Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
/* tc-d30v.c -- Assembler code for the Mitsubishi D30V
   Copyright (C) 1997-2022 Free Software Foundation, Inc.

   This file is part of GAS, the GNU Assembler.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to
   the Free Software Foundation, 51 Franklin Street - Fifth Floor,
   Boston, MA 02110-1301, USA.  */

#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "opcode/d30v.h"
#include "dwarf2dbg.h"

const char comment_chars[]        = ";";
const char line_comment_chars[]   = "#";
const char line_separator_chars[] = "";
const char *md_shortopts          = "OnNcC";
const char EXP_CHARS[]            = "eE";
const char FLT_CHARS[]            = "dD";

#include <limits.h>
#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif

#define NOP_MULTIPLY 1
#define NOP_ALL 2
static int warn_nops = 0;
static int Optimizing = 0;
static int warn_register_name_conflicts = 1;

#define FORCE_SHORT	1
#define FORCE_LONG	2

/* EXEC types.  */
typedef enum _exec_type
{
  EXEC_UNKNOWN,			/* No order specified.  */
  EXEC_PARALLEL,		/* Done in parallel (FM=00).  */
  EXEC_SEQ,			/* Sequential (FM=01).  */
  EXEC_REVSEQ			/* Reverse sequential (FM=10).  */
} exec_type_enum;

/* Fixups.  */
#define MAX_INSN_FIXUPS  5

struct d30v_fixup
{
  expressionS exp;
  int operand;
  int pcrel;
  int size;
  bfd_reloc_code_real_type reloc;
};

typedef struct _fixups
{
  int fc;
  struct d30v_fixup fix[MAX_INSN_FIXUPS];
  struct _fixups *next;
} Fixups;

static Fixups FixUps[2];
static Fixups *fixups;

/* Whether current and previous instruction are word multiply insns.  */
static int cur_mul32_p = 0;
static int prev_mul32_p = 0;

/*  The flag_explicitly_parallel is true iff the instruction being assembled
    has been explicitly written as a parallel short-instruction pair by the
    human programmer.  It is used in parallel_ok () to distinguish between
    those dangerous parallelizations attempted by the human, which are to be
    allowed, and those attempted by the assembler, which are not.  It is set
    from md_assemble ().  */
static int flag_explicitly_parallel = 0;
static int flag_xp_state = 0;

/* Whether current and previous left sub-instruction disables
   execution of right sub-instruction.  */
static int cur_left_kills_right_p = 0;
static int prev_left_kills_right_p = 0;

/* The known current alignment of the current section.  */
static int d30v_current_align;
static segT d30v_current_align_seg;

/* The last seen label in the current section.  This is used to auto-align
   labels preceding instructions.  */
static symbolS *d30v_last_label;

/* Two nops.  */
#define NOP_LEFT   ((long long) NOP << 32)
#define NOP_RIGHT  ((long long) NOP)
#define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)

struct option md_longopts[] =
{
  {NULL, no_argument, NULL, 0}
};

size_t md_longopts_size = sizeof (md_longopts);

/* Opcode hash table.  */
static htab_t d30v_hash;

/* Do a binary search of the pre_defined_registers array to see if
   NAME is a valid register name.  Return the register number from the
   array on success, or -1 on failure.  */

static int
reg_name_search (char *name)
{
  int middle, low, high;
  int cmp;

  low = 0;
  high = reg_name_cnt () - 1;

  do
    {
      middle = (low + high) / 2;
      cmp = strcasecmp (name, pre_defined_registers[middle].name);
      if (cmp < 0)
	high = middle - 1;
      else if (cmp > 0)
	low = middle + 1;
      else
	{
	  if (symbol_find (name) != NULL)
	    {
	      if (warn_register_name_conflicts)
		as_warn (_("Register name %s conflicts with symbol of the same name"),
			 name);
	    }

	  return pre_defined_registers[middle].value;
	}
    }
  while (low <= high);

  return -1;
}

/* Check the string at input_line_pointer to see if it is a valid
   register name.  */

static int
register_name (expressionS *expressionP)
{
  int reg_number;
  char c, *p = input_line_pointer;

  while (*p && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')')
    p++;

  c = *p;
  if (c)
    *p++ = 0;

  /* Look to see if it's in the register table.  */
  reg_number = reg_name_search (input_line_pointer);
  if (reg_number >= 0)
    {
      expressionP->X_op = O_register;
      /* Temporarily store a pointer to the string here.  */
      expressionP->X_op_symbol = (symbolS *) input_line_pointer;
      expressionP->X_add_number = reg_number;
      input_line_pointer = p;
      return 1;
    }
  if (c)
    *(p - 1) = c;
  return 0;
}

static int
check_range (unsigned long num, int bits, int flags)
{
  long min, max;

  /* Don't bother checking 32-bit values.  */
  if (bits == 32)
    {
      if (sizeof (unsigned long) * CHAR_BIT == 32)
	return 0;

      /* We don't record signed or unsigned for 32-bit quantities.
	 Allow either.  */
      min = -((unsigned long) 1 << (bits - 1));
      max = ((unsigned long) 1 << bits) - 1;
      return (long) num < min || (long) num > max;
    }

  if (flags & OPERAND_SHIFT)
    {
      /* We know that all shifts are right by three bits.  */
      num >>= 3;

      if (flags & OPERAND_SIGNED)
	{
	  unsigned long sign_bit = ((unsigned long) -1L >> 4) + 1;
	  num = (num ^ sign_bit) - sign_bit;
	}
    }

  if (flags & OPERAND_SIGNED)
    {
      max = ((unsigned long) 1 << (bits - 1)) - 1;
      min = - ((unsigned long) 1 << (bits - 1));
      return (long) num > max || (long) num < min;
    }
  else
    {
      max = ((unsigned long) 1 << bits) - 1;
      return num > (unsigned long) max;
    }
}

void
md_show_usage (FILE *stream)
{
  fprintf (stream, _("\nD30V options:\n\
-O                      Make adjacent short instructions parallel if possible.\n\
-n                      Warn about all NOPs inserted by the assembler.\n\
-N                      Warn about NOPs inserted after word multiplies.\n\
-c                      Warn about symbols whose names match register names.\n\
-C                      Opposite of -C.  -c is the default.\n"));
}

int
md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED)
{
  switch (c)
    {
      /* Optimize.  Will attempt to parallelize operations.  */
    case 'O':
      Optimizing = 1;
      break;

      /* Warn about all NOPS that the assembler inserts.  */
    case 'n':
      warn_nops = NOP_ALL;
      break;

      /* Warn about the NOPS that the assembler inserts because of the
	 multiply hazard.  */
    case 'N':
      warn_nops = NOP_MULTIPLY;
      break;

    case 'c':
      warn_register_name_conflicts = 1;
      break;

    case 'C':
      warn_register_name_conflicts = 0;
      break;

    default:
      return 0;
    }
  return 1;
}

symbolS *
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
{
  return 0;
}

const char *
md_atof (int type, char *litP, int *sizeP)
{
  return ieee_md_atof (type, litP, sizeP, true);
}

void
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
		 asection *sec ATTRIBUTE_UNUSED,
		 fragS *fragP ATTRIBUTE_UNUSED)
{
  abort ();
}

valueT
md_section_align (asection *seg, valueT addr)
{
  int align = bfd_section_alignment (seg);
  return ((addr + (1 << align) - 1) & -(1 << align));
}

void
md_begin (void)
{
  struct d30v_opcode *opcode;
  d30v_hash = str_htab_create ();

  /* Insert opcode names into a hash table.  */
  for (opcode = (struct d30v_opcode *) d30v_opcode_table; opcode->name; opcode++)
      str_hash_insert (d30v_hash, opcode->name, opcode, 0);

  fixups = &FixUps[0];
  FixUps[0].next = &FixUps[1];
  FixUps[1].next = &FixUps[0];

  d30v_current_align_seg = now_seg;
}

/* Remove the postincrement or postdecrement operator ( '+' or '-' )
   from an expression.  */

static int
postfix (char *p)
{
  while (*p != '-' && *p != '+')
    {
      if (*p == 0 || *p == '\n' || *p == '\r' || *p == ' ' || *p == ',')
	break;
      p++;
    }

  if (*p == '-')
    {
      *p = ' ';
      return -1;
    }

  if (*p == '+')
    {
      *p = ' ';
      return 1;
    }

  return 0;
}

static bfd_reloc_code_real_type
get_reloc (const struct d30v_operand *op, int rel_flag)
{
  switch (op->bits)
    {
    case 6:
      if (op->flags & OPERAND_SHIFT)
	return BFD_RELOC_D30V_9_PCREL;
      else
	return BFD_RELOC_D30V_6;
      break;
    case 12:
      if (!(op->flags & OPERAND_SHIFT))
	as_warn (_("unexpected 12-bit reloc type"));
      if (rel_flag == RELOC_PCREL)
	return BFD_RELOC_D30V_15_PCREL;
      else
	return BFD_RELOC_D30V_15;
    case 18:
      if (!(op->flags & OPERAND_SHIFT))
	as_warn (_("unexpected 18-bit reloc type"));
      if (rel_flag == RELOC_PCREL)
	return BFD_RELOC_D30V_21_PCREL;
      else
	return BFD_RELOC_D30V_21;
    case 32:
      if (rel_flag == RELOC_PCREL)
	return BFD_RELOC_D30V_32_PCREL;
      else
	return BFD_RELOC_D30V_32;
    default:
      return 0;
    }
}

/* Parse a string of operands and return an array of expressions.  */

static int
get_operands (expressionS exp[], int cmp_hack)
{
  char *p = input_line_pointer;
  int numops = 0;
  int post = 0;

  if (cmp_hack)
    {
      exp[numops].X_op = O_absent;
      exp[numops++].X_add_number = cmp_hack - 1;
    }

  while (*p)
    {
      while (*p == ' ' || *p == '\t' || *p == ',')
	p++;

      if (*p == 0 || *p == '\n' || *p == '\r')
	break;

      if (*p == '@')
	{
	  p++;
	  exp[numops].X_op = O_absent;
	  if (*p == '(')
	    {
	      p++;
	      exp[numops].X_add_number = OPERAND_ATPAR;
	      post = postfix (p);
	    }
	  else if (*p == '-')
	    {
	      p++;
	      exp[numops].X_add_number = OPERAND_ATMINUS;
	    }
	  else
	    {
	      exp[numops].X_add_number = OPERAND_ATSIGN;
	      post = postfix (p);
	    }
	  numops++;
	  continue;
	}

      if (*p == ')')
	{
	  /* Just skip the trailing paren.  */
	  p++;
	  continue;
	}

      input_line_pointer = p;

      /* Check to see if it might be a register name.  */
      if (!register_name (&exp[numops]))
	{
	  /* Parse as an expression.  */
	  expression (&exp[numops]);
	}

      if (exp[numops].X_op == O_illegal)
	as_bad (_("illegal operand"));
      else if (exp[numops].X_op == O_absent)
	as_bad (_("missing operand"));

      numops++;
      p = input_line_pointer;

      switch (post)
	{
	case -1:
	  /* Postdecrement mode.  */
	  exp[numops].X_op = O_absent;
	  exp[numops++].X_add_number = OPERAND_MINUS;
	  break;
	case 1:
	  /* Postincrement mode.  */
	  exp[numops].X_op = O_absent;
	  exp[numops++].X_add_number = OPERAND_PLUS;
	  break;
	}
      post = 0;
    }

  exp[numops].X_op = 0;

  return numops;
}

/* Generate the instruction.
   It does everything but write the FM bits.  */

static long long
build_insn (struct d30v_insn *opcode, expressionS *opers)
{
  int i, bits, shift, flags;
  unsigned long number, id = 0;
  long long insn;
  struct d30v_opcode *op = opcode->op;
  struct d30v_format *form = opcode->form;

  insn =
    opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18;

  for (i = 0; form->operands[i]; i++)
    {
      flags = d30v_operand_table[form->operands[i]].flags;

      /* Must be a register or number.  */
      if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM)
	  && !(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL))
	continue;

      bits = d30v_operand_table[form->operands[i]].bits;
      if (flags & OPERAND_SHIFT)
	bits += 3;

      shift = 12 - d30v_operand_table[form->operands[i]].position;
      if (opers[i].X_op != O_symbol)
	number = opers[i].X_add_number;
      else
	number = 0;
      if (flags & OPERAND_REG)
	{
	  /* Check for mvfsys or mvtsys control registers.  */
	  if (flags & OPERAND_CONTROL && (number & 0x7f) > MAX_CONTROL_REG)
	    {
	      /* PSWL or PSWH.  */
	      id = (number & 0x7f) - MAX_CONTROL_REG;
	      number = 0;
	    }
	  else if (number & OPERAND_FLAG)
	    /* NUMBER is a flag register.  */
	    id = 3;

	  number &= 0x7F;
	}
      else if (flags & OPERAND_SPECIAL)
	number = id;

      if (opers[i].X_op != O_register && opers[i].X_op != O_constant
	  && !(flags & OPERAND_NAME))
	{
	  /* Now create a fixup.  */
	  if (fixups->fc >= MAX_INSN_FIXUPS)
	    as_fatal (_("too many fixups"));

	  fixups->fix[fixups->fc].reloc =
	    get_reloc (d30v_operand_table + form->operands[i], op->reloc_flag);
	  fixups->fix[fixups->fc].size = 4;
	  fixups->fix[fixups->fc].exp = opers[i];
	  fixups->fix[fixups->fc].operand = form->operands[i];
	  if (fixups->fix[fixups->fc].reloc == BFD_RELOC_D30V_9_PCREL)
	    fixups->fix[fixups->fc].pcrel = RELOC_PCREL;
	  else
	    fixups->fix[fixups->fc].pcrel = op->reloc_flag;
	  (fixups->fc)++;
	}

      /* Truncate to the proper number of bits.  */
      if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
	as_bad (_("operand out of range: %ld"), number);
      if (bits < 31)
	number &= 0x7FFFFFFF >> (31 - bits);
      if (flags & OPERAND_SHIFT)
	number >>= 3;
      if (bits == 32)
	{
	  /* It's a LONG instruction.  */
	  insn |= ((number & 0xffffffff) >> 26);	/* Top 6 bits.  */
	  insn <<= 32;			/* Shift the first word over.  */
	  insn |= ((number & 0x03FC0000) << 2);		/* Next 8 bits.  */
	  insn |= number & 0x0003FFFF;			/* Bottom 18 bits.  */
	}
      else
	insn |= number << shift;
    }

  return insn;
}

static void
d30v_number_to_chars (char *buf,	/* Return 'nbytes' of chars here.  */
		      long long value,	/* The value of the bits.  */
		      int n)		/* Number of bytes in the output.  */
{
  while (n--)
    {
      buf[n] = value & 0xff;
      value >>= 8;
    }
}

/* Write out a long form instruction.  */

static void
write_long (struct d30v_insn *opcode ATTRIBUTE_UNUSED,
	    long long insn,
	    Fixups *fx)
{
  int i, where;
  char *f = frag_more (8);

  dwarf2_emit_insn (8);
  insn |= FM11;
  d30v_number_to_chars (f, insn, 8);

  for (i = 0; i < fx->fc; i++)
    {
      if (fx->fix[i].reloc)
	{
	  where = f - frag_now->fr_literal;
	  fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp),
		       fx->fix[i].pcrel, fx->fix[i].reloc);
	}
    }

  fx->fc = 0;
}

/* Write out a short form instruction by itself.  */

static void
write_1_short (struct d30v_insn *opcode,
	       long long insn,
	       Fixups *fx,
	       int use_sequential)
{
  char *f = frag_more (8);
  int i, where;

  dwarf2_emit_insn (8);
  if (warn_nops == NOP_ALL)
    as_warn (_("%s NOP inserted"), use_sequential ?
	     _("sequential") : _("parallel"));

  /* The other container needs to be NOP.  */
  if (use_sequential)
    {
      /* Use a sequential NOP rather than a parallel one,
	 as the current instruction is a FLAG_MUL32 type one
	 and the next instruction is a load.  */

      /* According to 4.3.1: for FM=01, sub-instructions performed
	 only by IU cannot be encoded in L-container.  */
      if (opcode->op->unit == IU)
	/* Right then left.  */
	insn |= FM10 | NOP_LEFT;
      else
	/* Left then right.  */
	insn = FM01 | (insn << 32) | NOP_RIGHT;
    }
  else
    {
      /* According to 4.3.1: for FM=00, sub-instructions performed
	 only by IU cannot be encoded in L-container.  */
      if (opcode->op->unit == IU)
	/* Right container.  */
	insn |= FM00 | NOP_LEFT;
      else
	/* Left container.  */
	insn = FM00 | (insn << 32) | NOP_RIGHT;
    }

  d30v_number_to_chars (f, insn, 8);

  for (i = 0; i < fx->fc; i++)
    {
      if (fx->fix[i].reloc)
	{
	  where = f - frag_now->fr_literal;
	  fix_new_exp (frag_now,
		       where,
		       fx->fix[i].size,
		       &(fx->fix[i].exp),
		       fx->fix[i].pcrel,
		       fx->fix[i].reloc);
	}
    }

  fx->fc = 0;
}

/* Check 2 instructions and determine if they can be safely
   executed in parallel.  Return 1 if they can be.  */

static int
parallel_ok (struct d30v_insn *op1,
	     unsigned long insn1,
	     struct d30v_insn *op2,
	     unsigned long insn2,
	     exec_type_enum exec_type)
{
  int i, j, shift, regno, bits, ecc;
  unsigned long flags, mask, flags_set1, flags_set2, flags_used1, flags_used2;
  unsigned long ins, mod_reg[2][3], used_reg[2][3], flag_reg[2];
  struct d30v_format *f;
  struct d30v_opcode *op;

  /* Section 4.3: Both instructions must not be IU or MU only.  */
  if ((op1->op->unit == IU && op2->op->unit == IU)
      || (op1->op->unit == MU && op2->op->unit == MU))
    return 0;

  /* First instruction must not be a jump to safely optimize, unless this
     is an explicit parallel operation.  */
  if (exec_type != EXEC_PARALLEL
      && (op1->op->flags_used & (FLAG_JMP | FLAG_JSR)))
    return 0;

  /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
     then it is safe to allow the two to be done as parallel ops, since only
     one will ever be executed at a time.  */
  if ((op1->ecc == ECC_TX && op2->ecc == ECC_FX)
      || (op1->ecc == ECC_FX && op2->ecc == ECC_TX)
      || (op1->ecc == ECC_XT && op2->ecc == ECC_XF)
      || (op1->ecc == ECC_XF && op2->ecc == ECC_XT))
    return 1;

  /* [0] r0-r31
     [1] r32-r63
     [2] a0, a1, flag registers.  */
  for (j = 0; j < 2; j++)
    {
      if (j == 0)
	{
	  f = op1->form;
	  op = op1->op;
	  ecc = op1->ecc;
	  ins = insn1;
	}
      else
	{
	  f = op2->form;
	  op = op2->op;
	  ecc = op2->ecc;
	  ins = insn2;
	}

      flag_reg[j] = 0;
      mod_reg[j][0] = mod_reg[j][1] = 0;
      used_reg[j][0] = used_reg[j][1] = 0;

      if (flag_explicitly_parallel)
	{
	  /* For human specified parallel instructions we have been asked
	     to ignore the possibility that both instructions could modify
	     bits in the PSW, so we initialise the mod & used arrays to 0.
	     We have been asked, however, to refuse to allow parallel
	     instructions which explicitly set the same flag register,
	     eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
	     for the use of a flag register and set a bit in the mod or used
	     array appropriately.  */
	  mod_reg[j][2]  = 0;
	  used_reg[j][2] = 0;
	}
      else
	{
	  mod_reg[j][2] = (op->flags_set & FLAG_ALL);
	  used_reg[j][2] = (op->flags_used & FLAG_ALL);
	}

      /* BSR/JSR always sets R62.  */
      if (op->flags_used & FLAG_JSR)
	mod_reg[j][1] = (1L << (62 - 32));

      /* Conditional execution affects the flags_used.  */
      switch (ecc)
	{
	case ECC_TX:
	case ECC_FX:
	  used_reg[j][2] |= flag_reg[j] = FLAG_0;
	  break;

	case ECC_XT:
	case ECC_XF:
	  used_reg[j][2] |= flag_reg[j] = FLAG_1;
	  break;

	case ECC_TT:
	case ECC_TF:
	  used_reg[j][2] |= flag_reg[j] = (FLAG_0 | FLAG_1);
	  break;
	}

      for (i = 0; f->operands[i]; i++)
	{
	  flags = d30v_operand_table[f->operands[i]].flags;
	  shift = 12 - d30v_operand_table[f->operands[i]].position;
	  bits = d30v_operand_table[f->operands[i]].bits;
	  if (bits == 32)
	    mask = 0xffffffff;
	  else
	    mask = 0x7FFFFFFF >> (31 - bits);

	  if ((flags & OPERAND_PLUS) || (flags & OPERAND_MINUS))
	    {
	      /* This is a post-increment or post-decrement.
		 The previous register needs to be marked as modified.  */
	      shift = 12 - d30v_operand_table[f->operands[i - 1]].position;
	      regno = (ins >> shift) & 0x3f;
	      if (regno >= 32)
		mod_reg[j][1] |= 1L << (regno - 32);
	      else
		mod_reg[j][0] |= 1L << regno;
	    }
	  else if (flags & OPERAND_REG)
	    {
	      regno = (ins >> shift) & mask;
	      /* The memory write functions don't have a destination
                 register.  */
	      if ((flags & OPERAND_DEST) && !(op->flags_set & FLAG_MEM))
		{
		  /* MODIFIED registers and flags.  */
		  if (flags & OPERAND_ACC)
		    {
		      if (regno == 0)
			mod_reg[j][2] |= FLAG_A0;
		      else if (regno == 1)
			mod_reg[j][2] |= FLAG_A1;
		      else
			abort ();
		    }
		  else if (flags & OPERAND_FLAG)
		    mod_reg[j][2] |= 1L << regno;
		  else if (!(flags & OPERAND_CONTROL))
		    {
		      int r, z;

		      /* Need to check if there are two destination
			 registers, for example ld2w.  */
		      if (flags & OPERAND_2REG)
			z = 1;
		      else
			z = 0;

		      for (r = regno; r <= regno + z; r++)
			{
			  if (r >= 32)
			    mod_reg[j][1] |= 1L << (r - 32);
			  else
			    mod_reg[j][0] |= 1L << r;
			}
		    }
		}
	      else
		{
		  /* USED, but not modified registers and flags.  */
		  if (flags & OPERAND_ACC)
		    {
		      if (regno == 0)
			used_reg[j][2] |= FLAG_A0;
		      else if (regno == 1)
			used_reg[j][2] |= FLAG_A1;
		      else
			abort ();
		    }
		  else if (flags & OPERAND_FLAG)
		    used_reg[j][2] |= 1L << regno;
		  else if (!(flags & OPERAND_CONTROL))
		    {
		      int r, z;

		      /* Need to check if there are two source
			 registers, for example st2w.  */
		      if (flags & OPERAND_2REG)
			z = 1;
		      else
			z = 0;

		      for (r = regno; r <= regno + z; r++)
			{
			  if (r >= 32)
			    used_reg[j][1] |= 1UL << (r - 32);
			  else
			    used_reg[j][0] |= 1UL << r;
			}
		    }
		}
	    }
	}
    }

  flags_set1 = op1->op->flags_set;
  flags_set2 = op2->op->flags_set;
  flags_used1 = op1->op->flags_used;
  flags_used2 = op2->op->flags_used;

  /* Check for illegal combinations with ADDppp/SUBppp.  */
  if (((flags_set1 & FLAG_NOT_WITH_ADDSUBppp) != 0
       && (flags_used2 & FLAG_ADDSUBppp) != 0)
      || ((flags_set2 & FLAG_NOT_WITH_ADDSUBppp) != 0
	  && (flags_used1 & FLAG_ADDSUBppp) != 0))
    return 0;

  /* Load instruction combined with half-word multiply is illegal.  */
  if (((flags_used1 & FLAG_MEM) != 0 && (flags_used2 & FLAG_MUL16))
      || ((flags_used2 & FLAG_MEM) != 0 && (flags_used1 & FLAG_MUL16)))
    return 0;

  /* Specifically allow add || add by removing carry, overflow bits dependency.
     This is safe, even if an addc follows since the IU takes the argument in
     the right container, and it writes its results last.
     However, don't paralellize add followed by addc or sub followed by
     subb.  */
  if (mod_reg[0][2] == FLAG_CVVA && mod_reg[1][2] == FLAG_CVVA
      && (used_reg[0][2] & ~flag_reg[0]) == 0
      && (used_reg[1][2] & ~flag_reg[1]) == 0
      && op1->op->unit == EITHER && op2->op->unit == EITHER)
    {
      mod_reg[0][2] = mod_reg[1][2] = 0;
    }

  for (j = 0; j < 3; j++)
    {
      /* If the second instruction depends on the first, we obviously
	 cannot parallelize.  Note, the mod flag implies use, so
	 check that as well.  */
      /* If flag_explicitly_parallel is set, then the case of the
	 second instruction using a register the first instruction
	 modifies is assumed to be okay; we trust the human.  We
	 don't trust the human if both instructions modify the same
	 register but we do trust the human if they modify the same
	 flags.  */
      /* We have now been requested not to trust the human if the
	 instructions modify the same flag registers either.  */
      if (flag_explicitly_parallel)
	{
	  if ((mod_reg[0][j] & mod_reg[1][j]) != 0)
	    return 0;
	}
      else
	if ((mod_reg[0][j] & (mod_reg[1][j] | used_reg[1][j])) != 0)
	  return 0;
    }

  return 1;
}

/* Write out a short form instruction if possible.
   Return number of instructions not written out.  */

static int
write_2_short (struct d30v_insn *opcode1,
	       long long insn1,
	       struct d30v_insn *opcode2,
	       long long insn2,
	       exec_type_enum exec_type,
	       Fixups *fx)
{
  long long insn = NOP2;
  char *f;
  int i, j, where;

  if (exec_type == EXEC_SEQ
      && (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR))
      && ((opcode1->op->flags_used & FLAG_DELAY) == 0)
      && ((opcode1->ecc == ECC_AL) || ! Optimizing))
    {
      /* Unconditional, non-delayed branches kill instructions in
	 the right bin.  Conditional branches don't always but if
	 we are not optimizing, then we have been asked to produce
	 an error about such constructs.  For the purposes of this
	 test, subroutine calls are considered to be branches.  */
      write_1_short (opcode1, insn1, fx->next, false);
      return 1;
    }

  /* Note: we do not have to worry about subroutine calls occurring
     in the right hand container.  The return address is always
     aligned to the next 64 bit boundary, be that 64 or 32 bit away.  */
  switch (exec_type)
    {
    case EXEC_UNKNOWN:	/* Order not specified.  */
      if (Optimizing
	  && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)
	  && ! (   (opcode1->op->unit == EITHER_BUT_PREFER_MU
		 || opcode1->op->unit == MU)
		&&
		(   opcode2->op->unit == EITHER_BUT_PREFER_MU
		 || opcode2->op->unit == MU)))
	{
	  /* Parallel.  */
	  exec_type = EXEC_PARALLEL;

	  if (opcode1->op->unit == IU
	      || opcode2->op->unit == MU
	      || opcode2->op->unit == EITHER_BUT_PREFER_MU)
	    insn = FM00 | (insn2 << 32) | insn1;
	  else
	    {
	      insn = FM00 | (insn1 << 32) | insn2;
	      fx = fx->next;
	    }
	}
      else if ((opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR)
		&& ((opcode1->op->flags_used & FLAG_DELAY) == 0))
	       || opcode1->op->flags_used & FLAG_RP)
	{
	  /* We must emit (non-delayed) branch type instructions
	     on their own with nothing in the right container.  */
	  /* We must treat repeat instructions likewise, since the
	     following instruction has to be separate from the repeat
	     in order to be repeated.  */
	  write_1_short (opcode1, insn1, fx->next, false);
	  return 1;
	}
      else if (prev_left_kills_right_p)
	{
	  /* The left instruction kills the right slot, so we
	     must leave it empty.  */
	  write_1_short (opcode1, insn1, fx->next, false);
	  return 1;
	}
      else if (opcode1->op->unit == IU)
	{
	  if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
	    {
	      /* Case 103810 is a request from Mitsubishi that opcodes
		 with EITHER_BUT_PREFER_MU should not be executed in
		 reverse sequential order.  */
	      write_1_short (opcode1, insn1, fx->next, false);
	      return 1;
	    }

	  /* Reverse sequential.  */
	  insn = FM10 | (insn2 << 32) | insn1;
	  exec_type = EXEC_REVSEQ;
	}
      else
	{
	  /* Sequential.  */
	  insn = FM01 | (insn1 << 32) | insn2;
	  fx = fx->next;
	  exec_type = EXEC_SEQ;
	}
      break;

    case EXEC_PARALLEL:	/* Parallel.  */
      flag_explicitly_parallel = flag_xp_state;
      if (! parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
	as_bad (_("Instructions may not be executed in parallel"));
      else if (opcode1->op->unit == IU)
	{
	  if (opcode2->op->unit == IU)
	    as_bad (_("Two IU instructions may not be executed in parallel"));
	  as_warn (_("Swapping instruction order"));
	  insn = FM00 | (insn2 << 32) | insn1;
	}
      else if (opcode2->op->unit == MU)
	{
	  if (opcode1->op->unit == MU)
	    as_bad (_("Two MU instructions may not be executed in parallel"));
	  else if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
	    as_warn (_("Executing %s in IU may not work"), opcode1->op->name);
	  as_warn (_("Swapping instruction order"));
	  insn = FM00 | (insn2 << 32) | insn1;
	}
      else
	{
	  if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
	    as_warn (_("Executing %s in IU may not work in parallel execution"),
		     opcode2->op->name);

	  insn = FM00 | (insn1 << 32) | insn2;
	  fx = fx->next;
	}
      flag_explicitly_parallel = 0;
      break;

    case EXEC_SEQ:	/* Sequential.  */
      if (opcode1->op->unit == IU)
	as_bad (_("IU instruction may not be in the left container"));
      if (prev_left_kills_right_p)
	as_bad (_("special left instruction `%s' kills instruction "
		  "`%s' in right container"),
		opcode1->op->name, opcode2->op->name);
      insn = FM01 | (insn1 << 32) | insn2;
      fx = fx->next;
      break;

    case EXEC_REVSEQ:	/* Reverse sequential.  */
      if (opcode2->op->unit == MU)
	as_bad (_("MU instruction may not be in the right container"));
      if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
	as_warn (_("Executing %s in reverse serial with %s may not work"),
		 opcode1->op->name, opcode2->op->name);
      else if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
	as_warn (_("Executing %s in IU in reverse serial may not work"),
		 opcode2->op->name);
      insn = FM10 | (insn1 << 32) | insn2;
      fx = fx->next;
      break;

    default:
      as_fatal (_("unknown execution type passed to write_2_short()"));
    }

  f = frag_more (8);
  dwarf2_emit_insn (8);
  d30v_number_to_chars (f, insn, 8);

  /* If the previous instruction was a 32-bit multiply but it is put into a
     parallel container, mark the current instruction as being a 32-bit
     multiply.  */
  if (prev_mul32_p && exec_type == EXEC_PARALLEL)
    cur_mul32_p = 1;

  for (j = 0; j < 2; j++)
    {
      for (i = 0; i < fx->fc; i++)
	{
	  if (fx->fix[i].reloc)
	    {
	      where = (f - frag_now->fr_literal) + 4 * j;

	      fix_new_exp (frag_now,
			   where,
			   fx->fix[i].size,
			   &(fx->fix[i].exp),
			   fx->fix[i].pcrel,
			   fx->fix[i].reloc);
	    }
	}

      fx->fc = 0;
      fx = fx->next;
    }

  return 0;
}

/* Get a pointer to an entry in the format table.
   It must look at all formats for an opcode and use the operands
   to choose the correct one.  Return NULL on error.  */

static struct d30v_format *
find_format (struct d30v_opcode *opcode,
	     expressionS myops[],
	     int fsize,
	     int cmp_hack)
{
  int match, opcode_index, i = 0, j, k;
  struct d30v_format *fm;

  if (opcode == NULL)
    return NULL;

  /* Get all the operands and save them as expressions.  */
  get_operands (myops, cmp_hack);

  while ((opcode_index = opcode->format[i++]) != 0)
    {
      if (fsize == FORCE_SHORT && opcode_index >= LONG)
	continue;

      if (fsize == FORCE_LONG && opcode_index < LONG)
	continue;

      fm = (struct d30v_format *) &d30v_format_table[opcode_index];
      k = opcode_index;
      while (fm->form == opcode_index)
	{
	  match = 1;
	  /* Now check the operands for compatibility.  */
	  for (j = 0; match && fm->operands[j]; j++)
	    {
	      int flags = d30v_operand_table[fm->operands[j]].flags;
	      int bits = d30v_operand_table[fm->operands[j]].bits;
	      operatorT X_op = myops[j].X_op;
	      int num = myops[j].X_add_number;

	      if (flags & OPERAND_SPECIAL)
		break;
	      else if (X_op == O_illegal)
		match = 0;
	      else if (flags & OPERAND_REG)
		{
		  if (X_op != O_register
		      || ((flags & OPERAND_ACC) && !(num & OPERAND_ACC))
		      || (!(flags & OPERAND_ACC) && (num & OPERAND_ACC))
		      || ((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG))
		      || (!(flags & (OPERAND_FLAG | OPERAND_CONTROL)) && (num & OPERAND_FLAG))
		      || ((flags & OPERAND_CONTROL)
			  && !(num & (OPERAND_CONTROL | OPERAND_FLAG))))
		    match = 0;
		}
	      else if (((flags & OPERAND_MINUS)
			&& (X_op != O_absent || num != OPERAND_MINUS))
		       || ((flags & OPERAND_PLUS)
			   && (X_op != O_absent || num != OPERAND_PLUS))
		       || ((flags & OPERAND_ATMINUS)
			   && (X_op != O_absent || num != OPERAND_ATMINUS))
		       || ((flags & OPERAND_ATPAR)
			   && (X_op != O_absent || num != OPERAND_ATPAR))
		       || ((flags & OPERAND_ATSIGN)
			   && (X_op != O_absent || num != OPERAND_ATSIGN)))
		match = 0;
	      else if (flags & OPERAND_NUM)
		{
		  /* A number can be a constant or symbol expression.  */

		  /* If we have found a register name, but that name
		     also matches a symbol, then re-parse the name as
		     an expression.  */
		  if (X_op == O_register
		      && symbol_find ((char *) myops[j].X_op_symbol))
		    {
		      input_line_pointer = (char *) myops[j].X_op_symbol;
		      expression (&myops[j]);
		    }

		  /* Turn an expression into a symbol for later resolution.  */
		  if (X_op != O_absent && X_op != O_constant
		      && X_op != O_symbol && X_op != O_register
		      && X_op != O_big)
		    {
		      symbolS *sym = make_expr_symbol (&myops[j]);
		      myops[j].X_op = X_op = O_symbol;
		      myops[j].X_add_symbol = sym;
		      myops[j].X_add_number = num = 0;
		    }

		  if (fm->form >= LONG)
		    {
		      /* If we're testing for a LONG format, either fits.  */
		      if (X_op != O_constant && X_op != O_symbol)
			match = 0;
		    }
		  else if (fm->form < LONG
			   && ((fsize == FORCE_SHORT && X_op == O_symbol)
			       || (fm->form == SHORT_D2 && j == 0)))
		    match = 1;

		  /* This is the tricky part.  Will the constant or symbol
		     fit into the space in the current format?  */
		  else if (X_op == O_constant)
		    {
		      if (check_range (num, bits, flags))
			match = 0;
		    }
		  else if (X_op == O_symbol
			   && S_IS_DEFINED (myops[j].X_add_symbol)
			   && S_GET_SEGMENT (myops[j].X_add_symbol) == now_seg
			   && opcode->reloc_flag == RELOC_PCREL)
		    {
		      /* If the symbol is defined, see if the value will fit
			 into the form we're considering.  */
		      fragS *f;
		      long value;

		      /* Calculate the current address by running through the
			 previous frags and adding our current offset.  */
		      value = frag_now_fix_octets ();
		      for (f = frchain_now->frch_root; f; f = f->fr_next)
			value += f->fr_fix + f->fr_offset;
		      value = S_GET_VALUE (myops[j].X_add_symbol) - value;
		      if (check_range (value, bits, flags))
			match = 0;
		    }
		  else
		    match = 0;
		}
	    }
	  /* We're only done if the operands matched so far AND there
	     are no more to check.  */
	  if (match && myops[j].X_op == 0)
	    {
	      /* Final check - issue a warning if an odd numbered register
		 is used as the first register in an instruction that reads
		 or writes 2 registers.  */

	      for (j = 0; fm->operands[j]; j++)
		if (myops[j].X_op == O_register
		    && (myops[j].X_add_number & 1)
		    && (d30v_operand_table[fm->operands[j]].flags & OPERAND_2REG))
		  as_warn (_("Odd numbered register used as target of multi-register instruction"));

	      return fm;
	    }
	  fm = (struct d30v_format *) &d30v_format_table[++k];
	}
    }
  return NULL;
}

/* Assemble a single instruction and return an opcode.
   Return -1 (an invalid opcode) on error.  */

#define NAME_BUF_LEN	20

static long long
do_assemble (char *str,
	     struct d30v_insn *opcode,
	     int shortp,
	     int is_parallel)
{
  char *op_start;
  char *save;
  char *op_end;
  char           name[NAME_BUF_LEN];
  int            cmp_hack;
  int            nlen = 0;
  int            fsize = (shortp ? FORCE_SHORT : 0);
  expressionS    myops[6];
  long long      insn;

  /* Drop leading whitespace.  */
  while (*str == ' ')
    str++;

  /* Find the opcode end.  */
  for (op_start = op_end = str;
       *op_end
       && nlen < (NAME_BUF_LEN - 1)
       && *op_end != '/'
       && !is_end_of_line[(unsigned char) *op_end] && *op_end != ' ';
       op_end++)
    {
      name[nlen] = TOLOWER (op_start[nlen]);
      nlen++;
    }

  if (nlen == 0)
    return -1;

  name[nlen] = 0;

  /* If there is an execution condition code, handle it.  */
  if (*op_end == '/')
    {
      int i = 0;
      while ((i < ECC_MAX) && strncasecmp (d30v_ecc_names[i], op_end + 1, 2))
	i++;

      if (i == ECC_MAX)
	{
	  char tmp[4];
	  strncpy (tmp, op_end + 1, 2);
	  tmp[2] = 0;
	  as_bad (_("unknown condition code: %s"), tmp);
	  return -1;
	}
      opcode->ecc = i;
      op_end += 3;
    }
  else
    opcode->ecc = ECC_AL;

  /* CMP and CMPU change their name based on condition codes.  */
  if (startswith (name, "cmp"))
    {
      int p, i;
      char **d30v_str = (char **) d30v_cc_names;

      if (name[3] == 'u')
	p = 4;
      else
	p = 3;

      for (i = 1; *d30v_str && strncmp (*d30v_str, &name[p], 2); i++, d30v_str++)
	;

      /* cmpu only supports some condition codes.  */
      if (p == 4)
	{
	  if (i < 3 || i > 6)
	    {
	      name[p + 2] = 0;
	      as_bad (_("cmpu doesn't support condition code %s"), &name[p]);
	    }
	}

      if (!*d30v_str)
	{
	  name[p + 2] = 0;
	  as_bad (_("unknown condition code: %s"), &name[p]);
	}

      cmp_hack = i;
      name[p] = 0;
    }
  else
    cmp_hack = 0;

  /* Need to look for .s or .l.  */
  if (name[nlen - 2] == '.')
    {
      switch (name[nlen - 1])
	{
	case 's':
	  fsize = FORCE_SHORT;
	  break;
	case 'l':
	  fsize = FORCE_LONG;
	  break;
	}
      name[nlen - 2] = 0;
    }

  /* Find the first opcode with the proper name.  */
  opcode->op = (struct d30v_opcode *) str_hash_find (d30v_hash, name);
  if (opcode->op == NULL)
    {
      as_bad (_("unknown opcode: %s"), name);
      return -1;
    }

  save = input_line_pointer;
  input_line_pointer = op_end;
  while (!(opcode->form = find_format (opcode->op, myops, fsize, cmp_hack)))
    {
      opcode->op++;
      if (opcode->op->name == NULL || strcmp (opcode->op->name, name))
	{
	  as_bad (_("operands for opcode `%s' do not match any valid format"),
		  name);
	  return -1;
	}
    }
  input_line_pointer = save;

  insn = build_insn (opcode, myops);

  /* Propagate multiply status.  */
  if (insn != -1)
    {
      if (is_parallel && prev_mul32_p)
	cur_mul32_p = 1;
      else
	{
	  prev_mul32_p = cur_mul32_p;
	  cur_mul32_p  = (opcode->op->flags_used & FLAG_MUL32) != 0;
	}
    }

  /* Propagate left_kills_right status.  */
  if (insn != -1)
    {
      prev_left_kills_right_p = cur_left_kills_right_p;

      if (opcode->op->flags_set & FLAG_LKR)
	{
	  cur_left_kills_right_p = 1;

	  if (strcmp (opcode->op->name, "mvtsys") == 0)
	    {
	      /* Left kills right for only mvtsys only for
                 PSW/PSWH/PSWL/flags target.  */
	      if ((myops[0].X_op == O_register) &&
		  ((myops[0].X_add_number == OPERAND_CONTROL) || /* psw */
		   (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+2) || /* pswh */
		   (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+1) || /* pswl */
		   (myops[0].X_add_number == OPERAND_FLAG+0) || /* f0 */
		   (myops[0].X_add_number == OPERAND_FLAG+1) || /* f1 */
		   (myops[0].X_add_number == OPERAND_FLAG+2) || /* f2 */
		   (myops[0].X_add_number == OPERAND_FLAG+3) || /* f3 */
		   (myops[0].X_add_number == OPERAND_FLAG+4) || /* f4 */
		   (myops[0].X_add_number == OPERAND_FLAG+5) || /* f5 */
		   (myops[0].X_add_number == OPERAND_FLAG+6) || /* f6 */
		   (myops[0].X_add_number == OPERAND_FLAG+7))) /* f7 */
		{
		  cur_left_kills_right_p = 1;
		}
	      else
		{
		  /* Other mvtsys target registers don't kill right
                     instruction.  */
		  cur_left_kills_right_p = 0;
		}
	    } /* mvtsys */
	}
      else
	cur_left_kills_right_p = 0;
    }

  return insn;
}

/* Called internally to handle all alignment needs.  This takes care
   of eliding calls to frag_align if'n the cached current alignment
   says we've already got it, as well as taking care of the auto-aligning
   labels wrt code.  */

static void
d30v_align (int n, char *pfill, symbolS *label)
{
  /* The front end is prone to changing segments out from under us
     temporarily when -g is in effect.  */
  int switched_seg_p = (d30v_current_align_seg != now_seg);

  /* Do not assume that if 'd30v_current_align >= n' and
     '! switched_seg_p' that it is safe to avoid performing
     this alignment request.  The alignment of the current frag
     can be changed under our feet, for example by a .ascii
     directive in the source code.  cf testsuite/gas/d30v/reloc.s  */
  d30v_cleanup (false);

  if (pfill == NULL)
    {
      if (n > 2
	  && (bfd_section_flags (now_seg) & SEC_CODE) != 0)
	{
	  static char const nop[4] = { 0x00, 0xf0, 0x00, 0x00 };

	  /* First, make sure we're on a four-byte boundary, in case
	     someone has been putting .byte values the text section.  */
	  if (d30v_current_align < 2 || switched_seg_p)
	    frag_align (2, 0, 0);
	  frag_align_pattern (n, nop, sizeof nop, 0);
	}
      else
	frag_align (n, 0, 0);
    }
  else
    frag_align (n, *pfill, 0);

  if (!switched_seg_p)
    d30v_current_align = n;

  if (label != NULL)
    {
      symbolS     *sym;
      int          label_seen = false;
      struct frag *old_frag;
      valueT       old_value;
      valueT       new_value;

      gas_assert (S_GET_SEGMENT (label) == now_seg);

      old_frag  = symbol_get_frag (label);
      old_value = S_GET_VALUE (label);
      new_value = (valueT) frag_now_fix ();

      /* It is possible to have more than one label at a particular
	 address, especially if debugging is enabled, so we must
	 take care to adjust all the labels at this address in this
	 fragment.  To save time we search from the end of the symbol
	 list, backwards, since the symbols we are interested in are
	 almost certainly the ones that were most recently added.
	 Also to save time we stop searching once we have seen at least
	 one matching label, and we encounter a label that is no longer
	 in the target fragment.  Note, this search is guaranteed to
	 find at least one match when sym == label, so no special case
	 code is necessary.  */
      for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
	{
	  if (symbol_get_frag (sym) == old_frag
	      && S_GET_VALUE (sym) == old_value)
	    {
	      label_seen = true;
	      symbol_set_frag (sym, frag_now);
	      S_SET_VALUE (sym, new_value);
	    }
	  else if (label_seen && symbol_get_frag (sym) != old_frag)
	    break;
	}
    }

  record_alignment (now_seg, n);
}

/* This is the main entry point for the machine-dependent assembler.
   STR points to a machine-dependent instruction.  This function is
   supposed to emit the frags/bytes it assembles to.  For the D30V, it
   mostly handles the special VLIW parsing and packing and leaves the
   difficult stuff to do_assemble ().  */

static long long prev_insn = -1;
static struct d30v_insn prev_opcode;
static subsegT prev_subseg;
static segT prev_seg = 0;

void
md_assemble (char *str)
{
  struct d30v_insn opcode;
  long long insn;
  /* Execution type; parallel, etc.  */
  exec_type_enum extype = EXEC_UNKNOWN;
  /* Saved extype.  Used for multiline instructions.  */
  static exec_type_enum etype = EXEC_UNKNOWN;
  char *str2;

  if ((prev_insn != -1) && prev_seg
      && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
    d30v_cleanup (false);

  if (d30v_current_align < 3)
    d30v_align (3, NULL, d30v_last_label);
  else if (d30v_current_align > 3)
    d30v_current_align = 3;
  d30v_last_label = NULL;

  flag_explicitly_parallel = 0;
  flag_xp_state = 0;
  if (etype == EXEC_UNKNOWN)
    {
      /* Look for the special multiple instruction separators.  */
      str2 = strstr (str, "||");
      if (str2)
	{
	  extype = EXEC_PARALLEL;
	  flag_xp_state = 1;
	}
      else
	{
	  str2 = strstr (str, "->");
	  if (str2)
	    extype = EXEC_SEQ;
	  else
	    {
	      str2 = strstr (str, "<-");
	      if (str2)
		extype = EXEC_REVSEQ;
	    }
	}

      /* STR2 points to the separator, if one.  */
      if (str2)
	{
	  *str2 = 0;

	  /* If two instructions are present and we already have one saved,
	     then first write it out.  */
	  d30v_cleanup (false);

	  /* Assemble first instruction and save it.  */
	  prev_insn = do_assemble (str, &prev_opcode, 1, 0);
	  if (prev_insn == -1)
	    as_bad (_("Cannot assemble instruction"));
	  if (prev_opcode.form != NULL && prev_opcode.form->form >= LONG)
	    as_bad (_("First opcode is long.  Unable to mix instructions as specified."));
	  fixups = fixups->next;
	  str = str2 + 2;
	  prev_seg = now_seg;
	  prev_subseg = now_subseg;
	}
    }

  insn = do_assemble (str, &opcode,
		      (extype != EXEC_UNKNOWN || etype != EXEC_UNKNOWN),
		      extype == EXEC_PARALLEL);
  if (insn == -1)
    {
      if (extype != EXEC_UNKNOWN)
	etype = extype;
      as_bad (_("Cannot assemble instruction"));
      return;
    }

  if (etype != EXEC_UNKNOWN)
    {
      extype = etype;
      etype = EXEC_UNKNOWN;
    }

  /* Word multiply instructions must not be followed by either a load or a
     16-bit multiply instruction in the next cycle.  */
  if (   (extype != EXEC_REVSEQ)
      && prev_mul32_p
      && (opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
    {
      /* However, load and multiply should able to be combined in a parallel
	 operation, so check for that first.  */
      if (prev_insn != -1
	  && (opcode.op->flags_used & FLAG_MEM)
	  && opcode.form->form < LONG
	  && (extype == EXEC_PARALLEL || (Optimizing && extype == EXEC_UNKNOWN))
	  && parallel_ok (&prev_opcode, (long) prev_insn,
			  &opcode, (long) insn, extype)
	  && write_2_short (&prev_opcode, (long) prev_insn,
			    &opcode, (long) insn, extype, fixups) == 0)
	{
	  /* No instructions saved.  */
	  prev_insn = -1;
	  return;
	}
      else
	{
	  /* Can't parallelize, flush previous instruction and emit a
	     word of NOPS, unless the previous instruction is a NOP,
	     in which case just flush it, as this will generate a word
	     of NOPs for us.  */

	  if (prev_insn != -1 && (strcmp (prev_opcode.op->name, "nop") == 0))
	    d30v_cleanup (false);
	  else
	    {
	      char *f;

	      if (prev_insn != -1)
		d30v_cleanup (true);
	      else
		{
		  f = frag_more (8);
		  dwarf2_emit_insn (8);
		  d30v_number_to_chars (f, NOP2, 8);

		  if (warn_nops == NOP_ALL || warn_nops == NOP_MULTIPLY)
		    {
		      if (opcode.op->flags_used & FLAG_MEM)
			as_warn (_("word of NOPs added between word multiply and load"));
		      else
			as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
		    }
		}
	    }

	  extype = EXEC_UNKNOWN;
	}
    }
  else if (   (extype == EXEC_REVSEQ)
	   && cur_mul32_p
	   && (prev_opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
    {
      /* Can't parallelize, flush current instruction and add a
         sequential NOP.  */
      write_1_short (&opcode, (long) insn, fixups->next->next, true);

      /* Make the previous instruction the current one.  */
      extype = EXEC_UNKNOWN;
      insn = prev_insn;
      now_seg = prev_seg;
      now_subseg = prev_subseg;
      prev_insn = -1;
      cur_mul32_p = prev_mul32_p;
      prev_mul32_p = 0;
      memcpy (&opcode, &prev_opcode, sizeof (prev_opcode));
    }

  /* If this is a long instruction, write it and any previous short
     instruction.  */
  if (opcode.form->form >= LONG)
    {
      if (extype != EXEC_UNKNOWN)
	as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
      d30v_cleanup (false);
      write_long (&opcode, insn, fixups);
      prev_insn = -1;
    }
  else if ((prev_insn != -1)
	   && (write_2_short
	       (&prev_opcode, (long) prev_insn, &opcode,
		(long) insn, extype, fixups) == 0))
    {
      /* No instructions saved.  */
      prev_insn = -1;
    }
  else
    {
      if (extype != EXEC_UNKNOWN)
	as_bad (_("Unable to mix instructions as specified"));

      /* Save off last instruction so it may be packed on next pass.  */
      memcpy (&prev_opcode, &opcode, sizeof (prev_opcode));
      prev_insn = insn;
      prev_seg = now_seg;
      prev_subseg = now_subseg;
      fixups = fixups->next;
      prev_mul32_p = cur_mul32_p;
    }
}

/* If while processing a fixup, a reloc really needs to be created,
   then it is done here.  */

arelent *
tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp)
{
  arelent *reloc;
  reloc = XNEW (arelent);
  reloc->sym_ptr_ptr = XNEW (asymbol *);
  *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
  reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
  reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
  if (reloc->howto == NULL)
    {
      as_bad_where (fixp->fx_file, fixp->fx_line,
		    _("reloc %d not supported by object file format"),
		    (int) fixp->fx_r_type);
      return NULL;
    }

  reloc->addend = 0;
  return reloc;
}

int
md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED,
			       asection *seg ATTRIBUTE_UNUSED)
{
  abort ();
  return 0;
}

long
md_pcrel_from_section (fixS *fixp, segT sec)
{
  if (fixp->fx_addsy != (symbolS *) NULL
      && (!S_IS_DEFINED (fixp->fx_addsy)
	  || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
    return 0;
  return fixp->fx_frag->fr_address + fixp->fx_where;
}

/* Called after the assembler has finished parsing the input file or
   after a label is defined.  Because the D30V assembler sometimes
   saves short instructions to see if it can package them with the
   next instruction, there may be a short instruction that still needs
   written.  */

int
d30v_cleanup (int use_sequential)
{
  segT seg;
  subsegT subseg;

  if (prev_insn != -1)
    {
      seg = now_seg;
      subseg = now_subseg;
      subseg_set (prev_seg, prev_subseg);
      write_1_short (&prev_opcode, (long) prev_insn, fixups->next,
		     use_sequential);
      subseg_set (seg, subseg);
      prev_insn = -1;
      if (use_sequential)
	prev_mul32_p = false;
    }

  return 1;
}

/* This function is called at the start of every line.  It checks to
   see if the first character is a '.', which indicates the start of a
   pseudo-op.  If it is, then write out any unwritten instructions.  */

void
d30v_start_line (void)
{
  char *c = input_line_pointer;

  while (ISSPACE (*c))
    c++;

  if (*c == '.')
    d30v_cleanup (false);
}

static void
check_size (long value, int bits, const char *file, int line)
{
  int tmp, max;

  if (value < 0)
    tmp = ~value;
  else
    tmp = value;

  max = (1 << (bits - 1)) - 1;

  if (tmp > max)
    as_bad_where (file, line, _("value too large to fit in %d bits"), bits);
}

/* d30v_frob_label() is called when after a label is recognized.  */

void
d30v_frob_label (symbolS *lab)
{
  /* Emit any pending instructions.  */
  d30v_cleanup (false);

  /* Update the label's address with the current output pointer.  */
  symbol_set_frag (lab, frag_now);
  S_SET_VALUE (lab, (valueT) frag_now_fix ());

  /* Record this label for future adjustment after we find out what
     kind of data it references, and the required alignment therewith.  */
  d30v_last_label = lab;

  dwarf2_emit_label (lab);
}

/* Hook into cons for capturing alignment changes.  */

void
d30v_cons_align (int size)
{
  int log_size;

  /* Don't specially align anything in debug sections.  */
  if ((now_seg->flags & SEC_ALLOC) == 0
      || strcmp (now_seg->name, ".eh_frame") == 0)
    return;

  log_size = 0;
  while ((size >>= 1) != 0)
    ++log_size;

  if (d30v_current_align < log_size)
    d30v_align (log_size, (char *) NULL, NULL);
  else if (d30v_current_align > log_size)
    d30v_current_align = log_size;
  d30v_last_label = NULL;
}

void
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
{
  char *where;
  unsigned long insn, insn2;
  long value = *valP;

  if (fixP->fx_addsy == (symbolS *) NULL)
    fixP->fx_done = 1;

  /* We don't support subtracting a symbol.  */
  if (fixP->fx_subsy != (symbolS *) NULL)
    as_bad_subtract (fixP);

  /* Fetch the instruction, insert the fully resolved operand
     value, and stuff the instruction back again.  */
  where = fixP->fx_frag->fr_literal + fixP->fx_where;
  insn = bfd_getb32 ((unsigned char *) where);

  switch (fixP->fx_r_type)
    {
    case BFD_RELOC_8:
      *(unsigned char *) where = value;
      break;

    case BFD_RELOC_16:
      bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
      break;

    case BFD_RELOC_64:
      bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
      bfd_putb32 (0, ((unsigned char *) where) + 4);
      break;

    case BFD_RELOC_D30V_6:
      check_size (value, 6, fixP->fx_file, fixP->fx_line);
      insn |= value & 0x3F;
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      break;

    case BFD_RELOC_D30V_9_PCREL:
      if (fixP->fx_where & 0x7)
	{
	  if (fixP->fx_done)
	    value += 4;
	  else
	    fixP->fx_r_type = BFD_RELOC_D30V_9_PCREL_R;
	}
      check_size (value, 9, fixP->fx_file, fixP->fx_line);
      insn |= ((value >> 3) & 0x3F) << 12;
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      break;

    case BFD_RELOC_D30V_15:
      check_size (value, 15, fixP->fx_file, fixP->fx_line);
      insn |= (value >> 3) & 0xFFF;
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      break;

    case BFD_RELOC_D30V_15_PCREL:
      if (fixP->fx_where & 0x7)
	{
	  if (fixP->fx_done)
	    value += 4;
	  else
	    fixP->fx_r_type = BFD_RELOC_D30V_15_PCREL_R;
	}
      check_size (value, 15, fixP->fx_file, fixP->fx_line);
      insn |= (value >> 3) & 0xFFF;
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      break;

    case BFD_RELOC_D30V_21:
      check_size (value, 21, fixP->fx_file, fixP->fx_line);
      insn |= (value >> 3) & 0x3FFFF;
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      break;

    case BFD_RELOC_D30V_21_PCREL:
      if (fixP->fx_where & 0x7)
	{
	  if (fixP->fx_done)
	    value += 4;
	  else
	    fixP->fx_r_type = BFD_RELOC_D30V_21_PCREL_R;
	}
      check_size (value, 21, fixP->fx_file, fixP->fx_line);
      insn |= (value >> 3) & 0x3FFFF;
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      break;

    case BFD_RELOC_D30V_32:
      insn2 = bfd_getb32 ((unsigned char *) where + 4);
      insn |= (value >> 26) & 0x3F;		/* Top 6 bits.  */
      insn2 |= ((value & 0x03FC0000) << 2);	/* Next 8 bits.  */
      insn2 |= value & 0x0003FFFF;		/* Bottom 18 bits.  */
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
      break;

    case BFD_RELOC_D30V_32_PCREL:
      insn2 = bfd_getb32 ((unsigned char *) where + 4);
      insn |= (value >> 26) & 0x3F;		/* Top 6 bits.  */
      insn2 |= ((value & 0x03FC0000) << 2);	/* Next 8 bits.  */
      insn2 |= value & 0x0003FFFF;		/* Bottom 18 bits.  */
      bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
      bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
      break;

    case BFD_RELOC_32:
      bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
      break;

    default:
      as_bad (_("line %d: unknown relocation type: 0x%x"),
	      fixP->fx_line, fixP->fx_r_type);
    }
}

/* Handle the .align pseudo-op.  This aligns to a power of two.  We
   hook here to latch the current alignment.  */

static void
s_d30v_align (int ignore ATTRIBUTE_UNUSED)
{
  int align;
  char fill, *pfill = NULL;
  long max_alignment = 15;

  align = get_absolute_expression ();
  if (align > max_alignment)
    {
      align = max_alignment;
      as_warn (_("Alignment too large: %d assumed"), align);
    }
  else if (align < 0)
    {
      as_warn (_("Alignment negative: 0 assumed"));
      align = 0;
    }

  if (*input_line_pointer == ',')
    {
      input_line_pointer++;
      fill = get_absolute_expression ();
      pfill = &fill;
    }

  d30v_last_label = NULL;
  d30v_align (align, pfill, NULL);

  demand_empty_rest_of_line ();
}

/* Handle the .text pseudo-op.  This is like the usual one, but it
   clears the saved last label and resets known alignment.  */

static void
s_d30v_text (int i)

{
  s_text (i);
  d30v_last_label = NULL;
  d30v_current_align = 0;
  d30v_current_align_seg = now_seg;
}

/* Handle the .data pseudo-op.  This is like the usual one, but it
   clears the saved last label and resets known alignment.  */

static void
s_d30v_data (int i)
{
  s_data (i);
  d30v_last_label = NULL;
  d30v_current_align = 0;
  d30v_current_align_seg = now_seg;
}

/* Handle the .section pseudo-op.  This is like the usual one, but it
   clears the saved last label and resets known alignment.  */

static void
s_d30v_section (int ignore)
{
  obj_elf_section (ignore);
  d30v_last_label = NULL;
  d30v_current_align = 0;
  d30v_current_align_seg = now_seg;
}

/* The target specific pseudo-ops which we support.  */
const pseudo_typeS md_pseudo_table[] =
{
  { "word", cons, 4 },
  { "hword", cons, 2 },
  { "align", s_d30v_align, 0 },
  { "text", s_d30v_text, 0 },
  { "data", s_d30v_data, 0 },
  { "section", s_d30v_section, 0 },
  { "section.s", s_d30v_section, 0 },
  { "sect", s_d30v_section, 0 },
  { "sect.s", s_d30v_section, 0 },
  { NULL, NULL, 0 }
};