Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
/*	  All Rights Reserved  	*/


/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#ifndef _SYS_SYSMACROS_H
#define	_SYS_SYSMACROS_H

#include <sys/param.h>
#include <sys/isa_defs.h>
#if defined(__FreeBSD__) && defined(_KERNEL)
#include <sys/libkern.h>
#endif
#if defined(__NetBSD__) && defined(_KERNEL)
#include <lib/libkern/libkern.h>
#endif

#ifdef	__cplusplus
extern "C" {
#endif

/*
 * Some macros for units conversion
 */
/*
 * Disk blocks (sectors) and bytes.
 */
#define	dtob(DD)	((DD) << DEV_BSHIFT)
#define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
#define	btodt(BB)	((BB) >> DEV_BSHIFT)
#define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)

/* common macros */
#ifndef MIN
#define	MIN(a, b)	((a) < (b) ? (a) : (b))
#endif
#ifndef MAX
#define	MAX(a, b)	((a) < (b) ? (b) : (a))
#endif
#ifndef ABS
#define	ABS(a)		((a) < 0 ? -(a) : (a))
#endif
#ifndef	SIGNOF
#define	SIGNOF(a)	((a) < 0 ? -1 : (a) > 0)
#endif

#ifdef _KERNEL

/*
 * Convert a single byte to/from binary-coded decimal (BCD).
 */
extern unsigned char byte_to_bcd[256];
extern unsigned char bcd_to_byte[256];

#define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
#define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]

#endif	/* _KERNEL */

#ifndef __NetBSD__
	
/*
 * WARNING: The device number macros defined here should not be used by device
 * drivers or user software. Device drivers should use the device functions
 * defined in the DDI/DKI interface (see also ddi.h). Application software
 * should make use of the library routines available in makedev(3). A set of
 * new device macros are provided to operate on the expanded device number
 * format supported in SVR4. Macro versions of the DDI device functions are
 * provided for use by kernel proper routines only. Macro routines bmajor(),
 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
 * their definitions changed at the next major release following SVR4.
 */

#define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
#define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
#define	O_MAXMAJ	0x7f	/* SVR3 max major value */
#define	O_MAXMIN	0xff	/* SVR3 max minor value */


#define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
#define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
#define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
#define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
				/* For 3b2 hardware devices the minor is */
				/* restricted to 256 (0-255) */

#ifdef _LP64
#define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
#define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
#define	L_MAXMAJ	0xfffffffful	/* max major value */
#define	L_MAXMIN	0xfffffffful	/* max minor value */
#else
#define	L_BITSMAJOR	L_BITSMAJOR32
#define	L_BITSMINOR	L_BITSMINOR32
#define	L_MAXMAJ	L_MAXMAJ32
#define	L_MAXMIN	L_MAXMIN32
#endif

#ifdef illumos
#ifdef _KERNEL

/* major part of a device internal to the kernel */

#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
#define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)

/* get internal major part of expanded device number */

#define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)

/* minor part of a device internal to the kernel */

#define	minor(x)	(minor_t)((x) & O_MAXMIN)

/* get internal minor part of expanded device number */

#define	getminor(x)	(minor_t)((x) & L_MAXMIN)

#else

/* major part of a device external from the kernel (same as emajor below) */

#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)

/* minor part of a device external from the kernel  (same as eminor below) */

#define	minor(x)	(minor_t)((x) & O_MAXMIN)

#endif	/* _KERNEL */

/* create old device number */

#define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))

/* make an new device number */

#define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))


/*
 * emajor() allows kernel/driver code to print external major numbers
 * eminor() allows kernel/driver code to print external minor numbers
 */

#define	emajor(x) \
	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)

#define	eminor(x) \
	(minor_t)((x) & O_MAXMIN)

/*
 * get external major and minor device
 * components from expanded device number
 */
#define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
#define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
#endif /* illumos */

/*
 * These are versions of the kernel routines for compressing and
 * expanding long device numbers that don't return errors.
 */
#if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)

#define	DEVCMPL(x)	(x)
#define	DEVEXPL(x)	(x)

#else

#define	DEVCMPL(x)	\
	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))

#define	DEVEXPL(x)	\
	(((x) == NODEV32) ? NODEV : \
	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))

#endif /* L_BITSMAJOR32 ... */

/* convert to old (SVR3.2) dev format */

#define	cmpdev(x) \
	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))

/* convert to new (SVR4) dev format */

#define	expdev(x) \
	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
	    ((x) & O_MAXMIN))

#endif	/* !__NetBSD__ */

/*
 * Macro for checking power of 2 address alignment.
 */
#define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)

#ifndef __NetBSD__

/*
 * Macros for counting and rounding.
 */
#define	howmany(x, y)	(((x)+((y)-1))/(y))
#define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))

#endif	/* !__NetBSD__ */

/*
 * Macro to determine if value is a power of 2
 */
#define	ISP2(x)		(((x) & ((x) - 1)) == 0)

/*
 * Macros for various sorts of alignment and rounding.  The "align" must
 * be a power of 2.  Often times it is a block, sector, or page.
 */

/*
 * return x rounded down to an align boundary
 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
 */
#define	P2ALIGN(x, align)		((x) & -(align))

/*
 * return x % (mod) align
 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
 */
#define	P2PHASE(x, align)		((x) & ((align) - 1))

/*
 * return how much space is left in this block (but if it's perfectly
 * aligned, return 0).
 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
 */
#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))

/*
 * return x rounded up to an align boundary
 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
 */
#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))

/*
 * return the ending address of the block that x is in
 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
 */
#define	P2END(x, align)			(-(~(x) & -(align)))

/*
 * return x rounded up to the next phase (offset) within align.
 * phase should be < align.
 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
 */
#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))

/*
 * return TRUE if adding len to off would cause it to cross an align
 * boundary.
 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
 */
#define	P2BOUNDARY(off, len, align) \
	(((off) ^ ((off) + (len) - 1)) > (align) - 1)

/*
 * Return TRUE if they have the same highest bit set.
 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
 */
#define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))

/*
 * Typed version of the P2* macros.  These macros should be used to ensure
 * that the result is correctly calculated based on the data type of (x),
 * which is passed in as the last argument, regardless of the data
 * type of the alignment.  For example, if (x) is of type uint64_t,
 * and we want to round it up to a page boundary using "PAGESIZE" as
 * the alignment, we can do either
 *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
 * or
 *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
 */
#define	P2ALIGN_TYPED(x, align, type)	\
	((type)(x) & -(type)(align))
#define	P2PHASE_TYPED(x, align, type)	\
	((type)(x) & ((type)(align) - 1))
#define	P2NPHASE_TYPED(x, align, type)	\
	(-(type)(x) & ((type)(align) - 1))
#define	P2ROUNDUP_TYPED(x, align, type)	\
	(-(-(type)(x) & -(type)(align)))
#define	P2END_TYPED(x, align, type)	\
	(-(~(type)(x) & -(type)(align)))
#define	P2PHASEUP_TYPED(x, align, phase, type)	\
	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
#define	P2CROSS_TYPED(x, y, align, type)	\
	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
#define	P2SAMEHIGHBIT_TYPED(x, y, type) \
	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))

/*
 * Macros to atomically increment/decrement a variable.  mutex and var
 * must be pointers.
 */
#define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
#define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)

/*
 * Macros to declare bitfields - the order in the parameter list is
 * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
 * because if a field crosses a byte boundary it's not likely to be meaningful
 * without reassembly in its nonnative endianness.
 */
#ifndef __NetBSD__

#if defined(_BIT_FIELDS_LTOH)
#define	DECL_BITFIELD2(_a, _b)				\
	uint8_t _a, _b
#define	DECL_BITFIELD3(_a, _b, _c)			\
	uint8_t _a, _b, _c
#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
	uint8_t _a, _b, _c, _d
#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
	uint8_t _a, _b, _c, _d, _e
#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
	uint8_t _a, _b, _c, _d, _e, _f
#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
	uint8_t _a, _b, _c, _d, _e, _f, _g
#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
#elif defined(_BIT_FIELDS_HTOL)
#define	DECL_BITFIELD2(_a, _b)				\
	uint8_t _b, _a
#define	DECL_BITFIELD3(_a, _b, _c)			\
	uint8_t _c, _b, _a
#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
	uint8_t _d, _c, _b, _a
#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
	uint8_t _e, _d, _c, _b, _a
#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
	uint8_t _f, _e, _d, _c, _b, _a
#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
	uint8_t _g, _f, _e, _d, _c, _b, _a
#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
#else
#error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif  /* _BIT_FIELDS_LTOH */

#endif /* ! __NetBSD__ */

#if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)

/* avoid any possibility of clashing with <stddef.h> version */

#define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
#endif

#ifdef __NetBSD__

#include <sys/bitops.h>

#ifdef _LP64
#define highbit(i)	fls64((i))
#else
#define highbit(i)	fls32((i))
#endif
#define highbit64(i)	fls64((i))

#else /* __NetBSD__ */

/*
 * Find highest one bit set.
 *      Returns bit number + 1 of highest bit that is set, otherwise returns 0.
 * High order bit is 31 (or 63 in _LP64 kernel).
 */
static __inline int
highbit(ulong_t i)
{
#if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL)
	return (flsl(i));
#else
	register int h = 1;

	if (i == 0)
		return (0);
#ifdef _LP64
	if (i & 0xffffffff00000000ul) {
		h += 32; i >>= 32;
	}
#endif
	if (i & 0xffff0000) {
		h += 16; i >>= 16;
	}
	if (i & 0xff00) {
		h += 8; i >>= 8;
	}
	if (i & 0xf0) {
		h += 4; i >>= 4;
	}
	if (i & 0xc) {
		h += 2; i >>= 2;
	}
	if (i & 0x2) {
		h += 1;
	}
	return (h);
#endif
}

/*
 * Find highest one bit set.
 *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
 */
static __inline int
highbit64(uint64_t i)
{
#if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSLL)
	return (flsll(i));
#else
	int h = 1;

	if (i == 0)
		return (0);
	if (i & 0xffffffff00000000ULL) {
		h += 32; i >>= 32;
	}
	if (i & 0xffff0000) {
		h += 16; i >>= 16;
	}
	if (i & 0xff00) {
		h += 8; i >>= 8;
	}
	if (i & 0xf0) {
		h += 4; i >>= 4;
	}
	if (i & 0xc) {
		h += 2; i >>= 2;
	}
	if (i & 0x2) {
		h += 1;
	}
	return (h);
#endif
}

#endif /* __NetBSD__ */

#ifdef	__cplusplus
}
#endif

#endif	/* _SYS_SYSMACROS_H */