "?9"; break;
  // <operator-name> ::= ?A # []
  case OO_Subscript: Out << "?A"; break;
  //                     ?B # conversion
  // <operator-name> ::= ?C # ->
  case OO_Arrow: Out << "?C"; break;
  // <operator-name> ::= ?D # *
  case OO_Star: Out << "?D"; break;
  // <operator-name> ::= ?E # ++
  case OO_PlusPlus: Out << "?E"; break;
  // <operator-name> ::= ?F # --
  case OO_MinusMinus: Out << "?F"; break;
  // <operator-name> ::= ?G # -
  case OO_Minus: Out << "?G"; break;
  // <operator-name> ::= ?H # +
  case OO_Plus: Out << "?H"; break;
  // <operator-name> ::= ?I # &
  case OO_Amp: Out << "?I"; break;
  // <operator-name> ::= ?J # ->*
  case OO_ArrowStar: Out << "?J"; break;
  // <operator-name> ::= ?K # /
  case OO_Slash: Out << "?K"; break;
  // <operator-name> ::= ?L # %
  case OO_Percent: Out << "?L"; break;
  // <operator-name> ::= ?M # <
  case OO_Less: Out << "?M"; break;
  // <operator-name> ::= ?N # <=
  case OO_LessEqual: Out << "?N"; break;
  // <operator-name> ::= ?O # >
  case OO_Greater: Out << "?O"; break;
  // <operator-name> ::= ?P # >=
  case OO_GreaterEqual: Out << "?P"; break;
  // <operator-name> ::= ?Q # ,
  case OO_Comma: Out << "?Q"; break;
  // <operator-name> ::= ?R # ()
  case OO_Call: Out << "?R"; break;
  // <operator-name> ::= ?S # ~
  case OO_Tilde: Out << "?S"; break;
  // <operator-name> ::= ?T # ^
  case OO_Caret: Out << "?T"; break;
  // <operator-name> ::= ?U # |
  case OO_Pipe: Out << "?U"; break;
  // <operator-name> ::= ?V # &&
  case OO_AmpAmp: Out << "?V"; break;
  // <operator-name> ::= ?W # ||
  case OO_PipePipe: Out << "?W"; break;
  // <operator-name> ::= ?X # *=
  case OO_StarEqual: Out << "?X"; break;
  // <operator-name> ::= ?Y # +=
  case OO_PlusEqual: Out << "?Y"; break;
  // <operator-name> ::= ?Z # -=
  case OO_MinusEqual: Out << "?Z"; break;
  // <operator-name> ::= ?_0 # /=
  case OO_SlashEqual: Out << "?_0"; break;
  // <operator-name> ::= ?_1 # %=
  case OO_PercentEqual: Out << "?_1"; break;
  // <operator-name> ::= ?_2 # >>=
  case OO_GreaterGreaterEqual: Out << "?_2"; break;
  // <operator-name> ::= ?_3 # <<=
  case OO_LessLessEqual: Out << "?_3"; break;
  // <operator-name> ::= ?_4 # &=
  case OO_AmpEqual: Out << "?_4"; break;
  // <operator-name> ::= ?_5 # |=
  case OO_PipeEqual: Out << "?_5"; break;
  // <operator-name> ::= ?_6 # ^=
  case OO_CaretEqual: Out << "?_6"; break;
  //                     ?_7 # vftable
  //                     ?_8 # vbtable
  //                     ?_9 # vcall
  //                     ?_A # typeof
  //                     ?_B # local static guard
  //                     ?_C # string
  //                     ?_D # vbase destructor
  //                     ?_E # vector deleting destructor
  //                     ?_F # default constructor closure
  //                     ?_G # scalar deleting destructor
  //                     ?_H # vector constructor iterator
  //                     ?_I # vector destructor iterator
  //                     ?_J # vector vbase constructor iterator
  //                     ?_K # virtual displacement map
  //                     ?_L # eh vector constructor iterator
  //                     ?_M # eh vector destructor iterator
  //                     ?_N # eh vector vbase constructor iterator
  //                     ?_O # copy constructor closure
  //                     ?_P<name> # udt returning <name>
  //                     ?_Q # <unknown>
  //                     ?_R0 # RTTI Type Descriptor
  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
  //                     ?_R2 # RTTI Base Class Array
  //                     ?_R3 # RTTI Class Hierarchy Descriptor
  //                     ?_R4 # RTTI Complete Object Locator
  //                     ?_S # local vftable
  //                     ?_T # local vftable constructor closure
  // <operator-name> ::= ?_U # new[]
  case OO_Array_New: Out << "?_U"; break;
  // <operator-name> ::= ?_V # delete[]
  case OO_Array_Delete: Out << "?_V"; break;
  // <operator-name> ::= ?__L # co_await
  case OO_Coawait: Out << "?__L"; break;
  // <operator-name> ::= ?__M # <=>
  case OO_Spaceship: Out << "?__M"; break;

  case OO_Conditional: {
    DiagnosticsEngine &Diags = Context.getDiags();
    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
      "cannot mangle this conditional operator yet");
    Diags.Report(Loc, DiagID);
    break;
  }

  case OO_None:
  case NUM_OVERLOADED_OPERATORS:
    llvm_unreachable("Not an overloaded operator");
  }
}

void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
  // <source name> ::= <identifier> @
  BackRefVec::iterator Found = llvm::find(NameBackReferences, Name);
  if (Found == NameBackReferences.end()) {
    if (NameBackReferences.size() < 10)
      NameBackReferences.push_back(std::string(Name));
    Out << Name << '@';
  } else {
    Out << (Found - NameBackReferences.begin());
  }
}

void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
  Context.mangleObjCMethodNameAsSourceName(MD, Out);
}

void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
    const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
  // <template-name> ::= <unscoped-template-name> <template-args>
  //                 ::= <substitution>
  // Always start with the unqualified name.

  // Templates have their own context for back references.
  ArgBackRefMap OuterFunArgsContext;
  ArgBackRefMap OuterTemplateArgsContext;
  BackRefVec OuterTemplateContext;
  PassObjectSizeArgsSet OuterPassObjectSizeArgs;
  NameBackReferences.swap(OuterTemplateContext);
  FunArgBackReferences.swap(OuterFunArgsContext);
  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);

  mangleUnscopedTemplateName(TD);
  mangleTemplateArgs(TD, TemplateArgs);

  // Restore the previous back reference contexts.
  NameBackReferences.swap(OuterTemplateContext);
  FunArgBackReferences.swap(OuterFunArgsContext);
  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
}

void
MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
  // <unscoped-template-name> ::= ?$ <unqualified-name>
  Out << "?$";
  mangleUnqualifiedName(TD);
}

void MicrosoftCXXNameMangler::mangleIntegerLiteral(
    const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD,
    QualType TemplateArgType) {
  // <integer-literal> ::= $0 <number>
  Out << "$";

  // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when
  // argument is integer.
  if (getASTContext().getLangOpts().isCompatibleWithMSVC(
          LangOptions::MSVC2019) &&
      PD && PD->getType()->getTypeClass() == Type::Auto &&
      !TemplateArgType.isNull()) {
    Out << "M";
    mangleType(TemplateArgType, SourceRange(), QMM_Drop);
  }

  Out << "0";

  mangleNumber(Value);
}

void MicrosoftCXXNameMangler::mangleExpression(
    const Expr *E, const NonTypeTemplateParmDecl *PD) {
  // See if this is a constant expression.
  if (Optional<llvm::APSInt> Value =
          E->getIntegerConstantExpr(Context.getASTContext())) {
    mangleIntegerLiteral(*Value, PD, E->getType());
    return;
  }

  // As bad as this diagnostic is, it's better than crashing.
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(
      DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
                                        << E->getSourceRange();
}

void MicrosoftCXXNameMangler::mangleTemplateArgs(
    const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
  // <template-args> ::= <template-arg>+
  const TemplateParameterList *TPL = TD->getTemplateParameters();
  assert(TPL->size() == TemplateArgs.size() &&
         "size mismatch between args and parms!");

  for (size_t i = 0; i < TemplateArgs.size(); ++i) {
    const TemplateArgument &TA = TemplateArgs[i];

    // Separate consecutive packs by $$Z.
    if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
        TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
      Out << "$$Z";

    mangleTemplateArg(TD, TA, TPL->getParam(i));
  }
}

void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
                                                const TemplateArgument &TA,
                                                const NamedDecl *Parm) {
  // <template-arg> ::= <type>
  //                ::= <integer-literal>
  //                ::= <member-data-pointer>
  //                ::= <member-function-pointer>
  //                ::= $ <constant-value>
  //                ::= <template-args>
  //
  // <constant-value> ::= 0 <number>                   # integer
  //                  ::= 1 <mangled-name>             # address of D
  //                  ::= 2 <type> <typed-constant-value>* @ # struct
  //                  ::= 3 <type> <constant-value>* @ # array
  //                  ::= 4 ???                        # string
  //                  ::= 5 <constant-value> @         # address of subobject
  //                  ::= 6 <constant-value> <unqualified-name> @ # a.b
  //                  ::= 7 <type> [<unqualified-name> <constant-value>] @
  //                      # union, with or without an active member
  //                  # pointer to member, symbolically
  //                  ::= 8 <class> <unqualified-name> @
  //                  ::= A <type> <non-negative integer>  # float
  //                  ::= B <type> <non-negative integer>  # double
  //                  ::= E <mangled-name>             # reference to D
  //                  # pointer to member, by component value
  //                  ::= F <number> <number>
  //                  ::= G <number> <number> <number>
  //                  ::= H <mangled-name> <number>
  //                  ::= I <mangled-name> <number> <number>
  //                  ::= J <mangled-name> <number> <number> <number>
  //
  // <typed-constant-value> ::= [<type>] <constant-value>
  //
  // The <type> appears to be included in a <typed-constant-value> only in the
  // '0', '1', '8', 'A', 'B', and 'E' cases.

  switch (TA.getKind()) {
  case TemplateArgument::Null:
    llvm_unreachable("Can't mangle null template arguments!");
  case TemplateArgument::TemplateExpansion:
    llvm_unreachable("Can't mangle template expansion arguments!");
  case TemplateArgument::Type: {
    QualType T = TA.getAsType();
    mangleType(T, SourceRange(), QMM_Escape);
    break;
  }
  case TemplateArgument::Declaration: {
    const NamedDecl *ND = TA.getAsDecl();
    if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
      mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
                                  ->getMostRecentNonInjectedDecl(),
                              cast<ValueDecl>(ND));
    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
      if (MD && MD->isInstance()) {
        mangleMemberFunctionPointer(
            MD->getParent()->getMostRecentNonInjectedDecl(), MD);
      } else {
        Out << "$1?";
        mangleName(FD);
        mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
      }
    } else if (TA.getParamTypeForDecl()->isRecordType()) {
      Out << "$";
      auto *TPO = cast<TemplateParamObjectDecl>(ND);
      mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
                             TPO->getValue());
    } else {
      mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
    }
    break;
  }
  case TemplateArgument::Integral: {
    QualType T = TA.getIntegralType();
    mangleIntegerLiteral(TA.getAsIntegral(),
                         cast<NonTypeTemplateParmDecl>(Parm), T);
    break;
  }
  case TemplateArgument::NullPtr: {
    QualType T = TA.getNullPtrType();
    if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
      const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
      if (MPT->isMemberFunctionPointerType() &&
          !isa<FunctionTemplateDecl>(TD)) {
        mangleMemberFunctionPointer(RD, nullptr);
        return;
      }
      if (MPT->isMemberDataPointer()) {
        if (!isa<FunctionTemplateDecl>(TD)) {
          mangleMemberDataPointer(RD, nullptr);
          return;
        }
        // nullptr data pointers are always represented with a single field
        // which is initialized with either 0 or -1.  Why -1?  Well, we need to
        // distinguish the case where the data member is at offset zero in the
        // record.
        // However, we are free to use 0 *if* we would use multiple fields for
        // non-nullptr member pointers.
        if (!RD->nullFieldOffsetIsZero()) {
          mangleIntegerLiteral(llvm::APSInt::get(-1),
                               cast<NonTypeTemplateParmDecl>(Parm), T);
          return;
        }
      }
    }
    mangleIntegerLiteral(llvm::APSInt::getUnsigned(0),
                         cast<NonTypeTemplateParmDecl>(Parm), T);
    break;
  }
  case TemplateArgument::Expression:
    mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm));
    break;
  case TemplateArgument::Pack: {
    ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
    if (TemplateArgs.empty()) {
      if (isa<TemplateTypeParmDecl>(Parm) ||
          isa<TemplateTemplateParmDecl>(Parm))
        // MSVC 2015 changed the mangling for empty expanded template packs,
        // use the old mangling for link compatibility for old versions.
        Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
                    LangOptions::MSVC2015)
                    ? "$$V"
                    : "$$$V");
      else if (isa<NonTypeTemplateParmDecl>(Parm))
        Out << "$S";
      else
        llvm_unreachable("unexpected template parameter decl!");
    } else {
      for (const TemplateArgument &PA : TemplateArgs)
        mangleTemplateArg(TD, PA, Parm);
    }
    break;
  }
  case TemplateArgument::Template: {
    const NamedDecl *ND =
        TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
    if (const auto *TD = dyn_cast<TagDecl>(ND)) {
      mangleType(TD);
    } else if (isa<TypeAliasDecl>(ND)) {
      Out << "$$Y";
      mangleName(ND);
    } else {
      llvm_unreachable("unexpected template template NamedDecl!");
    }
    break;
  }
  }
}

void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T,
                                                     const APValue &V,
                                                     bool WithScalarType) {
  switch (V.getKind()) {
  case APValue::None:
  case APValue::Indeterminate:
    // FIXME: MSVC doesn't allow this, so we can't be sure how it should be
    // mangled.
    if (WithScalarType)
      mangleType(T, SourceRange(), QMM_Escape);
    Out << '@';
    return;

  case APValue::Int:
    if (WithScalarType)
      mangleType(T, SourceRange(), QMM_Escape);
    Out << '0';
    mangleNumber(V.getInt());
    return;

  case APValue::Float:
    if (WithScalarType)
      mangleType(T, SourceRange(), QMM_Escape);
    mangleFloat(V.getFloat());
    return;

  case APValue::LValue: {
    if (WithScalarType)
      mangleType(T, SourceRange(), QMM_Escape);

    // We don't know how to mangle past-the-end pointers yet.
    if (V.isLValueOnePastTheEnd())
      break;

    APValue::LValueBase Base = V.getLValueBase();
    if (!V.hasLValuePath() || V.getLValuePath().empty()) {
      // Taking the address of a complete object has a special-case mangling.
      if (Base.isNull()) {
        // MSVC emits 0A@ for null pointers. Generalize this for arbitrary
        // integers cast to pointers.
        // FIXME: This mangles 0 cast to a pointer the same as a null pointer,
        // even in cases where the two are different values.
        Out << "0";
        mangleNumber(V.getLValueOffset().getQuantity());
      } else if (!V.hasLValuePath()) {
        // FIXME: This can only happen as an extension. Invent a mangling.
        break;
      } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) {
        Out << (T->isReferenceType() ? "E" : "1");
        mangle(VD);
      } else {
        break;
      }
    } else {
      unsigned NumAts = 0;
      if (T->isPointerType()) {
        Out << "5";
        ++NumAts;
      }

      QualType T = Base.getType();
      for (APValue::LValuePathEntry E : V.getLValuePath()) {
        // We don't know how to mangle array subscripting yet.
        if (T->isArrayType())
          goto mangling_unknown;

        const Decl *D = E.getAsBaseOrMember().getPointer();
        auto *FD = dyn_cast<FieldDecl>(D);
        // We don't know how to mangle derived-to-base conversions yet.
        if (!FD)
          goto mangling_unknown;

        Out << "6";
        ++NumAts;
        T = FD->getType();
      }

      auto *VD = Base.dyn_cast<const ValueDecl*>();
      if (!VD)
        break;
      Out << "E";
      mangle(VD);

      for (APValue::LValuePathEntry E : V.getLValuePath()) {
        const Decl *D = E.getAsBaseOrMember().getPointer();
        mangleUnqualifiedName(cast<FieldDecl>(D));
      }
      for (unsigned I = 0; I != NumAts; ++I)
        Out << '@';
    }

    return;
  }

  case APValue::MemberPointer: {
    if (WithScalarType)
      mangleType(T, SourceRange(), QMM_Escape);

    // FIXME: The below manglings don't include a conversion, so bail if there
    // would be one. MSVC mangles the (possibly converted) value of the
    // pointer-to-member object as if it were a struct, leading to collisions
    // in some cases.
    if (!V.getMemberPointerPath().empty())
      break;

    const CXXRecordDecl *RD =
        T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl();
    const ValueDecl *D = V.getMemberPointerDecl();
    if (T->isMemberDataPointerType())
      mangleMemberDataPointer(RD, D, "");
    else
      mangleMemberFunctionPointer(RD, cast_or_null<CXXMethodDecl>(D), "");
    return;
  }

  case APValue::Struct: {
    Out << '2';
    mangleType(T, SourceRange(), QMM_Escape);
    const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
    assert(RD && "unexpected type for record value");

    unsigned BaseIndex = 0;
    for (const CXXBaseSpecifier &B : RD->bases())
      mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++));
    for (const FieldDecl *FD : RD->fields())
      if (!FD->isUnnamedBitfield())
        mangleTemplateArgValue(FD->getType(),
                               V.getStructField(FD->getFieldIndex()),
                               /*WithScalarType*/ true);
    Out << '@';
    return;
  }

  case APValue::Union:
    Out << '7';
    mangleType(T, SourceRange(), QMM_Escape);
    if (const FieldDecl *FD = V.getUnionField()) {
      mangleUnqualifiedName(FD);
      mangleTemplateArgValue(FD->getType(), V.getUnionValue());
    }
    Out << '@';
    return;

  case APValue::ComplexInt:
    // We mangle complex types as structs, so mangle the value as a struct too.
    Out << '2';
    mangleType(T, SourceRange(), QMM_Escape);
    Out << '0';
    mangleNumber(V.getComplexIntReal());
    Out << '0';
    mangleNumber(V.getComplexIntImag());
    Out << '@';
    return;

  case APValue::ComplexFloat:
    Out << '2';
    mangleType(T, SourceRange(), QMM_Escape);
    mangleFloat(V.getComplexFloatReal());
    mangleFloat(V.getComplexFloatImag());
    Out << '@';
    return;

  case APValue::Array: {
    Out << '3';
    QualType ElemT = getASTContext().getAsArrayType(T)->getElementType();
    mangleType(ElemT, SourceRange(), QMM_Escape);
    for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) {
      const APValue &ElemV = I < V.getArrayInitializedElts()
                                 ? V.getArrayInitializedElt(I)
                                 : V.getArrayFiller();
      mangleTemplateArgValue(ElemT, ElemV);
      Out << '@';
    }
    Out << '@';
    return;
  }

  case APValue::Vector: {
    // __m128 is mangled as a struct containing an array. We follow this
    // approach for all vector types.
    Out << '2';
    mangleType(T, SourceRange(), QMM_Escape);
    Out << '3';
    QualType ElemT = T->castAs<VectorType>()->getElementType();
    mangleType(ElemT, SourceRange(), QMM_Escape);
    for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) {
      const APValue &ElemV = V.getVectorElt(I);
      mangleTemplateArgValue(ElemT, ElemV);
      Out << '@';
    }
    Out << "@@";
    return;
  }

  case APValue::AddrLabelDiff:
  case APValue::FixedPoint:
    break;
  }

mangling_unknown:
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(
      DiagnosticsEngine::Error, "cannot mangle this template argument yet");
  Diags.Report(DiagID);
}

void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
  llvm::SmallString<64> TemplateMangling;
  llvm::raw_svector_ostream Stream(TemplateMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);

  Stream << "?$";
  Extra.mangleSourceName("Protocol");
  Extra.mangleArtificialTagType(TTK_Struct, PD->getName());

  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
}

void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
                                                 Qualifiers Quals,
                                                 SourceRange Range) {
  llvm::SmallString<64> TemplateMangling;
  llvm::raw_svector_ostream Stream(TemplateMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);

  Stream << "?$";
  switch (Quals.getObjCLifetime()) {
  case Qualifiers::OCL_None:
  case Qualifiers::OCL_ExplicitNone:
    break;
  case Qualifiers::OCL_Autoreleasing:
    Extra.mangleSourceName("Autoreleasing");
    break;
  case Qualifiers::OCL_Strong:
    Extra.mangleSourceName("Strong");
    break;
  case Qualifiers::OCL_Weak:
    Extra.mangleSourceName("Weak");
    break;
  }
  Extra.manglePointerCVQualifiers(Quals);
  Extra.manglePointerExtQualifiers(Quals, Type);
  Extra.mangleType(Type, Range);

  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
}

void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
                                                   Qualifiers Quals,
                                                   SourceRange Range) {
  llvm::SmallString<64> TemplateMangling;
  llvm::raw_svector_ostream Stream(TemplateMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);

  Stream << "?$";
  Extra.mangleSourceName("KindOf");
  Extra.mangleType(QualType(T, 0)
                       .stripObjCKindOfType(getASTContext())
                       ->getAs<ObjCObjectType>(),
                   Quals, Range);

  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
}

void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
                                               bool IsMember) {
  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
  // 'I' means __restrict (32/64-bit).
  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
  // keyword!
  // <base-cvr-qualifiers> ::= A  # near
  //                       ::= B  # near const
  //                       ::= C  # near volatile
  //                       ::= D  # near const volatile
  //                       ::= E  # far (16-bit)
  //                       ::= F  # far const (16-bit)
  //                       ::= G  # far volatile (16-bit)
  //                       ::= H  # far const volatile (16-bit)
  //                       ::= I  # huge (16-bit)
  //                       ::= J  # huge const (16-bit)
  //                       ::= K  # huge volatile (16-bit)
  //                       ::= L  # huge const volatile (16-bit)
  //                       ::= M <basis> # based
  //                       ::= N <basis> # based const
  //                       ::= O <basis> # based volatile
  //                       ::= P <basis> # based const volatile
  //                       ::= Q  # near member
  //                       ::= R  # near const member
  //                       ::= S  # near volatile member
  //                       ::= T  # near const volatile member
  //                       ::= U  # far member (16-bit)
  //                       ::= V  # far const member (16-bit)
  //                       ::= W  # far volatile member (16-bit)
  //                       ::= X  # far const volatile member (16-bit)
  //                       ::= Y  # huge member (16-bit)
  //                       ::= Z  # huge const member (16-bit)
  //                       ::= 0  # huge volatile member (16-bit)
  //                       ::= 1  # huge const volatile member (16-bit)
  //                       ::= 2 <basis> # based member
  //                       ::= 3 <basis> # based const member
  //                       ::= 4 <basis> # based volatile member
  //                       ::= 5 <basis> # based const volatile member
  //                       ::= 6  # near function (pointers only)
  //                       ::= 7  # far function (pointers only)
  //                       ::= 8  # near method (pointers only)
  //                       ::= 9  # far method (pointers only)
  //                       ::= _A <basis> # based function (pointers only)
  //                       ::= _B <basis> # based function (far?) (pointers only)
  //                       ::= _C <basis> # based method (pointers only)
  //                       ::= _D <basis> # based method (far?) (pointers only)
  //                       ::= _E # block (Clang)
  // <basis> ::= 0 # __based(void)
  //         ::= 1 # __based(segment)?
  //         ::= 2 <name> # __based(name)
  //         ::= 3 # ?
  //         ::= 4 # ?
  //         ::= 5 # not really based
  bool HasConst = Quals.hasConst(),
       HasVolatile = Quals.hasVolatile();

  if (!IsMember) {
    if (HasConst && HasVolatile) {
      Out << 'D';
    } else if (HasVolatile) {
      Out << 'C';
    } else if (HasConst) {
      Out << 'B';
    } else {
      Out << 'A';
    }
  } else {
    if (HasConst && HasVolatile) {
      Out << 'T';
    } else if (HasVolatile) {
      Out << 'S';
    } else if (HasConst) {
      Out << 'R';
    } else {
      Out << 'Q';
    }
  }

  // FIXME: For now, just drop all extension qualifiers on the floor.
}

void
MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
  // <ref-qualifier> ::= G                # lvalue reference
  //                 ::= H                # rvalue-reference
  switch (RefQualifier) {
  case RQ_None:
    break;

  case RQ_LValue:
    Out << 'G';
    break;

  case RQ_RValue:
    Out << 'H';
    break;
  }
}

void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
                                                         QualType PointeeType) {
  // Check if this is a default 64-bit pointer or has __ptr64 qualifier.
  bool is64Bit = PointeeType.isNull() ? PointersAre64Bit :
      is64BitPointer(PointeeType.getQualifiers());
  if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType()))
    Out << 'E';

  if (Quals.hasRestrict())
    Out << 'I';

  if (Quals.hasUnaligned() ||
      (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
    Out << 'F';
}

void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
  // <pointer-cv-qualifiers> ::= P  # no qualifiers
  //                         ::= Q  # const
  //                         ::= R  # volatile
  //                         ::= S  # const volatile
  bool HasConst = Quals.hasConst(),
       HasVolatile = Quals.hasVolatile();

  if (HasConst && HasVolatile) {
    Out << 'S';
  } else if (HasVolatile) {
    Out << 'R';
  } else if (HasConst) {
    Out << 'Q';
  } else {
    Out << 'P';
  }
}

void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
                                                         SourceRange Range) {
  // MSVC will backreference two canonically equivalent types that have slightly
  // different manglings when mangled alone.

  // Decayed types do not match up with non-decayed versions of the same type.
  //
  // e.g.
  // void (*x)(void) will not form a backreference with void x(void)
  void *TypePtr;
  if (const auto *DT = T->getAs<DecayedType>()) {
    QualType OriginalType = DT->getOriginalType();
    // All decayed ArrayTypes should be treated identically; as-if they were
    // a decayed IncompleteArrayType.
    if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
      OriginalType = getASTContext().getIncompleteArrayType(
          AT->getElementType(), AT->getSizeModifier(),
          AT->getIndexTypeCVRQualifiers());

    TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
    // If the original parameter was textually written as an array,
    // instead treat the decayed parameter like it's const.
    //
    // e.g.
    // int [] -> int * const
    if (OriginalType->isArrayType())
      T = T.withConst();
  } else {
    TypePtr = T.getCanonicalType().getAsOpaquePtr();
  }

  ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);

  if (Found == FunArgBackReferences.end()) {
    size_t OutSizeBefore = Out.tell();

    mangleType(T, Range, QMM_Drop);

    // See if it's worth creating a back reference.
    // Only types longer than 1 character are considered
    // and only 10 back references slots are available:
    bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
    if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
      size_t Size = FunArgBackReferences.size();
      FunArgBackReferences[TypePtr] = Size;
    }
  } else {
    Out << Found->second;
  }
}

void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
    const PassObjectSizeAttr *POSA) {
  int Type = POSA->getType();
  bool Dynamic = POSA->isDynamic();

  auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first;
  auto *TypePtr = (const void *)&*Iter;
  ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);

  if (Found == FunArgBackReferences.end()) {
    std::string Name =
        Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
    mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"});

    if (FunArgBackReferences.size() < 10) {
      size_t Size = FunArgBackReferences.size();
      FunArgBackReferences[TypePtr] = Size;
    }
  } else {
    Out << Found->second;
  }
}

void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
                                                     Qualifiers Quals,
                                                     SourceRange Range) {
  // Address space is mangled as an unqualified templated type in the __clang
  // namespace. The demangled version of this is:
  // In the case of a language specific address space:
  // __clang::struct _AS[language_addr_space]<Type>
  // where:
  //  <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
  //    <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
  //                                "private"| "generic" | "device" | "host" ]
  //    <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
  //    Note that the above were chosen to match the Itanium mangling for this.
  //
  // In the case of a non-language specific address space:
  //  __clang::struct _AS<TargetAS, Type>
  assert(Quals.hasAddressSpace() && "Not valid without address space");
  llvm::SmallString<32> ASMangling;
  llvm::raw_svector_ostream Stream(ASMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);
  Stream << "?$";

  LangAS AS = Quals.getAddressSpace();
  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
    unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
    Extra.mangleSourceName("_AS");
    Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS));
  } else {
    switch (AS) {
    default:
      llvm_unreachable("Not a language specific address space");
    case LangAS::opencl_global:
      Extra.mangleSourceName("_ASCLglobal");
      break;
    case LangAS::opencl_global_device:
      Extra.mangleSourceName("_ASCLdevice");
      break;
    case LangAS::opencl_global_host:
      Extra.mangleSourceName("_ASCLhost");
      break;
    case LangAS::opencl_local:
      Extra.mangleSourceName("_ASCLlocal");
      break;
    case LangAS::opencl_constant:
      Extra.mangleSourceName("_ASCLconstant");
      break;
    case LangAS::opencl_private:
      Extra.mangleSourceName("_ASCLprivate");
      break;
    case LangAS::opencl_generic:
      Extra.mangleSourceName("_ASCLgeneric");
      break;
    case LangAS::cuda_device:
      Extra.mangleSourceName("_ASCUdevice");
      break;
    case LangAS::cuda_constant:
      Extra.mangleSourceName("_ASCUconstant");
      break;
    case LangAS::cuda_shared:
      Extra.mangleSourceName("_ASCUshared");
      break;
    case LangAS::ptr32_sptr:
    case LangAS::ptr32_uptr:
    case LangAS::ptr64:
      llvm_unreachable("don't mangle ptr address spaces with _AS");
    }
  }

  Extra.mangleType(T, Range, QMM_Escape);
  mangleQualifiers(Qualifiers(), false);
  mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"});
}

void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
                                         QualifierMangleMode QMM) {
  // Don't use the canonical types.  MSVC includes things like 'const' on
  // pointer arguments to function pointers that canonicalization strips away.
  T = T.getDesugaredType(getASTContext());
  Qualifiers Quals = T.getLocalQualifiers();

  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
    // If there were any Quals, getAsArrayType() pushed them onto the array
    // element type.
    if (QMM == QMM_Mangle)
      Out << 'A';
    else if (QMM == QMM_Escape || QMM == QMM_Result)
      Out << "$$B";
    mangleArrayType(AT);
    return;
  }

  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
                   T->isReferenceType() || T->isBlockPointerType();

  switch (QMM) {
  case QMM_Drop:
    if (Quals.hasObjCLifetime())
      Quals = Quals.withoutObjCLifetime();
    break;
  case QMM_Mangle:
    if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
      Out << '6';
      mangleFunctionType(FT);
      return;
    }
    mangleQualifiers(Quals, false);
    break;
  case QMM_Escape:
    if (!IsPointer && Quals) {
      Out << "$$C";
      mangleQualifiers(Quals, false);
    }
    break;
  case QMM_Result:
    // Presence of __unaligned qualifier shouldn't affect mangling here.
    Quals.removeUnaligned();
    if (Quals.hasObjCLifetime())
      Quals = Quals.withoutObjCLifetime();
    if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
      Out << '?';
      mangleQualifiers(Quals, false);
    }
    break;
  }

  const Type *ty = T.getTypePtr();

  switch (ty->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
  case Type::CLASS: \
    llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
    return;
#define TYPE(CLASS, PARENT) \
  case Type::CLASS: \
    mangleType(cast<CLASS##Type>(ty), Quals, Range); \
    break;
#include "clang/AST/TypeNodes.inc"
#undef ABSTRACT_TYPE
#undef NON_CANONICAL_TYPE
#undef TYPE
  }
}

void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
                                         SourceRange Range) {
  //  <type>         ::= <builtin-type>
  //  <builtin-type> ::= X  # void
  //                 ::= C  # signed char
  //                 ::= D  # char
  //                 ::= E  # unsigned char
  //                 ::= F  # short
  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
  //                 ::= H  # int
  //                 ::= I  # unsigned int
  //                 ::= J  # long
  //                 ::= K  # unsigned long
  //                     L  # <none>
  //                 ::= M  # float
  //                 ::= N  # double
  //                 ::= O  # long double (__float80 is mangled differently)
  //                 ::= _J # long long, __int64
  //                 ::= _K # unsigned long long, __int64
  //                 ::= _L # __int128
  //                 ::= _M # unsigned __int128
  //                 ::= _N # bool
  //                     _O # <array in parameter>
  //                 ::= _Q # char8_t
  //                 ::= _S # char16_t
  //                 ::= _T # __float80 (Intel)
  //                 ::= _U # char32_t
  //                 ::= _W # wchar_t
  //                 ::= _Z # __float80 (Digital Mars)
  switch (T->getKind()) {
  case BuiltinType::Void:
    Out << 'X';
    break;
  case BuiltinType::SChar:
    Out << 'C';
    break;
  case BuiltinType::Char_U:
  case BuiltinType::Char_S:
    Out << 'D';
    break;
  case BuiltinType::UChar:
    Out << 'E';
    break;
  case BuiltinType::Short:
    Out << 'F';
    break;
  case BuiltinType::UShort:
    Out << 'G';
    break;
  case BuiltinType::Int:
    Out << 'H';
    break;
  case BuiltinType::UInt:
    Out << 'I';
    break;
  case BuiltinType::Long:
    Out << 'J';
    break;
  case BuiltinType::ULong:
    Out << 'K';
    break;
  case BuiltinType::Float:
    Out << 'M';
    break;
  case BuiltinType::Double:
    Out << 'N';
    break;
  // TODO: Determine size and mangle accordingly
  case BuiltinType::LongDouble:
    Out << 'O';
    break;
  case BuiltinType::LongLong:
    Out << "_J";
    break;
  case BuiltinType::ULongLong:
    Out << "_K";
    break;
  case BuiltinType::Int128:
    Out << "_L";
    break;
  case BuiltinType::UInt128:
    Out << "_M";
    break;
  case BuiltinType::Bool:
    Out << "_N";
    break;
  case BuiltinType::Char8:
    Out << "_Q";
    break;
  case BuiltinType::Char16:
    Out << "_S";
    break;
  case BuiltinType::Char32:
    Out << "_U";
    break;
  case BuiltinType::WChar_S:
  case BuiltinType::WChar_U:
    Out << "_W";
    break;

#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
  case BuiltinType::Dependent:
    llvm_unreachable("placeholder types shouldn't get to name mangling");

  case BuiltinType::ObjCId:
    mangleArtificialTagType(TTK_Struct, "objc_object");
    break;
  case BuiltinType::ObjCClass:
    mangleArtificialTagType(TTK_Struct, "objc_class");
    break;
  case BuiltinType::ObjCSel:
    mangleArtificialTagType(TTK_Struct, "objc_selector");
    break;

#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  case BuiltinType::Id: \
    Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
    break;
#include "clang/Basic/OpenCLImageTypes.def"
  case BuiltinType::OCLSampler:
    Out << "PA";
    mangleArtificialTagType(TTK_Struct, "ocl_sampler");
    break;
  case BuiltinType::OCLEvent:
    Out << "PA";
    mangleArtificialTagType(TTK_Struct, "ocl_event");
    break;
  case BuiltinType::OCLClkEvent:
    Out << "PA";
    mangleArtificialTagType(TTK_Struct, "ocl_clkevent");
    break;
  case BuiltinType::OCLQueue:
    Out << "PA";
    mangleArtificialTagType(TTK_Struct, "ocl_queue");
    break;
  case BuiltinType::OCLReserveID:
    Out << "PA";
    mangleArtificialTagType(TTK_Struct, "ocl_reserveid");
    break;
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
  case BuiltinType::Id: \
    mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \
    break;
#include "clang/Basic/OpenCLExtensionTypes.def"

  case BuiltinType::NullPtr:
    Out << "$$T";
    break;

  case BuiltinType::Float16:
    mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"});
    break;

  case BuiltinType::Half:
    mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"});
    break;

#define SVE_TYPE(Name, Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
#define PPC_VECTOR_TYPE(Name, Id, Size) \
  case BuiltinType::Id:
#include "clang/Basic/PPCTypes.def"
#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/RISCVVTypes.def"
  case BuiltinType::ShortAccum:
  case BuiltinType::Accum:
  case BuiltinType::LongAccum:
  case BuiltinType::UShortAccum:
  case BuiltinType::UAccum:
  case BuiltinType::ULongAccum:
  case BuiltinType::ShortFract:
  case BuiltinType::Fract:
  case BuiltinType::LongFract:
  case BuiltinType::UShortFract:
  case BuiltinType::UFract:
  case BuiltinType::ULongFract:
  case BuiltinType::SatShortAccum:
  case BuiltinType::SatAccum:
  case BuiltinType::SatLongAccum:
  case BuiltinType::SatUShortAccum:
  case BuiltinType::SatUAccum:
  case BuiltinType::SatULongAccum:
  case BuiltinType::SatShortFract:
  case BuiltinType::SatFract:
  case BuiltinType::SatLongFract:
  case BuiltinType::SatUShortFract:
  case BuiltinType::SatUFract:
  case BuiltinType::SatULongFract:
  case BuiltinType::BFloat16:
  case BuiltinType::Float128: {
    DiagnosticsEngine &Diags = Context.getDiags();
    unsigned DiagID = Diags.getCustomDiagID(
        DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
    Diags.Report(Range.getBegin(), DiagID)
        << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
    break;
  }
  }
}

// <type>          ::= <function-type>
void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
                                         SourceRange) {
  // Structors only appear in decls, so at this point we know it's not a
  // structor type.
  // FIXME: This may not be lambda-friendly.
  if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
    Out << "$$A8@@";
    mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
  } else {
    Out << "$$A6";
    mangleFunctionType(T);
  }
}
void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
                                         Qualifiers, SourceRange) {
  Out << "$$A6";
  mangleFunctionType(T);
}

void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
                                                 const FunctionDecl *D,
                                                 bool ForceThisQuals,
                                                 bool MangleExceptionSpec) {
  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
  //                     <return-type> <argument-list> <throw-spec>
  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);

  SourceRange Range;
  if (D) Range = D->getSourceRange();

  bool IsInLambda = false;
  bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
  CallingConv CC = T->getCallConv();
  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
    if (MD->getParent()->isLambda())
      IsInLambda = true;
    if (MD->isInstance())
      HasThisQuals = true;
    if (isa<CXXDestructorDecl>(MD)) {
      IsStructor = true;
    } else if (isa<CXXConstructorDecl>(MD)) {
      IsStructor = true;
      IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
                       StructorType == Ctor_DefaultClosure) &&
                      isStructorDecl(MD);
      if (IsCtorClosure)
        CC = getASTContext().getDefaultCallingConvention(
            /*IsVariadic=*/false, /*IsCXXMethod=*/true);
    }
  }

  // If this is a C++ instance method, mangle the CVR qualifiers for the
  // this pointer.
  if (HasThisQuals) {
    Qualifiers Quals = Proto->getMethodQuals();
    manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
    mangleRefQualifier(Proto->getRefQualifier());
    mangleQualifiers(Quals, /*IsMember=*/false);
  }

  mangleCallingConvention(CC);

  // <return-type> ::= <type>
  //               ::= @ # structors (they have no declared return type)
  if (IsStructor) {
    if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
      // The scalar deleting destructor takes an extra int argument which is not
      // reflected in the AST.
      if (StructorType == Dtor_Deleting) {
        Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
        return;
      }
      // The vbase destructor returns void which is not reflected in the AST.
      if (StructorType == Dtor_Complete) {
        Out << "XXZ";
        return;
      }
    }
    if (IsCtorClosure) {
      // Default constructor closure and copy constructor closure both return
      // void.
      Out << 'X';

      if (StructorType == Ctor_DefaultClosure) {
        // Default constructor closure always has no arguments.
        Out << 'X';
      } else if (StructorType == Ctor_CopyingClosure) {
        // Copy constructor closure always takes an unqualified reference.
        mangleFunctionArgumentType(getASTContext().getLValueReferenceType(
                                       Proto->getParamType(0)
                                           ->getAs<LValueReferenceType>()
                                           ->getPointeeType(),
                                       /*SpelledAsLValue=*/true),
                                   Range);
        Out << '@';
      } else {
        llvm_unreachable("unexpected constructor closure!");
      }
      Out << 'Z';
      return;
    }
    Out << '@';
  } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) {
    // The only lambda conversion operators are to function pointers, which
    // can differ by their calling convention and are typically deduced.  So
    // we make sure that this type gets mangled properly.
    mangleType(T->getReturnType(), Range, QMM_Result);
  } else {
    QualType ResultType = T->getReturnType();
    if (IsInLambda && isa<CXXConversionDecl>(D)) {
      // The only lambda conversion operators are to function pointers, which
      // can differ by their calling convention and are typically deduced.  So
      // we make sure that this type gets mangled properly.
      mangleType(ResultType, Range, QMM_Result);
    } else if (const auto *AT = dyn_cast_or_null<AutoType>(
                   ResultType->getContainedAutoType())) {
      Out << '?';
      mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
      Out << '?';
      assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
             "shouldn't need to mangle __auto_type!");
      mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
      Out << '@';
    } else if (IsInLambda) {
      Out << '@';
    } else {
      if (ResultType->isVoidType())
        ResultType = ResultType.getUnqualifiedType();
      mangleType(ResultType, Range, QMM_Result);
    }
  }

  // <argument-list> ::= X # void
  //                 ::= <type>+ @
  //                 ::= <type>* Z # varargs
  if (!Proto) {
    // Function types without prototypes can arise when mangling a function type
    // within an overloadable function in C. We mangle these as the absence of
    // any parameter types (not even an empty parameter list).
    Out << '@';
  } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
    Out << 'X';
  } else {
    // Happens for function pointer type arguments for example.
    for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
      mangleFunctionArgumentType(Proto->getParamType(I), Range);
      // Mangle each pass_object_size parameter as if it's a parameter of enum
      // type passed directly after the parameter with the pass_object_size
      // attribute. The aforementioned enum's name is __pass_object_size, and we
      // pretend it resides in a top-level namespace called __clang.
      //
      // FIXME: Is there a defined extension notation for the MS ABI, or is it
      // necessary to just cross our fingers and hope this type+namespace
      // combination doesn't conflict with anything?
      if (D)
        if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
          manglePassObjectSizeArg(P);
    }
    // <builtin-type>      ::= Z  # ellipsis
    if (Proto->isVariadic())
      Out << 'Z';
    else
      Out << '@';
  }

  if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
      getASTContext().getLangOpts().isCompatibleWithMSVC(
          LangOptions::MSVC2017_5))
    mangleThrowSpecification(Proto);
  else
    Out << 'Z';
}

void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
  // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
  //                                            # pointer. in 64-bit mode *all*
  //                                            # 'this' pointers are 64-bit.
  //                   ::= <global-function>
  // <member-function> ::= A # private: near
  //                   ::= B # private: far
  //                   ::= C # private: static near
  //                   ::= D # private: static far
  //                   ::= E # private: virtual near
  //                   ::= F # private: virtual far
  //                   ::= I # protected: near
  //                   ::= J # protected: far
  //                   ::= K # protected: static near
  //                   ::= L # protected: static far
  //                   ::= M # protected: virtual near
  //                   ::= N # protected: virtual far
  //                   ::= Q # public: near
  //                   ::= R # public: far
  //                   ::= S # public: static near
  //                   ::= T # public: static far
  //                   ::= U # public: virtual near
  //                   ::= V # public: virtual far
  // <global-function> ::= Y # global near
  //                   ::= Z # global far
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    bool IsVirtual = MD->isVirtual();
    // When mangling vbase destructor variants, ignore whether or not the
    // underlying destructor was defined to be virtual.
    if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
        StructorType == Dtor_Complete) {
      IsVirtual = false;
    }
    switch (MD->getAccess()) {
      case AS_none:
        llvm_unreachable("Unsupported access specifier");
      case AS_private:
        if (MD->isStatic())
          Out << 'C';
        else if (IsVirtual)
          Out << 'E';
        else
          Out << 'A';
        break;
      case AS_protected:
        if (MD->isStatic())
          Out << 'K';
        else if (IsVirtual)
          Out << 'M';
        else
          Out << 'I';
        break;
      case AS_public:
        if (MD->isStatic())
          Out << 'S';
        else if (IsVirtual)
          Out << 'U';
        else
          Out << 'Q';
    }
  } else {
    Out << 'Y';
  }
}
void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
  // <calling-convention> ::= A # __cdecl
  //                      ::= B # __export __cdecl
  //                      ::= C # __pascal
  //                      ::= D # __export __pascal
  //                      ::= E # __thiscall
  //                      ::= F # __export __thiscall
  //                      ::= G # __stdcall
  //                      ::= H # __export __stdcall
  //                      ::= I # __fastcall
  //                      ::= J # __export __fastcall
  //                      ::= Q # __vectorcall
  //                      ::= S # __attribute__((__swiftcall__)) // Clang-only
  //                      ::= w # __regcall
  // The 'export' calling conventions are from a bygone era
  // (*cough*Win16*cough*) when functions were declared for export with
  // that keyword. (It didn't actually export them, it just made them so
  // that they could be in a DLL and somebody from another module could call
  // them.)

  switch (CC) {
    default:
      llvm_unreachable("Unsupported CC for mangling");
    case CC_Win64:
    case CC_X86_64SysV:
    case CC_C: Out << 'A'; break;
    case CC_X86Pascal: Out << 'C'; break;
    case CC_X86ThisCall: Out << 'E'; break;
    case CC_X86StdCall: Out << 'G'; break;
    case CC_X86FastCall: Out << 'I'; break;
    case CC_X86VectorCall: Out << 'Q'; break;
    case CC_Swift: Out << 'S'; break;
    case CC_PreserveMost: Out << 'U'; break;
    case CC_X86RegCall: Out << 'w'; break;
  }
}
void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
  mangleCallingConvention(T->getCallConv());
}

void MicrosoftCXXNameMangler::mangleThrowSpecification(
                                                const FunctionProtoType *FT) {
  // <throw-spec> ::= Z # (default)
  //              ::= _E # noexcept
  if (FT->canThrow())
    Out << 'Z';
  else
    Out << "_E";
}

void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
                                         Qualifiers, SourceRange Range) {
  // Probably should be mangled as a template instantiation; need to see what
  // VC does first.
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this unresolved dependent type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
// <union-type>  ::= T <name>
// <struct-type> ::= U <name>
// <class-type>  ::= V <name>
// <enum-type>   ::= W4 <name>
void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
  switch (TTK) {
    case TTK_Union:
      Out << 'T';
      break;
    case TTK_Struct:
    case TTK_Interface:
      Out << 'U';
      break;
    case TTK_Class:
      Out << 'V';
      break;
    case TTK_Enum:
      Out << "W4";
      break;
  }
}
void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
                                         SourceRange) {
  mangleType(cast<TagType>(T)->getDecl());
}
void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
                                         SourceRange) {
  mangleType(cast<TagType>(T)->getDecl());
}
void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
  mangleTagTypeKind(TD->getTagKind());
  mangleName(TD);
}

// If you add a call to this, consider updating isArtificialTagType() too.
void MicrosoftCXXNameMangler::mangleArtificialTagType(
    TagTypeKind TK, StringRef UnqualifiedName,
    ArrayRef<StringRef> NestedNames) {
  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
  mangleTagTypeKind(TK);

  // Always start with the unqualified name.
  mangleSourceName(UnqualifiedName);

  for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
    mangleSourceName(*I);

  // Terminate the whole name with an '@'.
  Out << '@';
}

// <type>       ::= <array-type>
// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
//                  [Y <dimension-count> <dimension>+]
//                  <element-type> # as global, E is never required
// It's supposed to be the other way around, but for some strange reason, it
// isn't. Today this behavior is retained for the sole purpose of backwards
// compatibility.
void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
  // This isn't a recursive mangling, so now we have to do it all in this
  // one call.
  manglePointerCVQualifiers(T->getElementType().getQualifiers());
  mangleType(T->getElementType(), SourceRange());
}
void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
                                         SourceRange) {
  llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
                                         SourceRange) {
  llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
                                         Qualifiers, SourceRange) {
  llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
                                         Qualifiers, SourceRange) {
  llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
  QualType ElementTy(T, 0);
  SmallVector<llvm::APInt, 3> Dimensions;
  for (;;) {
    if (ElementTy->isConstantArrayType()) {
      const ConstantArrayType *CAT =
          getASTContext().getAsConstantArrayType(ElementTy);
      Dimensions.push_back(CAT->getSize());
      ElementTy = CAT->getElementType();
    } else if (ElementTy->isIncompleteArrayType()) {
      const IncompleteArrayType *IAT =
          getASTContext().getAsIncompleteArrayType(ElementTy);
      Dimensions.push_back(llvm::APInt(32, 0));
      ElementTy = IAT->getElementType();
    } else if (ElementTy->isVariableArrayType()) {
      const VariableArrayType *VAT =
        getASTContext().getAsVariableArrayType(ElementTy);
      Dimensions.push_back(llvm::APInt(32, 0));
      ElementTy = VAT->getElementType();
    } else if (ElementTy->isDependentSizedArrayType()) {
      // The dependent expression has to be folded into a constant (TODO).
      const DependentSizedArrayType *DSAT =
        getASTContext().getAsDependentSizedArrayType(ElementTy);
      DiagnosticsEngine &Diags = Context.getDiags();
      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
        "cannot mangle this dependent-length array yet");
      Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
        << DSAT->getBracketsRange();
      return;
    } else {
      break;
    }
  }
  Out << 'Y';
  // <dimension-count> ::= <number> # number of extra dimensions
  mangleNumber(Dimensions.size());
  for (const llvm::APInt &Dimension : Dimensions)
    mangleNumber(Dimension.getLimitedValue());
  mangleType(ElementTy, SourceRange(), QMM_Escape);
}

// <type>                   ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
//                                                          <class name> <type>
void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
                                         Qualifiers Quals, SourceRange Range) {
  QualType PointeeType = T->getPointeeType();
  manglePointerCVQualifiers(Quals);
  manglePointerExtQualifiers(Quals, PointeeType);
  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
    Out << '8';
    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
    mangleFunctionType(FPT, nullptr, true);
  } else {
    mangleQualifiers(PointeeType.getQualifiers(), true);
    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
    mangleType(PointeeType, Range, QMM_Drop);
  }
}

void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this template type parameter type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this substituted parameter pack yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

// <type> ::= <pointer-type>
// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
//                       # the E is required for 64-bit non-static pointers
void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
                                         SourceRange Range) {
  QualType PointeeType = T->getPointeeType();
  manglePointerCVQualifiers(Quals);
  manglePointerExtQualifiers(Quals, PointeeType);

  // For pointer size address spaces, go down the same type mangling path as
  // non address space types.
  LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace();
  if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default)
    mangleType(PointeeType, Range);
  else
    mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range);
}

void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
                                         Qualifiers Quals, SourceRange Range) {
  QualType PointeeType = T->getPointeeType();
  switch (Quals.getObjCLifetime()) {
  case Qualifiers::OCL_None:
  case Qualifiers::OCL_ExplicitNone:
    break;
  case Qualifiers::OCL_Autoreleasing:
  case Qualifiers::OCL_Strong:
  case Qualifiers::OCL_Weak:
    return mangleObjCLifetime(PointeeType, Quals, Range);
  }
  manglePointerCVQualifiers(Quals);
  manglePointerExtQualifiers(Quals, PointeeType);
  mangleType(PointeeType, Range);
}

// <type> ::= <reference-type>
// <reference-type> ::= A E? <cvr-qualifiers> <type>
//                 # the E is required for 64-bit non-static lvalue references
void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
                                         Qualifiers Quals, SourceRange Range) {
  QualType PointeeType = T->getPointeeType();
  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
  Out << 'A';
  manglePointerExtQualifiers(Quals, PointeeType);
  mangleType(PointeeType, Range);
}

// <type> ::= <r-value-reference-type>
// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
//                 # the E is required for 64-bit non-static rvalue references
void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
                                         Qualifiers Quals, SourceRange Range) {
  QualType PointeeType = T->getPointeeType();
  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
  Out << "$$Q";
  manglePointerExtQualifiers(Quals, PointeeType);
  mangleType(PointeeType, Range);
}

void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
                                         SourceRange Range) {
  QualType ElementType = T->getElementType();

  llvm::SmallString<64> TemplateMangling;
  llvm::raw_svector_ostream Stream(TemplateMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);
  Stream << "?$";
  Extra.mangleSourceName("_Complex");
  Extra.mangleType(ElementType, Range, QMM_Escape);

  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
}

// Returns true for types that mangleArtificialTagType() gets called for with
// TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
// mangling matters.
// (It doesn't matter for Objective-C types and the like that cl.exe doesn't
// support.)
bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
  const Type *ty = T.getTypePtr();
  switch (ty->getTypeClass()) {
  default:
    return false;

  case Type::Vector: {
    // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
    // but since mangleType(VectorType*) always calls mangleArtificialTagType()
    // just always return true (the other vector types are clang-only).
    return true;
  }
  }
}

void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
                                         SourceRange Range) {
  const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
  assert(ET && "vectors with non-builtin elements are unsupported");
  uint64_t Width = getASTContext().getTypeSize(T);
  // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
  // doesn't match the Intel types uses a custom mangling below.
  size_t OutSizeBefore = Out.tell();
  if (!isa<ExtVectorType>(T)) {
    if (getASTContext().getTargetInfo().getTriple().isX86()) {
      if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
        mangleArtificialTagType(TTK_Union, "__m64");
      } else if (Width >= 128) {
        if (ET->getKind() == BuiltinType::Float)
          mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width));
        else if (ET->getKind() == BuiltinType::LongLong)
          mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
        else if (ET->getKind() == BuiltinType::Double)
          mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
      }
    }
  }

  bool IsBuiltin = Out.tell() != OutSizeBefore;
  if (!IsBuiltin) {
    // The MS ABI doesn't have a special mangling for vector types, so we define
    // our own mangling to handle uses of __vector_size__ on user-specified
    // types, and for extensions like __v4sf.

    llvm::SmallString<64> TemplateMangling;
    llvm::raw_svector_ostream Stream(TemplateMangling);
    MicrosoftCXXNameMangler Extra(Context, Stream);
    Stream << "?$";
    Extra.mangleSourceName("__vector");
    Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
    Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()));

    mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"});
  }
}

void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
                                         Qualifiers Quals, SourceRange Range) {
  mangleType(static_cast<const VectorType *>(T), Quals, Range);
}

void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(
      DiagnosticsEngine::Error,
      "cannot mangle this dependent-sized vector type yet");
  Diags.Report(Range.getBegin(), DiagID) << Range;
}

void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this dependent-sized extended vector type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T,
                                         Qualifiers quals, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
                                          "Cannot mangle this matrix type yet");
  Diags.Report(Range.getBegin(), DiagID) << Range;
}

void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T,
                                         Qualifiers quals, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(
      DiagnosticsEngine::Error,
      "Cannot mangle this dependent-sized matrix type yet");
  Diags.Report(Range.getBegin(), DiagID) << Range;
}

void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(
      DiagnosticsEngine::Error,
      "cannot mangle this dependent address space type yet");
  Diags.Report(Range.getBegin(), DiagID) << Range;
}

void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
                                         SourceRange) {
  // ObjC interfaces have structs underlying them.
  mangleTagTypeKind(TTK_Struct);
  mangleName(T->getDecl());
}

void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
                                         Qualifiers Quals, SourceRange Range) {
  if (T->isKindOfType())
    return mangleObjCKindOfType(T, Quals, Range);

  if (T->qual_empty() && !T->isSpecialized())
    return mangleType(T->getBaseType(), Range, QMM_Drop);

  ArgBackRefMap OuterFunArgsContext;
  ArgBackRefMap OuterTemplateArgsContext;
  BackRefVec OuterTemplateContext;

  FunArgBackReferences.swap(OuterFunArgsContext);
  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
  NameBackReferences.swap(OuterTemplateContext);

  mangleTagTypeKind(TTK_Struct);

  Out << "?$";
  if (T->isObjCId())
    mangleSourceName("objc_object");
  else if (T->isObjCClass())
    mangleSourceName("objc_class");
  else
    mangleSourceName(T->getInterface()->getName());

  for (const auto &Q : T->quals())
    mangleObjCProtocol(Q);

  if (T->isSpecialized())
    for (const auto &TA : T->getTypeArgs())
      mangleType(TA, Range, QMM_Drop);

  Out << '@';

  Out << '@';

  FunArgBackReferences.swap(OuterFunArgsContext);
  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
  NameBackReferences.swap(OuterTemplateContext);
}

void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
                                         Qualifiers Quals, SourceRange Range) {
  QualType PointeeType = T->getPointeeType();
  manglePointerCVQualifiers(Quals);
  manglePointerExtQualifiers(Quals, PointeeType);

  Out << "_E";

  mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
}

void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
                                         Qualifiers, SourceRange) {
  llvm_unreachable("Cannot mangle injected class name type.");
}

void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this template specialization type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
                                         SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this dependent name type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(
    const DependentTemplateSpecializationType *T, Qualifiers,
    SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this dependent template specialization type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
                                         SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this pack expansion yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
                                         SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this typeof(type) yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
                                         SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this typeof(expression) yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
                                         SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this decltype() yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this unary transform type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
                                         SourceRange Range) {
  assert(T->getDeducedType().isNull() && "expecting a dependent type!");

  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this 'auto' type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(
    const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) {
  assert(T->getDeducedType().isNull() && "expecting a dependent type!");

  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
    "cannot mangle this deduced class template specialization type yet");
  Diags.Report(Range.getBegin(), DiagID)
    << Range;
}

void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
                                         SourceRange Range) {
  QualType ValueType = T->getValueType();

  llvm::SmallString<64> TemplateMangling;
  llvm::raw_svector_ostream Stream(TemplateMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);
  Stream << "?$";
  Extra.mangleSourceName("_Atomic");
  Extra.mangleType(ValueType, Range, QMM_Escape);

  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
}

void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
                                         SourceRange Range) {
  QualType ElementType = T->getElementType();

  llvm::SmallString<64> TemplateMangling;
  llvm::raw_svector_ostream Stream(TemplateMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);
  Stream << "?$";
  Extra.mangleSourceName("ocl_pipe");
  Extra.mangleType(ElementType, Range, QMM_Escape);
  Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly()));

  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
}

void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD,
                                               raw_ostream &Out) {
  const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
                                 getASTContext().getSourceManager(),
                                 "Mangling declaration");

  msvc_hashing_ostream MHO(Out);

  if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
    auto Type = GD.getCtorType();
    MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type);
    return mangler.mangle(D);
  }

  if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
    auto Type = GD.getDtorType();
    MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type);
    return mangler.mangle(D);
  }

  MicrosoftCXXNameMangler Mangler(*this, MHO);
  return Mangler.mangle(D);
}

void MicrosoftCXXNameMangler::mangleType(const ExtIntType *T, Qualifiers,
                                         SourceRange Range) {
  llvm::SmallString<64> TemplateMangling;
  llvm::raw_svector_ostream Stream(TemplateMangling);
  MicrosoftCXXNameMangler Extra(Context, Stream);
  Stream << "?$";
  if (T->isUnsigned())
    Extra.mangleSourceName("_UExtInt");
  else
    Extra.mangleSourceName("_ExtInt");
  Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits()));

  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
}

void MicrosoftCXXNameMangler::mangleType(const DependentExtIntType *T,
                                         Qualifiers, SourceRange Range) {
  DiagnosticsEngine &Diags = Context.getDiags();
  unsigned DiagID = Diags.getCustomDiagID(
      DiagnosticsEngine::Error, "cannot mangle this DependentExtInt type yet");
  Diags.Report(Range.getBegin(), DiagID) << Range;
}

// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
//                       <virtual-adjustment>
// <no-adjustment>      ::= A # private near
//                      ::= B # private far
//                      ::= I # protected near
//                      ::= J # protected far
//                      ::= Q # public near
//                      ::= R # public far
// <static-adjustment>  ::= G <static-offset> # private near
//                      ::= H <static-offset> # private far
//                      ::= O <static-offset> # protected near
//                      ::= P <static-offset> # protected far
//                      ::= W <static-offset> # public near
//                      ::= X <static-offset> # public far
// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
//                      ::= $1 <virtual-shift> <static-offset> # private far
//                      ::= $2 <virtual-shift> <static-offset> # protected near
//                      ::= $3 <virtual-shift> <static-offset> # protected far
//                      ::= $4 <virtual-shift> <static-offset> # public near
//                      ::= $5 <virtual-shift> <static-offset> # public far
// <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
// <vtordisp-shift>     ::= <offset-to-vtordisp>
// <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
//                          <offset-to-vtordisp>
static void mangleThunkThisAdjustment(AccessSpecifier AS,
                                      const ThisAdjustment &Adjustment,
                                      MicrosoftCXXNameMangler &Mangler,
                                      raw_ostream &Out) {
  if (!Adjustment.Virtual.isEmpty()) {
    Out << '$';
    char AccessSpec;
    switch (AS) {
    case AS_none:
      llvm_unreachable("Unsupported access specifier");
    case AS_private:
      AccessSpec = '0';
      break;
    case AS_protected:
      AccessSpec = '2';
      break;
    case AS_public:
      AccessSpec = '4';
    }
    if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
      Out << 'R' << AccessSpec;
      Mangler.mangleNumber(
          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
      Mangler.mangleNumber(
          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
      Mangler.mangleNumber(
          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
      Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
    } else {
      Out << AccessSpec;
      Mangler.mangleNumber(
          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
      Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
    }
  } else if (Adjustment.NonVirtual != 0) {
    switch (AS) {
    case AS_none:
      llvm_unreachable("Unsupported access specifier");
    case AS_private:
      Out << 'G';
      break;
    case AS_protected:
      Out << 'O';
      break;
    case AS_public:
      Out << 'W';
    }
    Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
  } else {
    switch (AS) {
    case AS_none:
      llvm_unreachable("Unsupported access specifier");
    case AS_private:
      Out << 'A';
      break;
    case AS_protected:
      Out << 'I';
      break;
    case AS_public:
      Out << 'Q';
    }
  }
}

void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
    const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
    raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << '?';
  Mangler.mangleVirtualMemPtrThunk(MD, ML);
}

void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
                                             const ThunkInfo &Thunk,
                                             raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << '?';
  Mangler.mangleName(MD);

  // Usually the thunk uses the access specifier of the new method, but if this
  // is a covariant return thunk, then MSVC always uses the public access
  // specifier, and we do the same.
  AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
  mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO);

  if (!Thunk.Return.isEmpty())
    assert(Thunk.Method != nullptr &&
           "Thunk info should hold the overridee decl");

  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
  Mangler.mangleFunctionType(
      DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
}

void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
    const CXXDestructorDecl *DD, CXXDtorType Type,
    const ThisAdjustment &Adjustment, raw_ostream &Out) {
  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
  // mangling manually until we support both deleting dtor types.
  assert(Type == Dtor_Deleting);
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
  Mangler.getStream() << "??_E";
  Mangler.mangleName(DD->getParent());
  mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO);
  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
}

void MicrosoftMangleContextImpl::mangleCXXVFTable(
    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
    raw_ostream &Out) {
  // <mangled-name> ::= ?_7 <class-name> <storage-class>
  //                    <cvr-qualifiers> [<name>] @
  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
  // is always '6' for vftables.
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  if (Derived->hasAttr<DLLImportAttr>())
    Mangler.getStream() << "??_S";
  else
    Mangler.getStream() << "??_7";
  Mangler.mangleName(Derived);
  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
  for (const CXXRecordDecl *RD : BasePath)
    Mangler.mangleName(RD);
  Mangler.getStream() << '@';
}

void MicrosoftMangleContextImpl::mangleCXXVBTable(
    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
    raw_ostream &Out) {
  // <mangled-name> ::= ?_8 <class-name> <storage-class>
  //                    <cvr-qualifiers> [<name>] @
  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
  // is always '7' for vbtables.
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "??_8";
  Mangler.mangleName(Derived);
  Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
  for (const CXXRecordDecl *RD : BasePath)
    Mangler.mangleName(RD);
  Mangler.getStream() << '@';
}

void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "??_R0";
  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
  Mangler.getStream() << "@8";
}

void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
                                                   raw_ostream &Out) {
  MicrosoftCXXNameMangler Mangler(*this, Out);
  Mangler.getStream() << '.';
  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
}

void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
    const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "??_K";
  Mangler.mangleName(SrcRD);
  Mangler.getStream() << "$C";
  Mangler.mangleName(DstRD);
}

void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
                                                    bool IsVolatile,
                                                    bool IsUnaligned,
                                                    uint32_t NumEntries,
                                                    raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "_TI";
  if (IsConst)
    Mangler.getStream() << 'C';
  if (IsVolatile)
    Mangler.getStream() << 'V';
  if (IsUnaligned)
    Mangler.getStream() << 'U';
  Mangler.getStream() << NumEntries;
  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
}

void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
    QualType T, uint32_t NumEntries, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "_CTA";
  Mangler.getStream() << NumEntries;
  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
}

void MicrosoftMangleContextImpl::mangleCXXCatchableType(
    QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
    uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
    raw_ostream &Out) {
  MicrosoftCXXNameMangler Mangler(*this, Out);
  Mangler.getStream() << "_CT";

  llvm::SmallString<64> RTTIMangling;
  {
    llvm::raw_svector_ostream Stream(RTTIMangling);
    msvc_hashing_ostream MHO(Stream);
    mangleCXXRTTI(T, MHO);
  }
  Mangler.getStream() << RTTIMangling;

  // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
  // both older and newer versions include it.
  // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
  // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
  // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
  // Or 1912, 1913 aleady?).
  bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
                          LangOptions::MSVC2015) &&
                      !getASTContext().getLangOpts().isCompatibleWithMSVC(
                          LangOptions::MSVC2017_7);
  llvm::SmallString<64> CopyCtorMangling;
  if (!OmitCopyCtor && CD) {
    llvm::raw_svector_ostream Stream(CopyCtorMangling);
    msvc_hashing_ostream MHO(Stream);
    mangleCXXName(GlobalDecl(CD, CT), MHO);
  }
  Mangler.getStream() << CopyCtorMangling;

  Mangler.getStream() << Size;
  if (VBPtrOffset == -1) {
    if (NVOffset) {
      Mangler.getStream() << NVOffset;
    }
  } else {
    Mangler.getStream() << NVOffset;
    Mangler.getStream() << VBPtrOffset;
    Mangler.getStream() << VBIndex;
  }
}

void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
    const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
    uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "??_R1";
  Mangler.mangleNumber(NVOffset);
  Mangler.mangleNumber(VBPtrOffset);
  Mangler.mangleNumber(VBTableOffset);
  Mangler.mangleNumber(Flags);
  Mangler.mangleName(Derived);
  Mangler.getStream() << "8";
}

void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
    const CXXRecordDecl *Derived, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "??_R2";
  Mangler.mangleName(Derived);
  Mangler.getStream() << "8";
}

void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
    const CXXRecordDecl *Derived, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "??_R3";
  Mangler.mangleName(Derived);
  Mangler.getStream() << "8";
}

void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
    raw_ostream &Out) {
  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
  //                    <cvr-qualifiers> [<name>] @
  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
  // is always '6' for vftables.
  llvm::SmallString<64> VFTableMangling;
  llvm::raw_svector_ostream Stream(VFTableMangling);
  mangleCXXVFTable(Derived, BasePath, Stream);

  if (VFTableMangling.startswith("??@")) {
    assert(VFTableMangling.endswith("@"));
    Out << VFTableMangling << "??_R4@";
    return;
  }

  assert(VFTableMangling.startswith("??_7") ||
         VFTableMangling.startswith("??_S"));

  Out << "??_R4" << StringRef(VFTableMangling).drop_front(4);
}

void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  // The function body is in the same comdat as the function with the handler,
  // so the numbering here doesn't have to be the same across TUs.
  //
  // <mangled-name> ::= ?filt$ <filter-number> @0
  Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
  Mangler.mangleName(EnclosingDecl);
}

void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  // The function body is in the same comdat as the function with the handler,
  // so the numbering here doesn't have to be the same across TUs.
  //
  // <mangled-name> ::= ?fin$ <filter-number> @0
  Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
  Mangler.mangleName(EnclosingDecl);
}

void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
  // This is just a made up unique string for the purposes of tbaa.  undname
  // does *not* know how to demangle it.
  MicrosoftCXXNameMangler Mangler(*this, Out);
  Mangler.getStream() << '?';
  Mangler.mangleType(T, SourceRange());
}

void MicrosoftMangleContextImpl::mangleReferenceTemporary(
    const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);

  Mangler.getStream() << "?$RT" << ManglingNumber << '@';
  Mangler.mangle(VD, "");
}

void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
    const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);

  Mangler.getStream() << "?$TSS" << GuardNum << '@';
  Mangler.mangleNestedName(VD);
  Mangler.getStream() << "@4HA";
}

void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
                                                           raw_ostream &Out) {
  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
  //              ::= ?__J <postfix> @5 <scope-depth>
  //              ::= ?$S <guard-num> @ <postfix> @4IA

  // The first mangling is what MSVC uses to guard static locals in inline
  // functions.  It uses a different mangling in external functions to support
  // guarding more than 32 variables.  MSVC rejects inline functions with more
  // than 32 static locals.  We don't fully implement the second mangling
  // because those guards are not externally visible, and instead use LLVM's
  // default renaming when creating a new guard variable.
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);

  bool Visible = VD->isExternallyVisible();
  if (Visible) {
    Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
  } else {
    Mangler.getStream() << "?$S1@";
  }
  unsigned ScopeDepth = 0;
  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
    // If we do not have a discriminator and are emitting a guard variable for
    // use at global scope, then mangling the nested name will not be enough to
    // remove ambiguities.
    Mangler.mangle(VD, "");
  else
    Mangler.mangleNestedName(VD);
  Mangler.getStream() << (Visible ? "@5" : "@4IA");
  if (ScopeDepth)
    Mangler.mangleNumber(ScopeDepth);
}

void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
                                                    char CharCode,
                                                    raw_ostream &Out) {
  msvc_hashing_ostream MHO(Out);
  MicrosoftCXXNameMangler Mangler(*this, MHO);
  Mangler.getStream() << "??__" << CharCode;
  if (D->isStaticDataMember()) {
    Mangler.getStream() << '?';
    Mangler.mangleName(D);
    Mangler.mangleVariableEncoding(D);
    Mangler.getStream() << "@@";
  } else {
    Mangler.mangleName(D);
  }
  // This is the function class mangling.  These stubs are global, non-variadic,
  // cdecl functions that return void and take no args.
  Mangler.getStream() << "YAXXZ";
}

void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
                                                          raw_ostream &Out) {
  // <initializer-name> ::= ?__E <name> YAXXZ
  mangleInitFiniStub(D, 'E', Out);
}

void
MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
                                                          raw_ostream &Out) {
  // <destructor-name> ::= ?__F <name> YAXXZ
  mangleInitFiniStub(D, 'F', Out);
}

void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
                                                     raw_ostream &Out) {
  // <char-type> ::= 0   # char, char16_t, char32_t
  //                     # (little endian char data in mangling)
  //             ::= 1   # wchar_t (big endian char data in mangling)
  //
  // <literal-length> ::= <non-negative integer>  # the length of the literal
  //
  // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
  //                                              # trailing null bytes
  //
  // <encoded-string> ::= <simple character>           # uninteresting character
  //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
  //                                                   # encode the byte for the
  //                                                   # character
  //                  ::= '?' [a-z]                    # \xe1 - \xfa
  //                  ::= '?' [A-Z]                    # \xc1 - \xda
  //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
  //
  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
  //               <encoded-string> '@'
  MicrosoftCXXNameMangler Mangler(*this, Out);
  Mangler.getStream() << "??_C@_";

  // The actual string length might be different from that of the string literal
  // in cases like:
  // char foo[3] = "foobar";
  // char bar[42] = "foobar";
  // Where it is truncated or zero-padded to fit the array. This is the length
  // used for mangling, and any trailing null-bytes also need to be mangled.
  unsigned StringLength = getASTContext()
                              .getAsConstantArrayType(SL->getType())
                              ->getSize()
                              .getZExtValue();
  unsigned StringByteLength = StringLength * SL->getCharByteWidth();

  // <char-type>: The "kind" of string literal is encoded into the mangled name.
  if (SL->isWide())
    Mangler.getStream() << '1';
  else
    Mangler.getStream() << '0';

  // <literal-length>: The next part of the mangled name consists of the length
  // of the string in bytes.
  Mangler.mangleNumber(StringByteLength);

  auto GetLittleEndianByte = [&SL](unsigned Index) {
    unsigned CharByteWidth = SL->getCharByteWidth();
    if (Index / CharByteWidth >= SL->getLength())
      return static_cast<char>(0);
    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
    unsigned OffsetInCodeUnit = Index % CharByteWidth;
    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
  };

  auto GetBigEndianByte = [&SL](unsigned Index) {
    unsigned CharByteWidth = SL->getCharByteWidth();
    if (Index / CharByteWidth >= SL->getLength())
      return static_cast<char>(0);
    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
    unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
  };

  // CRC all the bytes of the StringLiteral.
  llvm::JamCRC JC;
  for (unsigned I = 0, E = StringByteLength; I != E; ++I)
    JC.update(GetLittleEndianByte(I));

  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
  // scheme.
  Mangler.mangleNumber(JC.getCRC());

  // <encoded-string>: The mangled name also contains the first 32 bytes
  // (including null-terminator bytes) of the encoded StringLiteral.
  // Each character is encoded by splitting them into bytes and then encoding
  // the constituent bytes.
  auto MangleByte = [&Mangler](char Byte) {
    // There are five different manglings for characters:
    // - [a-zA-Z0-9_$]: A one-to-one mapping.
    // - ?[a-z]: The range from \xe1 to \xfa.
    // - ?[A-Z]: The range from \xc1 to \xda.
    // - ?[0-9]: The set of [,/\:. \n\t'-].
    // - ?$XX: A fallback which maps nibbles.
    if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
      Mangler.getStream() << Byte;
    } else if (isLetter(Byte & 0x7f)) {
      Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
    } else {
      const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
                                   ' ', '\n', '\t', '\'', '-'};
      const char *Pos = llvm::find(SpecialChars, Byte);
      if (Pos != std::end(SpecialChars)) {
        Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
      } else {
        Mangler.getStream() << "?$";
        Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
        Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
      }
    }
  };

  // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
  unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
  unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
  for (unsigned I = 0; I != NumBytesToMangle; ++I) {
    if (SL->isWide())
      MangleByte(GetBigEndianByte(I));
    else
      MangleByte(GetLittleEndianByte(I));
  }

  Mangler.getStream() << '@';
}

MicrosoftMangleContext *
MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
  return new MicrosoftMangleContextImpl(Context, Diags);
}