/* tc-sh.c -- Assemble code for the Renesas / SuperH SH
Copyright (C) 1993-2022 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street - Fifth Floor,
Boston, MA 02110-1301, USA. */
/* Written By Steve Chamberlain <sac@cygnus.com> */
#include "as.h"
#include "subsegs.h"
#define DEFINE_TABLE
#include "opcodes/sh-opc.h"
#include "safe-ctype.h"
#ifdef OBJ_ELF
#include "elf/sh.h"
#endif
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
typedef struct
{
sh_arg_type type;
int reg;
expressionS immediate;
}
sh_operand_info;
const char comment_chars[] = "!";
const char line_separator_chars[] = ";";
const char line_comment_chars[] = "!#";
static void s_uses (int);
static void s_uacons (int);
#ifdef OBJ_ELF
static void sh_elf_cons (int);
symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
#endif
static void
big (int ignore ATTRIBUTE_UNUSED)
{
if (! target_big_endian)
as_bad (_("directive .big encountered when option -big required"));
/* Stop further messages. */
target_big_endian = 1;
}
static void
little (int ignore ATTRIBUTE_UNUSED)
{
if (target_big_endian)
as_bad (_("directive .little encountered when option -little required"));
/* Stop further messages. */
target_big_endian = 0;
}
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function. */
const pseudo_typeS md_pseudo_table[] =
{
#ifdef OBJ_ELF
{"long", sh_elf_cons, 4},
{"int", sh_elf_cons, 4},
{"word", sh_elf_cons, 2},
{"short", sh_elf_cons, 2},
#else
{"int", cons, 4},
{"word", cons, 2},
#endif /* OBJ_ELF */
{"big", big, 0},
{"form", listing_psize, 0},
{"little", little, 0},
{"heading", listing_title, 0},
{"import", s_ignore, 0},
{"page", listing_eject, 0},
{"program", s_ignore, 0},
{"uses", s_uses, 0},
{"uaword", s_uacons, 2},
{"ualong", s_uacons, 4},
{"uaquad", s_uacons, 8},
{"2byte", s_uacons, 2},
{"4byte", s_uacons, 4},
{"8byte", s_uacons, 8},
{0, 0, 0}
};
int sh_relax; /* set if -relax seen */
/* Whether -small was seen. */
int sh_small;
/* Flag to generate relocations against symbol values for local symbols. */
static int dont_adjust_reloc_32;
/* Flag to indicate that '$' is allowed as a register prefix. */
static int allow_dollar_register_prefix;
/* Preset architecture set, if given; zero otherwise. */
static unsigned int preset_target_arch;
/* The bit mask of architectures that could
accommodate the insns seen so far. */
static unsigned int valid_arch;
#ifdef OBJ_ELF
/* Whether --fdpic was given. */
static int sh_fdpic;
#endif
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant. */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
#define C(a,b) ENCODE_RELAX(a,b)
#define ENCODE_RELAX(what,length) (((what) << 4) + (length))
#define GET_WHAT(x) ((x>>4))
/* These are the three types of relaxable instruction. */
/* These are the types of relaxable instructions; except for END which is
a marker. */
#define COND_JUMP 1
#define COND_JUMP_DELAY 2
#define UNCOND_JUMP 3
#define END 4
#define UNDEF_DISP 0
#define COND8 1
#define COND12 2
#define COND32 3
#define UNDEF_WORD_DISP 4
#define UNCOND12 1
#define UNCOND32 2
/* Branch displacements are from the address of the branch plus
four, thus all minimum and maximum values have 4 added to them. */
#define COND8_F 258
#define COND8_M -252
#define COND8_LENGTH 2
/* There is one extra instruction before the branch, so we must add
two more bytes to account for it. */
#define COND12_F 4100
#define COND12_M -4090
#define COND12_LENGTH 6
#define COND12_DELAY_LENGTH 4
/* ??? The minimum and maximum values are wrong, but this does not matter
since this relocation type is not supported yet. */
#define COND32_F (1<<30)
#define COND32_M -(1<<30)
#define COND32_LENGTH 14
#define UNCOND12_F 4098
#define UNCOND12_M -4092
#define UNCOND12_LENGTH 2
/* ??? The minimum and maximum values are wrong, but this does not matter
since this relocation type is not supported yet. */
#define UNCOND32_F (1<<30)
#define UNCOND32_M -(1<<30)
#define UNCOND32_LENGTH 14
#define EMPTY { 0, 0, 0, 0 }
const relax_typeS md_relax_table[C (END, 0)] = {
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY,
/* C (COND_JUMP, COND8) */
{ COND8_F, COND8_M, COND8_LENGTH, C (COND_JUMP, COND12) },
/* C (COND_JUMP, COND12) */
{ COND12_F, COND12_M, COND12_LENGTH, C (COND_JUMP, COND32), },
/* C (COND_JUMP, COND32) */
{ COND32_F, COND32_M, COND32_LENGTH, 0, },
/* C (COND_JUMP, UNDEF_WORD_DISP) */
{ 0, 0, COND32_LENGTH, 0, },
EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY,
/* C (COND_JUMP_DELAY, COND8) */
{ COND8_F, COND8_M, COND8_LENGTH, C (COND_JUMP_DELAY, COND12) },
/* C (COND_JUMP_DELAY, COND12) */
{ COND12_F, COND12_M, COND12_DELAY_LENGTH, C (COND_JUMP_DELAY, COND32), },
/* C (COND_JUMP_DELAY, COND32) */
{ COND32_F, COND32_M, COND32_LENGTH, 0, },
/* C (COND_JUMP_DELAY, UNDEF_WORD_DISP) */
{ 0, 0, COND32_LENGTH, 0, },
EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY,
/* C (UNCOND_JUMP, UNCOND12) */
{ UNCOND12_F, UNCOND12_M, UNCOND12_LENGTH, C (UNCOND_JUMP, UNCOND32), },
/* C (UNCOND_JUMP, UNCOND32) */
{ UNCOND32_F, UNCOND32_M, UNCOND32_LENGTH, 0, },
EMPTY,
/* C (UNCOND_JUMP, UNDEF_WORD_DISP) */
{ 0, 0, UNCOND32_LENGTH, 0, },
EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
};
#undef EMPTY
static htab_t opcode_hash_control; /* Opcode mnemonics */
#ifdef OBJ_ELF
/* Determine whether the symbol needs any kind of PIC relocation. */
inline static int
sh_PIC_related_p (symbolS *sym)
{
expressionS *exp;
if (! sym)
return 0;
if (sym == GOT_symbol)
return 1;
exp = symbol_get_value_expression (sym);
return (exp->X_op == O_PIC_reloc
|| sh_PIC_related_p (exp->X_add_symbol)
|| sh_PIC_related_p (exp->X_op_symbol));
}
/* Determine the relocation type to be used to represent the
expression, that may be rearranged. */
static int
sh_check_fixup (expressionS *main_exp, bfd_reloc_code_real_type *r_type_p)
{
expressionS *exp = main_exp;
/* This is here for backward-compatibility only. GCC used to generated:
f@PLT + . - (.LPCS# + 2)
but we'd rather be able to handle this as a PIC-related reference
plus/minus a symbol. However, gas' parser gives us:
O_subtract (O_add (f@PLT, .), .LPCS#+2)
so we attempt to transform this into:
O_subtract (f@PLT, O_subtract (.LPCS#+2, .))
which we can handle simply below. */
if (exp->X_op == O_subtract)
{
if (sh_PIC_related_p (exp->X_op_symbol))
return 1;
exp = symbol_get_value_expression (exp->X_add_symbol);
if (exp && sh_PIC_related_p (exp->X_op_symbol))
return 1;
if (exp && exp->X_op == O_add
&& sh_PIC_related_p (exp->X_add_symbol))
{
symbolS *sym = exp->X_add_symbol;
exp->X_op = O_subtract;
exp->X_add_symbol = main_exp->X_op_symbol;
main_exp->X_op_symbol = main_exp->X_add_symbol;
main_exp->X_add_symbol = sym;
main_exp->X_add_number += exp->X_add_number;
exp->X_add_number = 0;
}
exp = main_exp;
}
else if (exp->X_op == O_add && sh_PIC_related_p (exp->X_op_symbol))
return 1;
if (exp->X_op == O_symbol || exp->X_op == O_add || exp->X_op == O_subtract)
{
if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
{
*r_type_p = BFD_RELOC_SH_GOTPC;
return 0;
}
exp = symbol_get_value_expression (exp->X_add_symbol);
if (! exp)
return 0;
}
if (exp->X_op == O_PIC_reloc)
{
switch (*r_type_p)
{
case BFD_RELOC_NONE:
case BFD_RELOC_UNUSED:
*r_type_p = exp->X_md;
break;
case BFD_RELOC_SH_DISP20:
switch (exp->X_md)
{
case BFD_RELOC_32_GOT_PCREL:
*r_type_p = BFD_RELOC_SH_GOT20;
break;
case BFD_RELOC_32_GOTOFF:
*r_type_p = BFD_RELOC_SH_GOTOFF20;
break;
case BFD_RELOC_SH_GOTFUNCDESC:
*r_type_p = BFD_RELOC_SH_GOTFUNCDESC20;
break;
case BFD_RELOC_SH_GOTOFFFUNCDESC:
*r_type_p = BFD_RELOC_SH_GOTOFFFUNCDESC20;
break;
default:
abort ();
}
break;
default:
abort ();
}
if (exp == main_exp)
exp->X_op = O_symbol;
else
{
main_exp->X_add_symbol = exp->X_add_symbol;
main_exp->X_add_number += exp->X_add_number;
}
}
else
return (sh_PIC_related_p (exp->X_add_symbol)
|| sh_PIC_related_p (exp->X_op_symbol));
return 0;
}
/* Add expression EXP of SIZE bytes to offset OFF of fragment FRAG. */
void
sh_cons_fix_new (fragS *frag, int off, int size, expressionS *exp,
bfd_reloc_code_real_type r_type)
{
r_type = BFD_RELOC_UNUSED;
if (sh_check_fixup (exp, &r_type))
as_bad (_("Invalid PIC expression."));
if (r_type == BFD_RELOC_UNUSED)
switch (size)
{
case 1:
r_type = BFD_RELOC_8;
break;
case 2:
r_type = BFD_RELOC_16;
break;
case 4:
r_type = BFD_RELOC_32;
break;
case 8:
r_type = BFD_RELOC_64;
break;
default:
goto error;
}
else if (size != 4)
{
error:
as_bad (_("unsupported BFD relocation size %u"), size);
r_type = BFD_RELOC_UNUSED;
}
fix_new_exp (frag, off, size, exp, 0, r_type);
}
/* The regular cons() function, that reads constants, doesn't support
suffixes such as @GOT, @GOTOFF and @PLT, that generate
machine-specific relocation types. So we must define it here. */
/* Clobbers input_line_pointer, checks end-of-line. */
/* NBYTES 1=.byte, 2=.word, 4=.long */
static void
sh_elf_cons (int nbytes)
{
expressionS exp;
if (is_it_end_of_statement ())
{
demand_empty_rest_of_line ();
return;
}
#ifdef md_cons_align
md_cons_align (nbytes);
#endif
do
{
expression (&exp);
emit_expr (&exp, (unsigned int) nbytes);
}
while (*input_line_pointer++ == ',');
input_line_pointer--; /* Put terminator back into stream. */
if (*input_line_pointer == '#' || *input_line_pointer == '!')
{
while (! is_end_of_line[(unsigned char) *input_line_pointer++]);
}
else
demand_empty_rest_of_line ();
}
/* The regular frag_offset_fixed_p doesn't work for rs_align_test
frags. */
static bool
align_test_frag_offset_fixed_p (const fragS *frag1, const fragS *frag2,
bfd_vma *offset)
{
const fragS *frag;
bfd_vma off;
/* Start with offset initialised to difference between the two frags.
Prior to assigning frag addresses this will be zero. */
off = frag1->fr_address - frag2->fr_address;
if (frag1 == frag2)
{
*offset = off;
return true;
}
/* Maybe frag2 is after frag1. */
frag = frag1;
while (frag->fr_type == rs_fill
|| frag->fr_type == rs_align_test)
{
if (frag->fr_type == rs_fill)
off += frag->fr_fix + frag->fr_offset * frag->fr_var;
else
off += frag->fr_fix;
frag = frag->fr_next;
if (frag == NULL)
break;
if (frag == frag2)
{
*offset = off;
return true;
}
}
/* Maybe frag1 is after frag2. */
off = frag1->fr_address - frag2->fr_address;
frag = frag2;
while (frag->fr_type == rs_fill
|| frag->fr_type == rs_align_test)
{
if (frag->fr_type == rs_fill)
off -= frag->fr_fix + frag->fr_offset * frag->fr_var;
else
off -= frag->fr_fix;
frag = frag->fr_next;
if (frag == NULL)
break;
if (frag == frag1)
{
*offset = off;
return true;
}
}
return false;
}
/* Optimize a difference of symbols which have rs_align_test frag if
possible. */
int
sh_optimize_expr (expressionS *l, operatorT op, expressionS *r)
{
bfd_vma frag_off;
if (op == O_subtract
&& l->X_op == O_symbol
&& r->X_op == O_symbol
&& S_GET_SEGMENT (l->X_add_symbol) == S_GET_SEGMENT (r->X_add_symbol)
&& (SEG_NORMAL (S_GET_SEGMENT (l->X_add_symbol))
|| r->X_add_symbol == l->X_add_symbol)
&& align_test_frag_offset_fixed_p (symbol_get_frag (l->X_add_symbol),
symbol_get_frag (r->X_add_symbol),
&frag_off))
{
offsetT symval_diff = S_GET_VALUE (l->X_add_symbol)
- S_GET_VALUE (r->X_add_symbol);
subtract_from_result (l, r->X_add_number, r->X_extrabit);
subtract_from_result (l, frag_off / OCTETS_PER_BYTE, 0);
add_to_result (l, symval_diff, symval_diff < 0);
l->X_op = O_constant;
l->X_add_symbol = 0;
return 1;
}
return 0;
}
#endif /* OBJ_ELF */
/* This function is called once, at assembler startup time. This should
set up all the tables, etc that the MD part of the assembler needs. */
void
md_begin (void)
{
const sh_opcode_info *opcode;
const char *prev_name = "";
unsigned int target_arch;
target_arch
= preset_target_arch ? preset_target_arch : arch_sh_up & ~arch_sh_has_dsp;
valid_arch = target_arch;
opcode_hash_control = str_htab_create ();
/* Insert unique names into hash table. */
for (opcode = sh_table; opcode->name; opcode++)
{
if (strcmp (prev_name, opcode->name) != 0)
{
if (!SH_MERGE_ARCH_SET_VALID (opcode->arch, target_arch))
continue;
prev_name = opcode->name;
str_hash_insert (opcode_hash_control, opcode->name, opcode, 0);
}
}
}
static int reg_m;
static int reg_n;
static int reg_x, reg_y;
static int reg_efg;
static int reg_b;
#define IDENT_CHAR(c) (ISALNUM (c) || (c) == '_')
/* Try to parse a reg name. Return the number of chars consumed. */
static unsigned int
parse_reg_without_prefix (char *src, sh_arg_type *mode, int *reg)
{
char l0 = TOLOWER (src[0]);
char l1 = l0 ? TOLOWER (src[1]) : 0;
/* We use ! IDENT_CHAR for the next character after the register name, to
make sure that we won't accidentally recognize a symbol name such as
'sram' or sr_ram as being a reference to the register 'sr'. */
if (l0 == 'r')
{
if (l1 == '1')
{
if (src[2] >= '0' && src[2] <= '5'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_REG_N;
*reg = 10 + src[2] - '0';
return 3;
}
}
if (l1 >= '0' && l1 <= '9'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_REG_N;
*reg = (l1 - '0');
return 2;
}
if (l1 >= '0' && l1 <= '7' && strncasecmp (&src[2], "_bank", 5) == 0
&& ! IDENT_CHAR ((unsigned char) src[7]))
{
*mode = A_REG_B;
*reg = (l1 - '0');
return 7;
}
if (l1 == 'e' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_RE;
return 2;
}
if (l1 == 's' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_RS;
return 2;
}
}
if (l0 == 'a')
{
if (l1 == '0')
{
if (! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_A0_NUM;
return 2;
}
if (TOLOWER (src[2]) == 'g' && ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = DSP_REG_N;
*reg = A_A0G_NUM;
return 3;
}
}
if (l1 == '1')
{
if (! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_A1_NUM;
return 2;
}
if (TOLOWER (src[2]) == 'g' && ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = DSP_REG_N;
*reg = A_A1G_NUM;
return 3;
}
}
if (l1 == 'x' && src[2] >= '0' && src[2] <= '1'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_REG_N;
*reg = 4 + (l1 - '0');
return 3;
}
if (l1 == 'y' && src[2] >= '0' && src[2] <= '1'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_REG_N;
*reg = 6 + (l1 - '0');
return 3;
}
if (l1 == 's' && src[2] >= '0' && src[2] <= '3'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
int n = l1 - '0';
*mode = A_REG_N;
*reg = n | ((~n & 2) << 1);
return 3;
}
}
if (l0 == 'i' && l1 && ! IDENT_CHAR ((unsigned char) src[2]))
{
if (l1 == 's')
{
*mode = A_REG_N;
*reg = 8;
return 2;
}
if (l1 == 'x')
{
*mode = A_REG_N;
*reg = 8;
return 2;
}
if (l1 == 'y')
{
*mode = A_REG_N;
*reg = 9;
return 2;
}
}
if (l0 == 'x' && l1 >= '0' && l1 <= '1'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_X0_NUM + l1 - '0';
return 2;
}
if (l0 == 'y' && l1 >= '0' && l1 <= '1'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_Y0_NUM + l1 - '0';
return 2;
}
if (l0 == 'm' && l1 >= '0' && l1 <= '1'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = l1 == '0' ? A_M0_NUM : A_M1_NUM;
return 2;
}
if (l0 == 's'
&& l1 == 's'
&& TOLOWER (src[2]) == 'r' && ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_SSR;
return 3;
}
if (l0 == 's' && l1 == 'p' && TOLOWER (src[2]) == 'c'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_SPC;
return 3;
}
if (l0 == 's' && l1 == 'g' && TOLOWER (src[2]) == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_SGR;
return 3;
}
if (l0 == 'd' && l1 == 's' && TOLOWER (src[2]) == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_DSR;
return 3;
}
if (l0 == 'd' && l1 == 'b' && TOLOWER (src[2]) == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_DBR;
return 3;
}
if (l0 == 's' && l1 == 'r' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_SR;
return 2;
}
if (l0 == 's' && l1 == 'p' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_REG_N;
*reg = 15;
return 2;
}
if (l0 == 'p' && l1 == 'r' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_PR;
return 2;
}
if (l0 == 'p' && l1 == 'c' && ! IDENT_CHAR ((unsigned char) src[2]))
{
/* Don't use A_DISP_PC here - that would accept stuff like 'mova pc,r0'
and use an uninitialized immediate. */
*mode = A_PC;
return 2;
}
if (l0 == 'g' && l1 == 'b' && TOLOWER (src[2]) == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_GBR;
return 3;
}
if (l0 == 'v' && l1 == 'b' && TOLOWER (src[2]) == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_VBR;
return 3;
}
if (l0 == 't' && l1 == 'b' && TOLOWER (src[2]) == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_TBR;
return 3;
}
if (l0 == 'm' && l1 == 'a' && TOLOWER (src[2]) == 'c'
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
if (TOLOWER (src[3]) == 'l')
{
*mode = A_MACL;
return 4;
}
if (TOLOWER (src[3]) == 'h')
{
*mode = A_MACH;
return 4;
}
}
if (l0 == 'm' && l1 == 'o' && TOLOWER (src[2]) == 'd'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_MOD;
return 3;
}
if (l0 == 'f' && l1 == 'r')
{
if (src[2] == '1')
{
if (src[3] >= '0' && src[3] <= '5'
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = F_REG_N;
*reg = 10 + src[3] - '0';
return 4;
}
}
if (src[2] >= '0' && src[2] <= '9'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = F_REG_N;
*reg = (src[2] - '0');
return 3;
}
}
if (l0 == 'd' && l1 == 'r')
{
if (src[2] == '1')
{
if (src[3] >= '0' && src[3] <= '4' && ! ((src[3] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = D_REG_N;
*reg = 10 + src[3] - '0';
return 4;
}
}
if (src[2] >= '0' && src[2] <= '8' && ! ((src[2] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = D_REG_N;
*reg = (src[2] - '0');
return 3;
}
}
if (l0 == 'x' && l1 == 'd')
{
if (src[2] == '1')
{
if (src[3] >= '0' && src[3] <= '4' && ! ((src[3] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = X_REG_N;
*reg = 11 + src[3] - '0';
return 4;
}
}
if (src[2] >= '0' && src[2] <= '8' && ! ((src[2] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = X_REG_N;
*reg = (src[2] - '0') + 1;
return 3;
}
}
if (l0 == 'f' && l1 == 'v')
{
if (src[2] == '1'&& src[3] == '2' && ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = V_REG_N;
*reg = 12;
return 4;
}
if ((src[2] == '0' || src[2] == '4' || src[2] == '8')
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = V_REG_N;
*reg = (src[2] - '0');
return 3;
}
}
if (l0 == 'f' && l1 == 'p' && TOLOWER (src[2]) == 'u'
&& TOLOWER (src[3]) == 'l'
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = FPUL_N;
return 4;
}
if (l0 == 'f' && l1 == 'p' && TOLOWER (src[2]) == 's'
&& TOLOWER (src[3]) == 'c'
&& TOLOWER (src[4]) == 'r' && ! IDENT_CHAR ((unsigned char) src[5]))
{
*mode = FPSCR_N;
return 5;
}
if (l0 == 'x' && l1 == 'm' && TOLOWER (src[2]) == 't'
&& TOLOWER (src[3]) == 'r'
&& TOLOWER (src[4]) == 'x' && ! IDENT_CHAR ((unsigned char) src[5]))
{
*mode = XMTRX_M4;
return 5;
}
return 0;
}
/* Like parse_reg_without_prefix, but this version supports
$-prefixed register names if enabled by the user. */
static unsigned int
parse_reg (char *src, sh_arg_type *mode, int *reg)
{
unsigned int prefix;
unsigned int consumed;
if (src[0] == '$')
{
if (allow_dollar_register_prefix)
{
src ++;
prefix = 1;
}
else
return 0;
}
else
prefix = 0;
consumed = parse_reg_without_prefix (src, mode, reg);
if (consumed == 0)
return 0;
return consumed + prefix;
}
static char *
parse_exp (char *s, sh_operand_info *op)
{
char *save;
char *new_pointer;
save = input_line_pointer;
input_line_pointer = s;
expression (&op->immediate);
if (op->immediate.X_op == O_absent)
as_bad (_("missing operand"));
new_pointer = input_line_pointer;
input_line_pointer = save;
return new_pointer;
}
/* The many forms of operand:
Rn Register direct
@Rn Register indirect
@Rn+ Autoincrement
@-Rn Autodecrement
@(disp:4,Rn)
@(disp:8,GBR)
@(disp:8,PC)
@(R0,Rn)
@(R0,GBR)
disp:8
disp:12
#imm8
pr, gbr, vbr, macl, mach
*/
static char *
parse_at (char *src, sh_operand_info *op)
{
int len;
sh_arg_type mode;
src++;
if (src[0] == '@')
{
src = parse_at (src, op);
if (op->type == A_DISP_TBR)
op->type = A_DISP2_TBR;
else
as_bad (_("illegal double indirection"));
}
else if (src[0] == '-')
{
/* Must be predecrement. */
src++;
len = parse_reg (src, &mode, &(op->reg));
if (mode != A_REG_N)
as_bad (_("illegal register after @-"));
op->type = A_DEC_N;
src += len;
}
else if (src[0] == '(')
{
/* Could be @(disp, rn), @(disp, gbr), @(disp, pc), @(r0, gbr) or
@(r0, rn). */
src++;
len = parse_reg (src, &mode, &(op->reg));
if (len && mode == A_REG_N)
{
src += len;
if (op->reg != 0)
{
as_bad (_("must be @(r0,...)"));
}
if (src[0] == ',')
{
src++;
/* Now can be rn or gbr. */
len = parse_reg (src, &mode, &(op->reg));
}
else
{
len = 0;
}
if (len)
{
if (mode == A_GBR)
{
op->type = A_R0_GBR;
}
else if (mode == A_REG_N)
{
op->type = A_IND_R0_REG_N;
}
else
{
as_bad (_("syntax error in @(r0,...)"));
}
}
else
{
as_bad (_("syntax error in @(r0...)"));
}
}
else
{
/* Must be an @(disp,.. thing). */
src = parse_exp (src, op);
if (src[0] == ',')
src++;
/* Now can be rn, gbr or pc. */
len = parse_reg (src, &mode, &op->reg);
if (len)
{
if (mode == A_REG_N)
{
op->type = A_DISP_REG_N;
}
else if (mode == A_GBR)
{
op->type = A_DISP_GBR;
}
else if (mode == A_TBR)
{
op->type = A_DISP_TBR;
}
else if (mode == A_PC)
{
/* We want @(expr, pc) to uniformly address . + expr,
no matter if expr is a constant, or a more complex
expression, e.g. sym-. or sym1-sym2.
However, we also used to accept @(sym,pc)
as addressing sym, i.e. meaning the same as plain sym.
Some existing code does use the @(sym,pc) syntax, so
we give it the old semantics for now, but warn about
its use, so that users have some time to fix their code.
Note that due to this backward compatibility hack,
we'll get unexpected results when @(offset, pc) is used,
and offset is a symbol that is set later to an an address
difference, or an external symbol that is set to an
address difference in another source file, so we want to
eventually remove it. */
if (op->immediate.X_op == O_symbol)
{
op->type = A_DISP_PC;
as_warn (_("Deprecated syntax."));
}
else
{
op->type = A_DISP_PC_ABS;
/* Such operands don't get corrected for PC==.+4, so
make the correction here. */
op->immediate.X_add_number -= 4;
}
}
else
{
as_bad (_("syntax error in @(disp,[Rn, gbr, pc])"));
}
}
else
{
as_bad (_("syntax error in @(disp,[Rn, gbr, pc])"));
}
}
src += len;
if (src[0] != ')')
as_bad (_("expecting )"));
else
src++;
}
else
{
src += parse_reg (src, &mode, &(op->reg));
if (mode != A_REG_N)
as_bad (_("illegal register after @"));
if (src[0] == '+')
{
char l0, l1;
src++;
l0 = TOLOWER (src[0]);
l1 = TOLOWER (src[1]);
if ((l0 == 'r' && l1 == '8')
|| (l0 == 'i' && (l1 == 'x' || l1 == 's')))
{
src += 2;
op->type = AX_PMOD_N;
}
else if ( (l0 == 'r' && l1 == '9')
|| (l0 == 'i' && l1 == 'y'))
{
src += 2;
op->type = AY_PMOD_N;
}
else
op->type = A_INC_N;
}
else
op->type = A_IND_N;
}
return src;
}
static void
get_operand (char **ptr, sh_operand_info *op)
{
char *src = *ptr;
sh_arg_type mode = (sh_arg_type) -1;
unsigned int len;
if (src[0] == '#')
{
src++;
*ptr = parse_exp (src, op);
op->type = A_IMM;
return;
}
else if (src[0] == '@')
{
*ptr = parse_at (src, op);
return;
}
len = parse_reg (src, &mode, &(op->reg));
if (len)
{
*ptr = src + len;
op->type = mode;
return;
}
else
{
/* Not a reg, the only thing left is a displacement. */
*ptr = parse_exp (src, op);
op->type = A_DISP_PC;
return;
}
}
static char *
get_operands (sh_opcode_info *info, char *args, sh_operand_info *operand)
{
char *ptr = args;
if (info->arg[0])
{
/* The pre-processor will eliminate whitespace in front of '@'
after the first argument; we may be called multiple times
from assemble_ppi, so don't insist on finding whitespace here. */
if (*ptr == ' ')
ptr++;
get_operand (&ptr, operand + 0);
if (info->arg[1])
{
if (*ptr == ',')
{
ptr++;
}
get_operand (&ptr, operand + 1);
/* ??? Hack: psha/pshl have a varying operand number depending on
the type of the first operand. We handle this by having the
three-operand version first and reducing the number of operands
parsed to two if we see that the first operand is an immediate.
This works because no insn with three operands has an immediate
as first operand. */
if (info->arg[2] && operand[0].type != A_IMM)
{
if (*ptr == ',')
{
ptr++;
}
get_operand (&ptr, operand + 2);
}
else
{
operand[2].type = 0;
}
}
else
{
operand[1].type = 0;
operand[2].type = 0;
}
}
else
{
operand[0].type = 0;
operand[1].type = 0;
operand[2].type = 0;
}
return ptr;
}
/* Passed a pointer to a list of opcodes which use different
addressing modes, return the opcode which matches the opcodes
provided. */
static sh_opcode_info *
get_specific (sh_opcode_info *opcode, sh_operand_info *operands)
{
sh_opcode_info *this_try = opcode;
const char *name = opcode->name;
int n = 0;
while (opcode->name)
{
this_try = opcode++;
if ((this_try->name != name) && (strcmp (this_try->name, name) != 0))
{
/* We've looked so far down the table that we've run out of
opcodes with the same name. */
return 0;
}
/* Look at both operands needed by the opcodes and provided by
the user - since an arg test will often fail on the same arg
again and again, we'll try and test the last failing arg the
first on each opcode try. */
for (n = 0; this_try->arg[n]; n++)
{
sh_operand_info *user = operands + n;
sh_arg_type arg = this_try->arg[n];
switch (arg)
{
case A_DISP_PC:
if (user->type == A_DISP_PC_ABS)
break;
/* Fall through. */
case A_IMM:
case A_BDISP12:
case A_BDISP8:
case A_DISP_GBR:
case A_DISP2_TBR:
case A_MACH:
case A_PR:
case A_MACL:
if (user->type != arg)
goto fail;
break;
case A_R0:
/* opcode needs r0 */
if (user->type != A_REG_N || user->reg != 0)
goto fail;
break;
case A_R0_GBR:
if (user->type != A_R0_GBR || user->reg != 0)
goto fail;
break;
case F_FR0:
if (user->type != F_REG_N || user->reg != 0)
goto fail;
break;
case A_REG_N:
case A_INC_N:
case A_DEC_N:
case A_IND_N:
case A_IND_R0_REG_N:
case A_DISP_REG_N:
case F_REG_N:
case D_REG_N:
case X_REG_N:
case V_REG_N:
case FPUL_N:
case FPSCR_N:
case DSP_REG_N:
/* Opcode needs rn */
if (user->type != arg)
goto fail;
reg_n = user->reg;
break;
case DX_REG_N:
if (user->type != D_REG_N && user->type != X_REG_N)
goto fail;
reg_n = user->reg;
break;
case A_GBR:
case A_TBR:
case A_SR:
case A_VBR:
case A_DSR:
case A_MOD:
case A_RE:
case A_RS:
case A_SSR:
case A_SPC:
case A_SGR:
case A_DBR:
if (user->type != arg)
goto fail;
break;
case A_REG_B:
if (user->type != arg)
goto fail;
reg_b = user->reg;
break;
case A_INC_R15:
if (user->type != A_INC_N)
goto fail;
if (user->reg != 15)
goto fail;
reg_n = user->reg;
break;
case A_DEC_R15:
if (user->type != A_DEC_N)
goto fail;
if (user->reg != 15)
goto fail;
reg_n = user->reg;
break;
case A_REG_M:
case A_INC_M:
case A_DEC_M:
case A_IND_M:
case A_IND_R0_REG_M:
case A_DISP_REG_M:
case DSP_REG_M:
/* Opcode needs rn */
if (user->type != arg - A_REG_M + A_REG_N)
goto fail;
reg_m = user->reg;
break;
case AS_DEC_N:
if (user->type != A_DEC_N)
goto fail;
if (user->reg < 2 || user->reg > 5)
goto fail;
reg_n = user->reg;
break;
case AS_INC_N:
if (user->type != A_INC_N)
goto fail;
if (user->reg < 2 || user->reg > 5)
goto fail;
reg_n = user->reg;
break;
case AS_IND_N:
if (user->type != A_IND_N)
goto fail;
if (user->reg < 2 || user->reg > 5)
goto fail;
reg_n = user->reg;
break;
case AS_PMOD_N:
if (user->type != AX_PMOD_N)
goto fail;
if (user->reg < 2 || user->reg > 5)
goto fail;
reg_n = user->reg;
break;
case AX_INC_N:
if (user->type != A_INC_N)
goto fail;
if (user->reg < 4 || user->reg > 5)
goto fail;
reg_n = user->reg;
break;
case AX_IND_N:
if (user->type != A_IND_N)
goto fail;
if (user->reg < 4 || user->reg > 5)
goto fail;
reg_n = user->reg;
break;
case AX_PMOD_N:
if (user->type != AX_PMOD_N)
goto fail;
if (user->reg < 4 || user->reg > 5)
goto fail;
reg_n = user->reg;
break;
case AXY_INC_N:
if (user->type != A_INC_N)
goto fail;
if ((user->reg < 4 || user->reg > 5)
&& (user->reg < 0 || user->reg > 1))
goto fail;
reg_n = user->reg;
break;
case AXY_IND_N:
if (user->type != A_IND_N)
goto fail;
if ((user->reg < 4 || user->reg > 5)
&& (user->reg < 0 || user->reg > 1))
goto fail;
reg_n = user->reg;
break;
case AXY_PMOD_N:
if (user->type != AX_PMOD_N)
goto fail;
if ((user->reg < 4 || user->reg > 5)
&& (user->reg < 0 || user->reg > 1))
goto fail;
reg_n = user->reg;
break;
case AY_INC_N:
if (user->type != A_INC_N)
goto fail;
if (user->reg < 6 || user->reg > 7)
goto fail;
reg_n = user->reg;
break;
case AY_IND_N:
if (user->type != A_IND_N)
goto fail;
if (user->reg < 6 || user->reg > 7)
goto fail;
reg_n = user->reg;
break;
case AY_PMOD_N:
if (user->type != AY_PMOD_N)
goto fail;
if (user->reg < 6 || user->reg > 7)
goto fail;
reg_n = user->reg;
break;
case AYX_INC_N:
if (user->type != A_INC_N)
goto fail;
if ((user->reg < 6 || user->reg > 7)
&& (user->reg < 2 || user->reg > 3))
goto fail;
reg_n = user->reg;
break;
case AYX_IND_N:
if (user->type != A_IND_N)
goto fail;
if ((user->reg < 6 || user->reg > 7)
&& (user->reg < 2 || user->reg > 3))
goto fail;
reg_n = user->reg;
break;
case AYX_PMOD_N:
if (user->type != AY_PMOD_N)
goto fail;
if ((user->reg < 6 || user->reg > 7)
&& (user->reg < 2 || user->reg > 3))
goto fail;
reg_n = user->reg;
break;
case DSP_REG_A_M:
if (user->type != DSP_REG_N)
goto fail;
if (user->reg != A_A0_NUM
&& user->reg != A_A1_NUM)
goto fail;
reg_m = user->reg;
break;
case DSP_REG_AX:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_A0_NUM:
reg_x = 0;
break;
case A_A1_NUM:
reg_x = 2;
break;
case A_X0_NUM:
reg_x = 1;
break;
case A_X1_NUM:
reg_x = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_XY:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_X0_NUM:
reg_x = 0;
break;
case A_X1_NUM:
reg_x = 2;
break;
case A_Y0_NUM:
reg_x = 1;
break;
case A_Y1_NUM:
reg_x = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_AY:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_A0_NUM:
reg_y = 0;
break;
case A_A1_NUM:
reg_y = 1;
break;
case A_Y0_NUM:
reg_y = 2;
break;
case A_Y1_NUM:
reg_y = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_YX:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_Y0_NUM:
reg_y = 0;
break;
case A_Y1_NUM:
reg_y = 1;
break;
case A_X0_NUM:
reg_y = 2;
break;
case A_X1_NUM:
reg_y = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_X:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_X0_NUM:
reg_x = 0;
break;
case A_X1_NUM:
reg_x = 1;
break;
case A_A0_NUM:
reg_x = 2;
break;
case A_A1_NUM:
reg_x = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_Y:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_Y0_NUM:
reg_y = 0;
break;
case A_Y1_NUM:
reg_y = 1;
break;
case A_M0_NUM:
reg_y = 2;
break;
case A_M1_NUM:
reg_y = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_E:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_X0_NUM:
reg_efg = 0 << 10;
break;
case A_X1_NUM:
reg_efg = 1 << 10;
break;
case A_Y0_NUM:
reg_efg = 2 << 10;
break;
case A_A1_NUM:
reg_efg = 3 << 10;
break;
default:
goto fail;
}
break;
case DSP_REG_F:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_Y0_NUM:
reg_efg |= 0 << 8;
break;
case A_Y1_NUM:
reg_efg |= 1 << 8;
break;
case A_X0_NUM:
reg_efg |= 2 << 8;
break;
case A_A1_NUM:
reg_efg |= 3 << 8;
break;
default:
goto fail;
}
break;
case DSP_REG_G:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_M0_NUM:
reg_efg |= 0 << 2;
break;
case A_M1_NUM:
reg_efg |= 1 << 2;
break;
case A_A0_NUM:
reg_efg |= 2 << 2;
break;
case A_A1_NUM:
reg_efg |= 3 << 2;
break;
default:
goto fail;
}
break;
case A_A0:
if (user->type != DSP_REG_N || user->reg != A_A0_NUM)
goto fail;
break;
case A_X0:
if (user->type != DSP_REG_N || user->reg != A_X0_NUM)
goto fail;
break;
case A_X1:
if (user->type != DSP_REG_N || user->reg != A_X1_NUM)
goto fail;
break;
case A_Y0:
if (user->type != DSP_REG_N || user->reg != A_Y0_NUM)
goto fail;
break;
case A_Y1:
if (user->type != DSP_REG_N || user->reg != A_Y1_NUM)
goto fail;
break;
case F_REG_M:
case D_REG_M:
case X_REG_M:
case V_REG_M:
case FPUL_M:
case FPSCR_M:
/* Opcode needs rn */
if (user->type != arg - F_REG_M + F_REG_N)
goto fail;
reg_m = user->reg;
break;
case DX_REG_M:
if (user->type != D_REG_N && user->type != X_REG_N)
goto fail;
reg_m = user->reg;
break;
case XMTRX_M4:
if (user->type != XMTRX_M4)
goto fail;
reg_m = 4;
break;
default:
printf (_("unhandled %d\n"), arg);
goto fail;
}
if (SH_MERGE_ARCH_SET_VALID (valid_arch, arch_sh2a_nofpu_up)
&& ( arg == A_DISP_REG_M
|| arg == A_DISP_REG_N))
{
/* Check a few key IMM* fields for overflow. */
int opf;
long val = user->immediate.X_add_number;
for (opf = 0; opf < 4; opf ++)
switch (this_try->nibbles[opf])
{
case IMM0_4:
case IMM1_4:
if (val < 0 || val > 15)
goto fail;
break;
case IMM0_4BY2:
case IMM1_4BY2:
if (val < 0 || val > 15 * 2)
goto fail;
break;
case IMM0_4BY4:
case IMM1_4BY4:
if (val < 0 || val > 15 * 4)
goto fail;
break;
default:
break;
}
}
}
if ( !SH_MERGE_ARCH_SET_VALID (valid_arch, this_try->arch))
goto fail;
valid_arch = SH_MERGE_ARCH_SET (valid_arch, this_try->arch);
return this_try;
fail:
;
}
return 0;
}
static void
insert (char *where, bfd_reloc_code_real_type how, int pcrel,
sh_operand_info *op)
{
fix_new_exp (frag_now,
where - frag_now->fr_literal,
2,
&op->immediate,
pcrel,
how);
}
static void
insert4 (char * where, bfd_reloc_code_real_type how, int pcrel,
sh_operand_info * op)
{
fix_new_exp (frag_now,
where - frag_now->fr_literal,
4,
& op->immediate,
pcrel,
how);
}
static void
build_relax (sh_opcode_info *opcode, sh_operand_info *op)
{
int high_byte = target_big_endian ? 0 : 1;
char *p;
if (opcode->arg[0] == A_BDISP8)
{
int what = (opcode->nibbles[1] & 4) ? COND_JUMP_DELAY : COND_JUMP;
p = frag_var (rs_machine_dependent,
md_relax_table[C (what, COND32)].rlx_length,
md_relax_table[C (what, COND8)].rlx_length,
C (what, 0),
op->immediate.X_add_symbol,
op->immediate.X_add_number,
0);
p[high_byte] = (opcode->nibbles[0] << 4) | (opcode->nibbles[1]);
}
else if (opcode->arg[0] == A_BDISP12)
{
p = frag_var (rs_machine_dependent,
md_relax_table[C (UNCOND_JUMP, UNCOND32)].rlx_length,
md_relax_table[C (UNCOND_JUMP, UNCOND12)].rlx_length,
C (UNCOND_JUMP, 0),
op->immediate.X_add_symbol,
op->immediate.X_add_number,
0);
p[high_byte] = (opcode->nibbles[0] << 4);
}
}
/* Insert ldrs & ldre with fancy relocations that relaxation can recognize. */
static char *
insert_loop_bounds (char *output, sh_operand_info *operand)
{
symbolS *end_sym;
/* Since the low byte of the opcode will be overwritten by the reloc, we
can just stash the high byte into both bytes and ignore endianness. */
output[0] = 0x8c;
output[1] = 0x8c;
insert (output, BFD_RELOC_SH_LOOP_START, 1, operand);
insert (output, BFD_RELOC_SH_LOOP_END, 1, operand + 1);
if (sh_relax)
{
static int count = 0;
char name[11];
expressionS *symval;
/* If the last loop insn is a two-byte-insn, it is in danger of being
swapped with the insn after it. To prevent this, create a new
symbol - complete with SH_LABEL reloc - after the last loop insn.
If the last loop insn is four bytes long, the symbol will be
right in the middle, but four byte insns are not swapped anyways. */
/* A REPEAT takes 6 bytes. The SH has a 32 bit address space.
Hence a 9 digit number should be enough to count all REPEATs. */
sprintf (name, "_R%x", count++ & 0x3fffffff);
end_sym = symbol_new (name, undefined_section, &zero_address_frag, 0);
/* Make this a local symbol. */
#ifdef OBJ_COFF
SF_SET_LOCAL (end_sym);
#endif /* OBJ_COFF */
symbol_table_insert (end_sym);
symval = symbol_get_value_expression (end_sym);
*symval = operand[1].immediate;
symval->X_add_number += 2;
fix_new (frag_now, frag_now_fix (), 2, end_sym, 0, 1, BFD_RELOC_SH_LABEL);
}
output = frag_more (2);
output[0] = 0x8e;
output[1] = 0x8e;
insert (output, BFD_RELOC_SH_LOOP_START, 1, operand);
insert (output, BFD_RELOC_SH_LOOP_END, 1, operand + 1);
return frag_more (2);
}
/* Now we know what sort of opcodes it is, let's build the bytes. */
static unsigned int
build_Mytes (sh_opcode_info *opcode, sh_operand_info *operand)
{
int indx;
char nbuf[8];
char *output;
unsigned int size = 2;
int low_byte = target_big_endian ? 1 : 0;
int max_index = 4;
bfd_reloc_code_real_type r_type;
#ifdef OBJ_ELF
int unhandled_pic = 0;
#endif
nbuf[0] = 0;
nbuf[1] = 0;
nbuf[2] = 0;
nbuf[3] = 0;
nbuf[4] = 0;
nbuf[5] = 0;
nbuf[6] = 0;
nbuf[7] = 0;
#ifdef OBJ_ELF
for (indx = 0; indx < 3; indx++)
if (opcode->arg[indx] == A_IMM
&& operand[indx].type == A_IMM
&& (operand[indx].immediate.X_op == O_PIC_reloc
|| sh_PIC_related_p (operand[indx].immediate.X_add_symbol)
|| sh_PIC_related_p (operand[indx].immediate.X_op_symbol)))
unhandled_pic = 1;
#endif
if (SH_MERGE_ARCH_SET (opcode->arch, arch_op32))
{
output = frag_more (4);
size = 4;
max_index = 8;
}
else
output = frag_more (2);
for (indx = 0; indx < max_index; indx++)
{
sh_nibble_type i = opcode->nibbles[indx];
if (i < 16)
{
nbuf[indx] = i;
}
else
{
switch (i)
{
case REG_N:
case REG_N_D:
nbuf[indx] = reg_n;
break;
case REG_M:
nbuf[indx] = reg_m;
break;
case SDT_REG_N:
if (reg_n < 2 || reg_n > 5)
as_bad (_("Invalid register: 'r%d'"), reg_n);
nbuf[indx] = (reg_n & 3) | 4;
break;
case REG_NM:
nbuf[indx] = reg_n | (reg_m >> 2);
break;
case REG_B:
nbuf[indx] = reg_b | 0x08;
break;
case REG_N_B01:
nbuf[indx] = reg_n | 0x01;
break;
case IMM0_3s:
nbuf[indx] |= 0x08;
/* Fall through. */
case IMM0_3c:
insert (output + low_byte, BFD_RELOC_SH_IMM3, 0, operand);
break;
case IMM0_3Us:
nbuf[indx] |= 0x80;
/* Fall through. */
case IMM0_3Uc:
insert (output + low_byte, BFD_RELOC_SH_IMM3U, 0, operand);
break;
case DISP0_12:
insert (output + 2, BFD_RELOC_SH_DISP12, 0, operand);
break;
case DISP0_12BY2:
insert (output + 2, BFD_RELOC_SH_DISP12BY2, 0, operand);
break;
case DISP0_12BY4:
insert (output + 2, BFD_RELOC_SH_DISP12BY4, 0, operand);
break;
case DISP0_12BY8:
insert (output + 2, BFD_RELOC_SH_DISP12BY8, 0, operand);
break;
case DISP1_12:
insert (output + 2, BFD_RELOC_SH_DISP12, 0, operand+1);
break;
case DISP1_12BY2:
insert (output + 2, BFD_RELOC_SH_DISP12BY2, 0, operand+1);
break;
case DISP1_12BY4:
insert (output + 2, BFD_RELOC_SH_DISP12BY4, 0, operand+1);
break;
case DISP1_12BY8:
insert (output + 2, BFD_RELOC_SH_DISP12BY8, 0, operand+1);
break;
case IMM0_20_4:
break;
case IMM0_20:
r_type = BFD_RELOC_SH_DISP20;
#ifdef OBJ_ELF
if (sh_check_fixup (&operand->immediate, &r_type))
as_bad (_("Invalid PIC expression."));
unhandled_pic = 0;
#endif
insert4 (output, r_type, 0, operand);
break;
case IMM0_20BY8:
insert4 (output, BFD_RELOC_SH_DISP20BY8, 0, operand);
break;
case IMM0_4BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY4, 0, operand);
break;
case IMM0_4BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY2, 0, operand);
break;
case IMM0_4:
insert (output + low_byte, BFD_RELOC_SH_IMM4, 0, operand);
break;
case IMM1_4BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY4, 0, operand + 1);
break;
case IMM1_4BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY2, 0, operand + 1);
break;
case IMM1_4:
insert (output + low_byte, BFD_RELOC_SH_IMM4, 0, operand + 1);
break;
case IMM0_8BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY4, 0, operand);
break;
case IMM0_8BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY2, 0, operand);
break;
case IMM0_8U:
case IMM0_8S:
insert (output + low_byte, BFD_RELOC_SH_IMM8, 0, operand);
break;
case IMM1_8BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY4, 0, operand + 1);
break;
case IMM1_8BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY2, 0, operand + 1);
break;
case IMM1_8:
insert (output + low_byte, BFD_RELOC_SH_IMM8, 0, operand + 1);
break;
case PCRELIMM_8BY4:
insert (output, BFD_RELOC_SH_PCRELIMM8BY4,
operand->type != A_DISP_PC_ABS, operand);
break;
case PCRELIMM_8BY2:
insert (output, BFD_RELOC_SH_PCRELIMM8BY2,
operand->type != A_DISP_PC_ABS, operand);
break;
case REPEAT:
output = insert_loop_bounds (output, operand);
nbuf[indx] = opcode->nibbles[3];
operand += 2;
break;
default:
printf (_("failed for %d\n"), i);
}
}
}
#ifdef OBJ_ELF
if (unhandled_pic)
as_bad (_("misplaced PIC operand"));
#endif
if (!target_big_endian)
{
output[1] = (nbuf[0] << 4) | (nbuf[1]);
output[0] = (nbuf[2] << 4) | (nbuf[3]);
}
else
{
output[0] = (nbuf[0] << 4) | (nbuf[1]);
output[1] = (nbuf[2] << 4) | (nbuf[3]);
}
if (SH_MERGE_ARCH_SET (opcode->arch, arch_op32))
{
if (!target_big_endian)
{
output[3] = (nbuf[4] << 4) | (nbuf[5]);
output[2] = (nbuf[6] << 4) | (nbuf[7]);
}
else
{
output[2] = (nbuf[4] << 4) | (nbuf[5]);
output[3] = (nbuf[6] << 4) | (nbuf[7]);
}
}
return size;
}
/* Find an opcode at the start of *STR_P in the hash table, and set
*STR_P to the first character after the last one read. */
static sh_opcode_info *
find_cooked_opcode (char **str_p)
{
char *str = *str_p;
unsigned char *op_start;
unsigned char *op_end;
char name[20];
unsigned int nlen = 0;
/* Drop leading whitespace. */
while (*str == ' ')
str++;
/* Find the op code end.
The pre-processor will eliminate whitespace in front of
any '@' after the first argument; we may be called from
assemble_ppi, so the opcode might be terminated by an '@'. */
for (op_start = op_end = (unsigned char *) str;
*op_end
&& nlen < sizeof (name) - 1
&& !is_end_of_line[*op_end] && *op_end != ' ' && *op_end != '@';
op_end++)
{
unsigned char c = op_start[nlen];
/* The machine independent code will convert CMP/EQ into cmp/EQ
because it thinks the '/' is the end of the symbol. Moreover,
all but the first sub-insn is a parallel processing insn won't
be capitalized. Instead of hacking up the machine independent
code, we just deal with it here. */
c = TOLOWER (c);
name[nlen] = c;
nlen++;
}
name[nlen] = 0;
*str_p = (char *) op_end;
if (nlen == 0)
as_bad (_("can't find opcode "));
return (sh_opcode_info *) str_hash_find (opcode_hash_control, name);
}
/* Assemble a parallel processing insn. */
#define DDT_BASE 0xf000 /* Base value for double data transfer insns */
static unsigned int
assemble_ppi (char *op_end, sh_opcode_info *opcode)
{
unsigned int movx = 0;
unsigned int movy = 0;
unsigned int cond = 0;
unsigned int field_b = 0;
char *output;
unsigned int move_code;
unsigned int size;
for (;;)
{
sh_operand_info operand[3];
/* Some insn ignore one or more register fields, e.g. psts machl,a0.
Make sure we encode a defined insn pattern. */
reg_x = 0;
reg_y = 0;
reg_n = 0;
if (opcode->arg[0] != A_END)
op_end = get_operands (opcode, op_end, operand);
try_another_opcode:
opcode = get_specific (opcode, operand);
if (opcode == 0)
{
/* Couldn't find an opcode which matched the operands. */
char *where = frag_more (2);
size = 2;
where[0] = 0x0;
where[1] = 0x0;
as_bad (_("invalid operands for opcode"));
return size;
}
if (opcode->nibbles[0] != PPI)
as_bad (_("insn can't be combined with parallel processing insn"));
switch (opcode->nibbles[1])
{
case NOPX:
if (movx)
as_bad (_("multiple movx specifications"));
movx = DDT_BASE;
break;
case NOPY:
if (movy)
as_bad (_("multiple movy specifications"));
movy = DDT_BASE;
break;
case MOVX_NOPY:
if (movx)
as_bad (_("multiple movx specifications"));
if ((reg_n < 4 || reg_n > 5)
&& (reg_n < 0 || reg_n > 1))
as_bad (_("invalid movx address register"));
if (movy && movy != DDT_BASE)
as_bad (_("insn cannot be combined with non-nopy"));
movx = ((((reg_n & 1) != 0) << 9)
+ (((reg_n & 4) == 0) << 8)
+ (reg_x << 6)
+ (opcode->nibbles[2] << 4)
+ opcode->nibbles[3]
+ DDT_BASE);
break;
case MOVY_NOPX:
if (movy)
as_bad (_("multiple movy specifications"));
if ((reg_n < 6 || reg_n > 7)
&& (reg_n < 2 || reg_n > 3))
as_bad (_("invalid movy address register"));
if (movx && movx != DDT_BASE)
as_bad (_("insn cannot be combined with non-nopx"));
movy = ((((reg_n & 1) != 0) << 8)
+ (((reg_n & 4) == 0) << 9)
+ (reg_y << 6)
+ (opcode->nibbles[2] << 4)
+ opcode->nibbles[3]
+ DDT_BASE);
break;
case MOVX:
if (movx)
as_bad (_("multiple movx specifications"));
if (movy & 0x2ac)
as_bad (_("previous movy requires nopx"));
if (reg_n < 4 || reg_n > 5)
as_bad (_("invalid movx address register"));
if (opcode->nibbles[2] & 8)
{
if (reg_m == A_A1_NUM)
movx = 1 << 7;
else if (reg_m != A_A0_NUM)
as_bad (_("invalid movx dsp register"));
}
else
{
if (reg_x > 1)
as_bad (_("invalid movx dsp register"));
movx = reg_x << 7;
}
movx += ((reg_n - 4) << 9) + (opcode->nibbles[2] << 2) + DDT_BASE;
break;
case MOVY:
if (movy)
as_bad (_("multiple movy specifications"));
if (movx & 0x153)
as_bad (_("previous movx requires nopy"));
if (opcode->nibbles[2] & 8)
{
/* Bit 3 in nibbles[2] is intended for bit 4 of the opcode,
so add 8 more. */
movy = 8;
if (reg_m == A_A1_NUM)
movy += 1 << 6;
else if (reg_m != A_A0_NUM)
as_bad (_("invalid movy dsp register"));
}
else
{
if (reg_y > 1)
as_bad (_("invalid movy dsp register"));
movy = reg_y << 6;
}
if (reg_n < 6 || reg_n > 7)
as_bad (_("invalid movy address register"));
movy += ((reg_n - 6) << 8) + opcode->nibbles[2] + DDT_BASE;
break;
case PSH:
if (operand[0].immediate.X_op != O_constant)
as_bad (_("dsp immediate shift value not constant"));
field_b = ((opcode->nibbles[2] << 12)
| (operand[0].immediate.X_add_number & 127) << 4
| reg_n);
break;
case PPI3NC:
if (cond)
{
opcode++;
goto try_another_opcode;
}
/* Fall through. */
case PPI3:
if (field_b)
as_bad (_("multiple parallel processing specifications"));
field_b = ((opcode->nibbles[2] << 12) + (opcode->nibbles[3] << 8)
+ (reg_x << 6) + (reg_y << 4) + reg_n);
switch (opcode->nibbles[4])
{
case HEX_0:
case HEX_XX00:
case HEX_00YY:
break;
case HEX_1:
case HEX_4:
field_b += opcode->nibbles[4] << 4;
break;
default:
abort ();
}
break;
case PDC:
if (cond)
as_bad (_("multiple condition specifications"));
cond = opcode->nibbles[2] << 8;
if (*op_end)
goto skip_cond_check;
break;
case PPIC:
if (field_b)
as_bad (_("multiple parallel processing specifications"));
field_b = ((opcode->nibbles[2] << 12) + (opcode->nibbles[3] << 8)
+ cond + (reg_x << 6) + (reg_y << 4) + reg_n);
cond = 0;
switch (opcode->nibbles[4])
{
case HEX_0:
case HEX_XX00:
case HEX_00YY:
break;
case HEX_1:
case HEX_4:
field_b += opcode->nibbles[4] << 4;
break;
default:
abort ();
}
break;
case PMUL:
if (field_b)
{
if ((field_b & 0xef00) == 0xa100)
field_b -= 0x8100;
/* pclr Dz pmuls Se,Sf,Dg */
else if ((field_b & 0xff00) == 0x8d00
&& (SH_MERGE_ARCH_SET_VALID (valid_arch, arch_sh4al_dsp_up)))
{
valid_arch = SH_MERGE_ARCH_SET (valid_arch, arch_sh4al_dsp_up);
field_b -= 0x8cf0;
}
else
as_bad (_("insn cannot be combined with pmuls"));
switch (field_b & 0xf)
{
case A_X0_NUM:
field_b += 0 - A_X0_NUM;
break;
case A_Y0_NUM:
field_b += 1 - A_Y0_NUM;
break;
case A_A0_NUM:
field_b += 2 - A_A0_NUM;
break;
case A_A1_NUM:
field_b += 3 - A_A1_NUM;
break;
default:
as_bad (_("bad combined pmuls output operand"));
}
/* Generate warning if the destination register for padd / psub
and pmuls is the same ( only for A0 or A1 ).
If the last nibble is 1010 then A0 is used in both
padd / psub and pmuls. If it is 1111 then A1 is used
as destination register in both padd / psub and pmuls. */
if ((((field_b | reg_efg) & 0x000F) == 0x000A)
|| (((field_b | reg_efg) & 0x000F) == 0x000F))
as_warn (_("destination register is same for parallel insns"));
}
field_b += 0x4000 + reg_efg;
break;
default:
abort ();
}
if (cond)
{
as_bad (_("condition not followed by conditionalizable insn"));
cond = 0;
}
if (! *op_end)
break;
skip_cond_check:
opcode = find_cooked_opcode (&op_end);
if (opcode == NULL)
{
(as_bad
(_("unrecognized characters at end of parallel processing insn")));
break;
}
}
move_code = movx | movy;
if (field_b)
{
/* Parallel processing insn. */
unsigned int ppi_code = (movx | movy | 0xf800) << 16 | field_b;
output = frag_more (4);
size = 4;
if (! target_big_endian)
{
output[3] = ppi_code >> 8;
output[2] = ppi_code;
}
else
{
output[2] = ppi_code >> 8;
output[3] = ppi_code;
}
move_code |= 0xf800;
}
else
{
/* Just a double data transfer. */
output = frag_more (2);
size = 2;
}
if (! target_big_endian)
{
output[1] = move_code >> 8;
output[0] = move_code;
}
else
{
output[0] = move_code >> 8;
output[1] = move_code;
}
return size;
}
/* This is the guts of the machine-dependent assembler. STR points to a
machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles to. */
void
md_assemble (char *str)
{
char *op_end;
sh_operand_info operand[3];
sh_opcode_info *opcode;
unsigned int size = 0;
char *initial_str = str;
opcode = find_cooked_opcode (&str);
op_end = str;
if (opcode == NULL)
{
/* The opcode is not in the hash table.
This means we definitely have an assembly failure,
but the instruction may be valid in another CPU variant.
In this case emit something better than 'unknown opcode'.
Search the full table in sh-opc.h to check. */
char *name = initial_str;
int name_length = 0;
const sh_opcode_info *op;
bool found = false;
/* Identify opcode in string. */
while (ISSPACE (*name))
name++;
while (name[name_length] != '\0' && !ISSPACE (name[name_length]))
name_length++;
/* Search for opcode in full list. */
for (op = sh_table; op->name; op++)
{
if (strncasecmp (op->name, name, name_length) == 0
&& op->name[name_length] == '\0')
{
found = true;
break;
}
}
if (found)
as_bad (_("opcode not valid for this cpu variant"));
else
as_bad (_("unknown opcode"));
return;
}
if (sh_relax
&& ! seg_info (now_seg)->tc_segment_info_data.in_code)
{
/* Output a CODE reloc to tell the linker that the following
bytes are instructions, not data. */
fix_new (frag_now, frag_now_fix (), 2, &abs_symbol, 0, 0,
BFD_RELOC_SH_CODE);
seg_info (now_seg)->tc_segment_info_data.in_code = 1;
}
if (opcode->nibbles[0] == PPI)
{
size = assemble_ppi (op_end, opcode);
}
else
{
if (opcode->arg[0] == A_BDISP12
|| opcode->arg[0] == A_BDISP8)
{
/* Since we skip get_specific here, we have to check & update
valid_arch now. */
if (SH_MERGE_ARCH_SET_VALID (valid_arch, opcode->arch))
valid_arch = SH_MERGE_ARCH_SET (valid_arch, opcode->arch);
else
as_bad (_("Delayed branches not available on SH1"));
parse_exp (op_end + 1, &operand[0]);
build_relax (opcode, &operand[0]);
/* All branches are currently 16 bit. */
size = 2;
}
else
{
if (opcode->arg[0] == A_END)
{
/* Ignore trailing whitespace. If there is any, it has already
been compressed to a single space. */
if (*op_end == ' ')
op_end++;
}
else
{
op_end = get_operands (opcode, op_end, operand);
}
opcode = get_specific (opcode, operand);
if (opcode == 0)
{
/* Couldn't find an opcode which matched the operands. */
char *where = frag_more (2);
size = 2;
where[0] = 0x0;
where[1] = 0x0;
as_bad (_("invalid operands for opcode"));
}
else
{
if (*op_end)
as_bad (_("excess operands: '%s'"), op_end);
size = build_Mytes (opcode, operand);
}
}
}
dwarf2_emit_insn (size);
}
/* This routine is called each time a label definition is seen. It
emits a BFD_RELOC_SH_LABEL reloc if necessary. */
void
sh_frob_label (symbolS *sym)
{
static fragS *last_label_frag;
static int last_label_offset;
if (sh_relax
&& seg_info (now_seg)->tc_segment_info_data.in_code)
{
int offset;
offset = frag_now_fix ();
if (frag_now != last_label_frag
|| offset != last_label_offset)
{
fix_new (frag_now, offset, 2, &abs_symbol, 0, 0, BFD_RELOC_SH_LABEL);
last_label_frag = frag_now;
last_label_offset = offset;
}
}
dwarf2_emit_label (sym);
}
/* This routine is called when the assembler is about to output some
data. It emits a BFD_RELOC_SH_DATA reloc if necessary. */
void
sh_flush_pending_output (void)
{
if (sh_relax
&& seg_info (now_seg)->tc_segment_info_data.in_code)
{
fix_new (frag_now, frag_now_fix (), 2, &abs_symbol, 0, 0,
BFD_RELOC_SH_DATA);
seg_info (now_seg)->tc_segment_info_data.in_code = 0;
}
}
symbolS *
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
{
return 0;
}
/* Various routines to kill one day. */
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, target_big_endian);
}
/* Handle the .uses pseudo-op. This pseudo-op is used just before a
call instruction. It refers to a label of the instruction which
loads the register which the call uses. We use it to generate a
special reloc for the linker. */
static void
s_uses (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
if (! sh_relax)
as_warn (_(".uses pseudo-op seen when not relaxing"));
expression (&ex);
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("bad .uses format"));
ignore_rest_of_line ();
return;
}
fix_new_exp (frag_now, frag_now_fix (), 2, &ex, 1, BFD_RELOC_SH_USES);
demand_empty_rest_of_line ();
}
enum options
{
OPTION_RELAX = OPTION_MD_BASE,
OPTION_BIG,
OPTION_LITTLE,
OPTION_SMALL,
OPTION_DSP,
OPTION_ISA,
OPTION_RENESAS,
OPTION_ALLOW_REG_PREFIX,
OPTION_H_TICK_HEX,
#ifdef OBJ_ELF
OPTION_FDPIC,
#endif
OPTION_DUMMY /* Not used. This is just here to make it easy to add and subtract options from this enum. */
};
const char *md_shortopts = "";
struct option md_longopts[] =
{
{"relax", no_argument, NULL, OPTION_RELAX},
{"big", no_argument, NULL, OPTION_BIG},
{"little", no_argument, NULL, OPTION_LITTLE},
/* The next two switches are here because the
generic parts of the linker testsuite uses them. */
{"EB", no_argument, NULL, OPTION_BIG},
{"EL", no_argument, NULL, OPTION_LITTLE},
{"small", no_argument, NULL, OPTION_SMALL},
{"dsp", no_argument, NULL, OPTION_DSP},
{"isa", required_argument, NULL, OPTION_ISA},
{"renesas", no_argument, NULL, OPTION_RENESAS},
{"allow-reg-prefix", no_argument, NULL, OPTION_ALLOW_REG_PREFIX},
{ "h-tick-hex", no_argument, NULL, OPTION_H_TICK_HEX },
#ifdef OBJ_ELF
{"fdpic", no_argument, NULL, OPTION_FDPIC},
#endif
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED)
{
switch (c)
{
case OPTION_RELAX:
sh_relax = 1;
break;
case OPTION_BIG:
target_big_endian = 1;
break;
case OPTION_LITTLE:
target_big_endian = 0;
break;
case OPTION_SMALL:
sh_small = 1;
break;
case OPTION_DSP:
preset_target_arch = arch_sh_up & ~(arch_sh_sp_fpu|arch_sh_dp_fpu);
break;
case OPTION_RENESAS:
dont_adjust_reloc_32 = 1;
break;
case OPTION_ALLOW_REG_PREFIX:
allow_dollar_register_prefix = 1;
break;
case OPTION_ISA:
if (strcasecmp (arg, "dsp") == 0)
preset_target_arch = arch_sh_up & ~(arch_sh_sp_fpu|arch_sh_dp_fpu);
else if (strcasecmp (arg, "fp") == 0)
preset_target_arch = arch_sh_up & ~arch_sh_has_dsp;
else if (strcasecmp (arg, "any") == 0)
preset_target_arch = arch_sh_up;
else
{
extern const bfd_arch_info_type bfd_sh_arch;
bfd_arch_info_type const *bfd_arch = &bfd_sh_arch;
preset_target_arch = 0;
for (; bfd_arch; bfd_arch=bfd_arch->next)
{
int len = strlen(bfd_arch->printable_name);
if (strncasecmp (bfd_arch->printable_name, arg, len) != 0)
continue;
if (arg[len] == '\0')
preset_target_arch =
sh_get_arch_from_bfd_mach (bfd_arch->mach);
else if (strcasecmp(&arg[len], "-up") == 0)
preset_target_arch =
sh_get_arch_up_from_bfd_mach (bfd_arch->mach);
else
continue;
break;
}
if (!preset_target_arch)
as_bad (_("Invalid argument to --isa option: %s"), arg);
}
break;
case OPTION_H_TICK_HEX:
enable_h_tick_hex = 1;
break;
#ifdef OBJ_ELF
case OPTION_FDPIC:
sh_fdpic = true;
break;
#endif /* OBJ_ELF */
default:
return 0;
}
return 1;
}
void
md_show_usage (FILE *stream)
{
fprintf (stream, _("\
SH options:\n\
--little generate little endian code\n\
--big generate big endian code\n\
--relax alter jump instructions for long displacements\n\
--renesas disable optimization with section symbol for\n\
compatibility with Renesas assembler.\n\
--small align sections to 4 byte boundaries, not 16\n\
--dsp enable sh-dsp insns, and disable floating-point ISAs.\n\
--allow-reg-prefix allow '$' as a register name prefix.\n\
--isa=[any use most appropriate isa\n\
| dsp same as '-dsp'\n\
| fp"));
{
extern const bfd_arch_info_type bfd_sh_arch;
bfd_arch_info_type const *bfd_arch = &bfd_sh_arch;
for (; bfd_arch; bfd_arch=bfd_arch->next)
{
fprintf (stream, "\n | %s", bfd_arch->printable_name);
fprintf (stream, "\n | %s-up", bfd_arch->printable_name);
}
}
fprintf (stream, "]\n");
#ifdef OBJ_ELF
fprintf (stream, _("\
--fdpic generate an FDPIC object file\n"));
#endif /* OBJ_ELF */
}
/* This struct is used to pass arguments to sh_count_relocs through
bfd_map_over_sections. */
struct sh_count_relocs
{
/* Symbol we are looking for. */
symbolS *sym;
/* Count of relocs found. */
int count;
};
/* Count the number of fixups in a section which refer to a particular
symbol. This is called via bfd_map_over_sections. */
static void
sh_count_relocs (bfd *abfd ATTRIBUTE_UNUSED, segT sec, void *data)
{
struct sh_count_relocs *info = (struct sh_count_relocs *) data;
segment_info_type *seginfo;
symbolS *sym;
fixS *fix;
seginfo = seg_info (sec);
if (seginfo == NULL)
return;
sym = info->sym;
for (fix = seginfo->fix_root; fix != NULL; fix = fix->fx_next)
{
if (fix->fx_addsy == sym)
{
++info->count;
fix->fx_tcbit = 1;
}
}
}
/* Handle the count relocs for a particular section.
This is called via bfd_map_over_sections. */
static void
sh_frob_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec,
void *ignore ATTRIBUTE_UNUSED)
{
segment_info_type *seginfo;
fixS *fix;
seginfo = seg_info (sec);
if (seginfo == NULL)
return;
for (fix = seginfo->fix_root; fix != NULL; fix = fix->fx_next)
{
symbolS *sym;
bfd_vma val;
fixS *fscan;
struct sh_count_relocs info;
if (fix->fx_r_type != BFD_RELOC_SH_USES)
continue;
/* The BFD_RELOC_SH_USES reloc should refer to a defined local
symbol in the same section. */
sym = fix->fx_addsy;
if (sym == NULL
|| fix->fx_subsy != NULL
|| fix->fx_addnumber != 0
|| S_GET_SEGMENT (sym) != sec
|| S_IS_EXTERNAL (sym))
{
as_warn_where (fix->fx_file, fix->fx_line,
_(".uses does not refer to a local symbol in the same section"));
continue;
}
/* Look through the fixups again, this time looking for one
at the same location as sym. */
val = S_GET_VALUE (sym);
for (fscan = seginfo->fix_root;
fscan != NULL;
fscan = fscan->fx_next)
if (val == fscan->fx_frag->fr_address + fscan->fx_where
&& fscan->fx_r_type != BFD_RELOC_SH_ALIGN
&& fscan->fx_r_type != BFD_RELOC_SH_CODE
&& fscan->fx_r_type != BFD_RELOC_SH_DATA
&& fscan->fx_r_type != BFD_RELOC_SH_LABEL)
break;
if (fscan == NULL)
{
as_warn_where (fix->fx_file, fix->fx_line,
_("can't find fixup pointed to by .uses"));
continue;
}
if (fscan->fx_tcbit)
{
/* We've already done this one. */
continue;
}
/* The variable fscan should also be a fixup to a local symbol
in the same section. */
sym = fscan->fx_addsy;
if (sym == NULL
|| fscan->fx_subsy != NULL
|| fscan->fx_addnumber != 0
|| S_GET_SEGMENT (sym) != sec
|| S_IS_EXTERNAL (sym))
{
as_warn_where (fix->fx_file, fix->fx_line,
_(".uses target does not refer to a local symbol in the same section"));
continue;
}
/* Now we look through all the fixups of all the sections,
counting the number of times we find a reference to sym. */
info.sym = sym;
info.count = 0;
bfd_map_over_sections (stdoutput, sh_count_relocs, &info);
if (info.count < 1)
abort ();
/* Generate a BFD_RELOC_SH_COUNT fixup at the location of sym.
We have already adjusted the value of sym to include the
fragment address, so we undo that adjustment here. */
subseg_change (sec, 0);
fix_new (fscan->fx_frag,
S_GET_VALUE (sym) - fscan->fx_frag->fr_address,
4, &abs_symbol, info.count, 0, BFD_RELOC_SH_COUNT);
}
}
/* This function is called after the symbol table has been completed,
but before the relocs or section contents have been written out.
If we have seen any .uses pseudo-ops, they point to an instruction
which loads a register with the address of a function. We look
through the fixups to find where the function address is being
loaded from. We then generate a COUNT reloc giving the number of
times that function address is referred to. The linker uses this
information when doing relaxing, to decide when it can eliminate
the stored function address entirely. */
void
sh_frob_file (void)
{
if (! sh_relax)
return;
bfd_map_over_sections (stdoutput, sh_frob_section, NULL);
}
/* Called after relaxing. Set the correct sizes of the fragments, and
create relocs so that md_apply_fix will fill in the correct values. */
void
md_convert_frag (bfd *headers ATTRIBUTE_UNUSED, segT seg, fragS *fragP)
{
int donerelax = 0;
switch (fragP->fr_subtype)
{
case C (COND_JUMP, COND8):
case C (COND_JUMP_DELAY, COND8):
subseg_change (seg, 0);
fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
1, BFD_RELOC_SH_PCDISP8BY2);
fragP->fr_fix += 2;
fragP->fr_var = 0;
break;
case C (UNCOND_JUMP, UNCOND12):
subseg_change (seg, 0);
fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
1, BFD_RELOC_SH_PCDISP12BY2);
fragP->fr_fix += 2;
fragP->fr_var = 0;
break;
case C (UNCOND_JUMP, UNCOND32):
case C (UNCOND_JUMP, UNDEF_WORD_DISP):
if (fragP->fr_symbol == NULL)
as_bad_where (fragP->fr_file, fragP->fr_line,
_("displacement overflows 12-bit field"));
else if (S_IS_DEFINED (fragP->fr_symbol))
as_bad_where (fragP->fr_file, fragP->fr_line,
_("displacement to defined symbol %s overflows 12-bit field"),
S_GET_NAME (fragP->fr_symbol));
else
as_bad_where (fragP->fr_file, fragP->fr_line,
_("displacement to undefined symbol %s overflows 12-bit field"),
S_GET_NAME (fragP->fr_symbol));
/* Stabilize this frag, so we don't trip an assert. */
fragP->fr_fix += fragP->fr_var;
fragP->fr_var = 0;
break;
case C (COND_JUMP, COND12):
case C (COND_JUMP_DELAY, COND12):
/* A bcond won't fit, so turn it into a b!cond; bra disp; nop. */
/* I found that a relax failure for gcc.c-torture/execute/930628-1.c
was due to gas incorrectly relaxing an out-of-range conditional
branch with delay slot. It turned:
bf.s L6 (slot mov.l r12,@(44,r0))
into:
2c: 8f 01 a0 8b bf.s 32 <_main+32> (slot bra L6)
30: 00 09 nop
32: 10 cb mov.l r12,@(44,r0)
Therefore, branches with delay slots have to be handled
differently from ones without delay slots. */
{
unsigned char *buffer =
(unsigned char *) (fragP->fr_fix + &fragP->fr_literal[0]);
int highbyte = target_big_endian ? 0 : 1;
int lowbyte = target_big_endian ? 1 : 0;
int delay = fragP->fr_subtype == C (COND_JUMP_DELAY, COND12);
/* Toggle the true/false bit of the bcond. */
buffer[highbyte] ^= 0x2;
/* If this is a delayed branch, we may not put the bra in the
slot. So we change it to a non-delayed branch, like that:
b! cond slot_label; bra disp; slot_label: slot_insn
??? We should try if swapping the conditional branch and
its delay-slot insn already makes the branch reach. */
/* Build a relocation to six / four bytes farther on. */
subseg_change (seg, 0);
fix_new (fragP, fragP->fr_fix, 2, section_symbol (seg),
fragP->fr_address + fragP->fr_fix + (delay ? 4 : 6),
1, BFD_RELOC_SH_PCDISP8BY2);
/* Set up a jump instruction. */
buffer[highbyte + 2] = 0xa0;
buffer[lowbyte + 2] = 0;
fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_SH_PCDISP12BY2);
if (delay)
{
buffer[highbyte] &= ~0x4; /* Removes delay slot from branch. */
fragP->fr_fix += 4;
}
else
{
/* Fill in a NOP instruction. */
buffer[highbyte + 4] = 0x0;
buffer[lowbyte + 4] = 0x9;
fragP->fr_fix += 6;
}
fragP->fr_var = 0;
donerelax = 1;
}
break;
case C (COND_JUMP, COND32):
case C (COND_JUMP_DELAY, COND32):
case C (COND_JUMP, UNDEF_WORD_DISP):
case C (COND_JUMP_DELAY, UNDEF_WORD_DISP):
if (fragP->fr_symbol == NULL)
as_bad_where (fragP->fr_file, fragP->fr_line,
_("displacement overflows 8-bit field"));
else if (S_IS_DEFINED (fragP->fr_symbol))
as_bad_where (fragP->fr_file, fragP->fr_line,
_("displacement to defined symbol %s overflows 8-bit field"),
S_GET_NAME (fragP->fr_symbol));
else
as_bad_where (fragP->fr_file, fragP->fr_line,
_("displacement to undefined symbol %s overflows 8-bit field "),
S_GET_NAME (fragP->fr_symbol));
/* Stabilize this frag, so we don't trip an assert. */
fragP->fr_fix += fragP->fr_var;
fragP->fr_var = 0;
break;
default:
abort ();
}
if (donerelax && !sh_relax)
as_warn_where (fragP->fr_file, fragP->fr_line,
_("overflow in branch to %s; converted into longer instruction sequence"),
(fragP->fr_symbol != NULL
? S_GET_NAME (fragP->fr_symbol)
: ""));
}
valueT
md_section_align (segT seg ATTRIBUTE_UNUSED, valueT size)
{
#ifdef OBJ_ELF
return size;
#else /* ! OBJ_ELF */
return ((size + (1 << bfd_section_alignment (seg)) - 1)
& -(1 << bfd_section_alignment (seg)));
#endif /* ! OBJ_ELF */
}
/* This static variable is set by s_uacons to tell sh_cons_align that
the expression does not need to be aligned. */
static int sh_no_align_cons = 0;
/* This handles the unaligned space allocation pseudo-ops, such as
.uaword. .uaword is just like .word, but the value does not need
to be aligned. */
static void
s_uacons (int bytes)
{
/* Tell sh_cons_align not to align this value. */
sh_no_align_cons = 1;
cons (bytes);
}
/* If a .word, et. al., pseud-op is seen, warn if the value is not
aligned correctly. Note that this can cause warnings to be issued
when assembling initialized structured which were declared with the
packed attribute. FIXME: Perhaps we should require an option to
enable this warning? */
void
sh_cons_align (int nbytes)
{
int nalign;
if (sh_no_align_cons)
{
/* This is an unaligned pseudo-op. */
sh_no_align_cons = 0;
return;
}
nalign = 0;
while ((nbytes & 1) == 0)
{
++nalign;
nbytes >>= 1;
}
if (nalign == 0)
return;
if (now_seg == absolute_section)
{
if ((abs_section_offset & ((1 << nalign) - 1)) != 0)
as_warn (_("misaligned data"));
return;
}
frag_var (rs_align_test, 1, 1, (relax_substateT) 0,
(symbolS *) NULL, (offsetT) nalign, (char *) NULL);
record_alignment (now_seg, nalign);
}
/* When relaxing, we need to output a reloc for any .align directive
that requests alignment to a four byte boundary or larger. This is
also where we check for misaligned data. */
void
sh_handle_align (fragS *frag)
{
int bytes = frag->fr_next->fr_address - frag->fr_address - frag->fr_fix;
if (frag->fr_type == rs_align_code)
{
static const unsigned char big_nop_pattern[] = { 0x00, 0x09 };
static const unsigned char little_nop_pattern[] = { 0x09, 0x00 };
char *p = frag->fr_literal + frag->fr_fix;
if (bytes & 1)
{
*p++ = 0;
bytes--;
frag->fr_fix += 1;
}
if (target_big_endian)
{
memcpy (p, big_nop_pattern, sizeof big_nop_pattern);
frag->fr_var = sizeof big_nop_pattern;
}
else
{
memcpy (p, little_nop_pattern, sizeof little_nop_pattern);
frag->fr_var = sizeof little_nop_pattern;
}
}
else if (frag->fr_type == rs_align_test)
{
if (bytes != 0)
as_bad_where (frag->fr_file, frag->fr_line, _("misaligned data"));
}
if (sh_relax
&& (frag->fr_type == rs_align
|| frag->fr_type == rs_align_code)
&& frag->fr_address + frag->fr_fix > 0
&& frag->fr_offset > 1
&& now_seg != bss_section)
fix_new (frag, frag->fr_fix, 2, &abs_symbol, frag->fr_offset, 0,
BFD_RELOC_SH_ALIGN);
}
/* See whether the relocation should be resolved locally. */
static bool
sh_local_pcrel (fixS *fix)
{
return (! sh_relax
&& (fix->fx_r_type == BFD_RELOC_SH_PCDISP8BY2
|| fix->fx_r_type == BFD_RELOC_SH_PCDISP12BY2
|| fix->fx_r_type == BFD_RELOC_SH_PCRELIMM8BY2
|| fix->fx_r_type == BFD_RELOC_SH_PCRELIMM8BY4
|| fix->fx_r_type == BFD_RELOC_8_PCREL
|| fix->fx_r_type == BFD_RELOC_SH_SWITCH16
|| fix->fx_r_type == BFD_RELOC_SH_SWITCH32));
}
/* See whether we need to force a relocation into the output file.
This is used to force out switch and PC relative relocations when
relaxing. */
int
sh_force_relocation (fixS *fix)
{
/* These relocations can't make it into a DSO, so no use forcing
them for global symbols. */
if (sh_local_pcrel (fix))
return 0;
/* Make sure some relocations get emitted. */
if (fix->fx_r_type == BFD_RELOC_SH_LOOP_START
|| fix->fx_r_type == BFD_RELOC_SH_LOOP_END
|| fix->fx_r_type == BFD_RELOC_SH_TLS_GD_32
|| fix->fx_r_type == BFD_RELOC_SH_TLS_LD_32
|| fix->fx_r_type == BFD_RELOC_SH_TLS_IE_32
|| fix->fx_r_type == BFD_RELOC_SH_TLS_LDO_32
|| fix->fx_r_type == BFD_RELOC_SH_TLS_LE_32
|| generic_force_reloc (fix))
return 1;
if (! sh_relax)
return 0;
return (fix->fx_pcrel
|| SWITCH_TABLE (fix)
|| fix->fx_r_type == BFD_RELOC_SH_COUNT
|| fix->fx_r_type == BFD_RELOC_SH_ALIGN
|| fix->fx_r_type == BFD_RELOC_SH_CODE
|| fix->fx_r_type == BFD_RELOC_SH_DATA
|| fix->fx_r_type == BFD_RELOC_SH_LABEL);
}
#ifdef OBJ_ELF
bool
sh_fix_adjustable (fixS *fixP)
{
if (fixP->fx_r_type == BFD_RELOC_32_PLT_PCREL
|| fixP->fx_r_type == BFD_RELOC_32_GOT_PCREL
|| fixP->fx_r_type == BFD_RELOC_SH_GOT20
|| fixP->fx_r_type == BFD_RELOC_SH_GOTPC
|| fixP->fx_r_type == BFD_RELOC_SH_GOTFUNCDESC
|| fixP->fx_r_type == BFD_RELOC_SH_GOTFUNCDESC20
|| fixP->fx_r_type == BFD_RELOC_SH_GOTOFFFUNCDESC
|| fixP->fx_r_type == BFD_RELOC_SH_GOTOFFFUNCDESC20
|| fixP->fx_r_type == BFD_RELOC_SH_FUNCDESC
|| ((fixP->fx_r_type == BFD_RELOC_32) && dont_adjust_reloc_32)
|| fixP->fx_r_type == BFD_RELOC_RVA)
return 0;
/* We need the symbol name for the VTABLE entries */
if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
return 1;
}
void
sh_elf_final_processing (void)
{
int val;
/* Set file-specific flags to indicate if this code needs
a processor with the sh-dsp / sh2e ISA to execute. */
val = sh_find_elf_flags (valid_arch);
elf_elfheader (stdoutput)->e_flags &= ~EF_SH_MACH_MASK;
elf_elfheader (stdoutput)->e_flags |= val;
if (sh_fdpic)
elf_elfheader (stdoutput)->e_flags |= EF_SH_FDPIC;
}
#endif
#ifdef TE_UCLINUX
/* Return the target format for uClinux. */
const char *
sh_uclinux_target_format (void)
{
if (sh_fdpic)
return (!target_big_endian ? "elf32-sh-fdpic" : "elf32-shbig-fdpic");
else
return (!target_big_endian ? "elf32-shl" : "elf32-sh");
}
#endif
/* Apply fixup FIXP to SIZE-byte field BUF given that VAL is its
assembly-time value. If we're generating a reloc for FIXP,
see whether the addend should be stored in-place or whether
it should be in an ELF r_addend field. */
static void
apply_full_field_fix (fixS *fixP, char *buf, bfd_vma val, int size)
{
reloc_howto_type *howto;
if (fixP->fx_addsy != NULL || fixP->fx_pcrel)
{
howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
if (howto && !howto->partial_inplace)
{
fixP->fx_addnumber = val;
return;
}
}
md_number_to_chars (buf, val, size);
}
/* Apply a fixup to the object file. */
void
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
int lowbyte = target_big_endian ? 1 : 0;
int highbyte = target_big_endian ? 0 : 1;
long val = (long) *valP;
long max, min;
int shift;
/* A difference between two symbols, the second of which is in the
current section, is transformed in a PC-relative relocation to
the other symbol. We have to adjust the relocation type here. */
if (fixP->fx_pcrel)
{
switch (fixP->fx_r_type)
{
default:
break;
case BFD_RELOC_32:
fixP->fx_r_type = BFD_RELOC_32_PCREL;
break;
/* Currently, we only support 32-bit PCREL relocations.
We'd need a new reloc type to handle 16_PCREL, and
8_PCREL is already taken for R_SH_SWITCH8, which
apparently does something completely different than what
we need. FIXME. */
case BFD_RELOC_16:
bfd_set_error (bfd_error_bad_value);
return;
case BFD_RELOC_8:
bfd_set_error (bfd_error_bad_value);
return;
}
}
/* The function adjust_reloc_syms won't convert a reloc against a weak
symbol into a reloc against a section, but bfd_install_relocation
will screw up if the symbol is defined, so we have to adjust val here
to avoid the screw up later.
For ordinary relocs, this does not happen for ELF, since for ELF,
bfd_install_relocation uses the "special function" field of the
howto, and does not execute the code that needs to be undone, as long
as the special function does not return bfd_reloc_continue.
It can happen for GOT- and PLT-type relocs the way they are
described in elf32-sh.c as they use bfd_elf_generic_reloc, but it
doesn't matter here since those relocs don't use VAL; see below. */
if (OUTPUT_FLAVOR != bfd_target_elf_flavour
&& fixP->fx_addsy != NULL
&& S_IS_WEAK (fixP->fx_addsy))
val -= S_GET_VALUE (fixP->fx_addsy);
if (SWITCH_TABLE (fixP))
val -= S_GET_VALUE (fixP->fx_subsy);
max = min = 0;
shift = 0;
switch (fixP->fx_r_type)
{
case BFD_RELOC_SH_IMM3:
max = 0x7;
* buf = (* buf & 0xf8) | (val & 0x7);
break;
case BFD_RELOC_SH_IMM3U:
max = 0x7;
* buf = (* buf & 0x8f) | ((val & 0x7) << 4);
break;
case BFD_RELOC_SH_DISP12:
max = 0xfff;
buf[lowbyte] = val & 0xff;
buf[highbyte] |= (val >> 8) & 0x0f;
break;
case BFD_RELOC_SH_DISP12BY2:
max = 0xfff;
shift = 1;
buf[lowbyte] = (val >> 1) & 0xff;
buf[highbyte] |= (val >> 9) & 0x0f;
break;
case BFD_RELOC_SH_DISP12BY4:
max = 0xfff;
shift = 2;
buf[lowbyte] = (val >> 2) & 0xff;
buf[highbyte] |= (val >> 10) & 0x0f;
break;
case BFD_RELOC_SH_DISP12BY8:
max = 0xfff;
shift = 3;
buf[lowbyte] = (val >> 3) & 0xff;
buf[highbyte] |= (val >> 11) & 0x0f;
break;
case BFD_RELOC_SH_DISP20:
if (! target_big_endian)
abort();
max = 0x7ffff;
min = -0x80000;
buf[1] = (buf[1] & 0x0f) | ((val >> 12) & 0xf0);
buf[2] = (val >> 8) & 0xff;
buf[3] = val & 0xff;
break;
case BFD_RELOC_SH_DISP20BY8:
if (!target_big_endian)
abort();
max = 0x7ffff;
min = -0x80000;
shift = 8;
buf[1] = (buf[1] & 0x0f) | ((val >> 20) & 0xf0);
buf[2] = (val >> 16) & 0xff;
buf[3] = (val >> 8) & 0xff;
break;
case BFD_RELOC_SH_IMM4:
max = 0xf;
*buf = (*buf & 0xf0) | (val & 0xf);
break;
case BFD_RELOC_SH_IMM4BY2:
max = 0xf;
shift = 1;
*buf = (*buf & 0xf0) | ((val >> 1) & 0xf);
break;
case BFD_RELOC_SH_IMM4BY4:
max = 0xf;
shift = 2;
*buf = (*buf & 0xf0) | ((val >> 2) & 0xf);
break;
case BFD_RELOC_SH_IMM8BY2:
max = 0xff;
shift = 1;
*buf = val >> 1;
break;
case BFD_RELOC_SH_IMM8BY4:
max = 0xff;
shift = 2;
*buf = val >> 2;
break;
case BFD_RELOC_8:
case BFD_RELOC_SH_IMM8:
/* Sometimes the 8 bit value is sign extended (e.g., add) and
sometimes it is not (e.g., and). We permit any 8 bit value.
Note that adding further restrictions may invalidate
reasonable looking assembly code, such as ``and -0x1,r0''. */
max = 0xff;
min = -0xff;
*buf++ = val;
break;
case BFD_RELOC_SH_PCRELIMM8BY4:
/* If we are dealing with a known destination ... */
if ((fixP->fx_addsy == NULL || S_IS_DEFINED (fixP->fx_addsy))
&& (fixP->fx_subsy == NULL || S_IS_DEFINED (fixP->fx_addsy)))
{
/* Don't silently move the destination due to misalignment.
The absolute address is the fragment base plus the offset into
the fragment plus the pc relative offset to the label. */
if ((fixP->fx_frag->fr_address + fixP->fx_where + val) & 3)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("offset to unaligned destination"));
/* The displacement cannot be zero or backward even if aligned.
Allow -2 because val has already been adjusted somewhere. */
if (val < -2)
as_bad_where (fixP->fx_file, fixP->fx_line, _("negative offset"));
}
/* The lower two bits of the PC are cleared before the
displacement is added in. We can assume that the destination
is on a 4 byte boundary. If this instruction is also on a 4
byte boundary, then we want
(target - here) / 4
and target - here is a multiple of 4.
Otherwise, we are on a 2 byte boundary, and we want
(target - (here - 2)) / 4
and target - here is not a multiple of 4. Computing
(target - (here - 2)) / 4 == (target - here + 2) / 4
works for both cases, since in the first case the addition of
2 will be removed by the division. target - here is in the
variable val. */
val = (val + 2) / 4;
if (val & ~0xff)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val;
break;
case BFD_RELOC_SH_PCRELIMM8BY2:
val /= 2;
if (val & ~0xff)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val;
break;
case BFD_RELOC_SH_PCDISP8BY2:
val /= 2;
if (val < -0x80 || val > 0x7f)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val;
break;
case BFD_RELOC_SH_PCDISP12BY2:
val /= 2;
if (val < -0x800 || val > 0x7ff)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val & 0xff;
buf[highbyte] |= (val >> 8) & 0xf;
break;
case BFD_RELOC_32:
case BFD_RELOC_32_PCREL:
apply_full_field_fix (fixP, buf, val, 4);
break;
case BFD_RELOC_16:
apply_full_field_fix (fixP, buf, val, 2);
break;
case BFD_RELOC_SH_USES:
/* Pass the value into sh_reloc(). */
fixP->fx_addnumber = val;
break;
case BFD_RELOC_SH_COUNT:
case BFD_RELOC_SH_ALIGN:
case BFD_RELOC_SH_CODE:
case BFD_RELOC_SH_DATA:
case BFD_RELOC_SH_LABEL:
/* Nothing to do here. */
break;
case BFD_RELOC_SH_LOOP_START:
case BFD_RELOC_SH_LOOP_END:
case BFD_RELOC_VTABLE_INHERIT:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
return;
#ifdef OBJ_ELF
case BFD_RELOC_32_PLT_PCREL:
/* Make the jump instruction point to the address of the operand. At
runtime we merely add the offset to the actual PLT entry. */
* valP = 0xfffffffc;
val = fixP->fx_offset;
if (fixP->fx_subsy)
val -= S_GET_VALUE (fixP->fx_subsy);
apply_full_field_fix (fixP, buf, val, 4);
break;
case BFD_RELOC_SH_GOTPC:
/* This is tough to explain. We end up with this one if we have
operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]".
The goal here is to obtain the absolute address of the GOT,
and it is strongly preferable from a performance point of
view to avoid using a runtime relocation for this. There are
cases where you have something like:
.long _GLOBAL_OFFSET_TABLE_+[.-.L66]
and here no correction would be required. Internally in the
assembler we treat operands of this form as not being pcrel
since the '.' is explicitly mentioned, and I wonder whether
it would simplify matters to do it this way. Who knows. In
earlier versions of the PIC patches, the pcrel_adjust field
was used to store the correction, but since the expression is
not pcrel, I felt it would be confusing to do it this way. */
* valP -= 1;
apply_full_field_fix (fixP, buf, val, 4);
break;
case BFD_RELOC_SH_TLS_GD_32:
case BFD_RELOC_SH_TLS_LD_32:
case BFD_RELOC_SH_TLS_IE_32:
S_SET_THREAD_LOCAL (fixP->fx_addsy);
/* Fallthrough */
case BFD_RELOC_32_GOT_PCREL:
case BFD_RELOC_SH_GOT20:
case BFD_RELOC_SH_GOTPLT32:
case BFD_RELOC_SH_GOTFUNCDESC:
case BFD_RELOC_SH_GOTFUNCDESC20:
case BFD_RELOC_SH_GOTOFFFUNCDESC:
case BFD_RELOC_SH_GOTOFFFUNCDESC20:
case BFD_RELOC_SH_FUNCDESC:
* valP = 0; /* Fully resolved at runtime. No addend. */
apply_full_field_fix (fixP, buf, 0, 4);
break;
case BFD_RELOC_SH_TLS_LDO_32:
case BFD_RELOC_SH_TLS_LE_32:
S_SET_THREAD_LOCAL (fixP->fx_addsy);
/* Fallthrough */
case BFD_RELOC_32_GOTOFF:
case BFD_RELOC_SH_GOTOFF20:
apply_full_field_fix (fixP, buf, val, 4);
break;
#endif
default:
abort ();
}
if (shift != 0)
{
if ((val & ((1 << shift) - 1)) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line, _("misaligned offset"));
if (val >= 0)
val >>= shift;
else
val = ((val >> shift)
| ((long) -1 & ~ ((long) -1 >> shift)));
}
/* Extend sign for 64-bit host. */
val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
if (max != 0 && (val < min || val > max))
as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range"));
else if (max != 0)
/* Stop the generic code from trying to overflow check the value as well.
It may not have the correct value anyway, as we do not store val back
into *valP. */
fixP->fx_no_overflow = 1;
if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
fixP->fx_done = 1;
}
/* Called just before address relaxation. Return the length
by which a fragment must grow to reach it's destination. */
int
md_estimate_size_before_relax (fragS *fragP, segT segment_type)
{
int what;
switch (fragP->fr_subtype)
{
default:
abort ();
case C (UNCOND_JUMP, UNDEF_DISP):
/* Used to be a branch to somewhere which was unknown. */
if (!fragP->fr_symbol)
{
fragP->fr_subtype = C (UNCOND_JUMP, UNCOND12);
}
else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
{
fragP->fr_subtype = C (UNCOND_JUMP, UNCOND12);
}
else
{
fragP->fr_subtype = C (UNCOND_JUMP, UNDEF_WORD_DISP);
}
break;
case C (COND_JUMP, UNDEF_DISP):
case C (COND_JUMP_DELAY, UNDEF_DISP):
what = GET_WHAT (fragP->fr_subtype);
/* Used to be a branch to somewhere which was unknown. */
if (fragP->fr_symbol
&& S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
{
/* Got a symbol and it's defined in this segment, become byte
sized - maybe it will fix up. */
fragP->fr_subtype = C (what, COND8);
}
else if (fragP->fr_symbol)
{
/* It's got a segment, but it's not ours, so it will always be long. */
fragP->fr_subtype = C (what, UNDEF_WORD_DISP);
}
else
{
/* We know the abs value. */
fragP->fr_subtype = C (what, COND8);
}
break;
case C (UNCOND_JUMP, UNCOND12):
case C (UNCOND_JUMP, UNCOND32):
case C (UNCOND_JUMP, UNDEF_WORD_DISP):
case C (COND_JUMP, COND8):
case C (COND_JUMP, COND12):
case C (COND_JUMP, COND32):
case C (COND_JUMP, UNDEF_WORD_DISP):
case C (COND_JUMP_DELAY, COND8):
case C (COND_JUMP_DELAY, COND12):
case C (COND_JUMP_DELAY, COND32):
case C (COND_JUMP_DELAY, UNDEF_WORD_DISP):
/* When relaxing a section for the second time, we don't need to
do anything besides return the current size. */
break;
}
fragP->fr_var = md_relax_table[fragP->fr_subtype].rlx_length;
return fragP->fr_var;
}
/* Put number into target byte order. */
void
md_number_to_chars (char *ptr, valueT use, int nbytes)
{
if (! target_big_endian)
number_to_chars_littleendian (ptr, use, nbytes);
else
number_to_chars_bigendian (ptr, use, nbytes);
}
/* This version is used in obj-coff.c eg. for the sh-hms target. */
long
md_pcrel_from (fixS *fixP)
{
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address + 2;
}
long
md_pcrel_from_section (fixS *fixP, segT sec)
{
if (! sh_local_pcrel (fixP)
&& fixP->fx_addsy != (symbolS *) NULL
&& (generic_force_reloc (fixP)
|| S_GET_SEGMENT (fixP->fx_addsy) != sec))
{
/* The symbol is undefined (or is defined but not in this section,
or we're not sure about it being the final definition). Let the
linker figure it out. We need to adjust the subtraction of a
symbol to the position of the relocated data, though. */
return fixP->fx_subsy ? fixP->fx_where + fixP->fx_frag->fr_address : 0;
}
return md_pcrel_from (fixP);
}
/* Create a reloc. */
arelent *
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
{
arelent *rel;
bfd_reloc_code_real_type r_type;
rel = XNEW (arelent);
rel->sym_ptr_ptr = XNEW (asymbol *);
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
r_type = fixp->fx_r_type;
if (SWITCH_TABLE (fixp))
{
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_subsy);
rel->addend = rel->address - S_GET_VALUE(fixp->fx_subsy);
if (r_type == BFD_RELOC_16)
r_type = BFD_RELOC_SH_SWITCH16;
else if (r_type == BFD_RELOC_8)
r_type = BFD_RELOC_8_PCREL;
else if (r_type == BFD_RELOC_32)
r_type = BFD_RELOC_SH_SWITCH32;
else
abort ();
}
else if (r_type == BFD_RELOC_SH_USES)
rel->addend = fixp->fx_addnumber;
else if (r_type == BFD_RELOC_SH_COUNT)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_SH_ALIGN)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_VTABLE_INHERIT
|| r_type == BFD_RELOC_VTABLE_ENTRY)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_SH_LOOP_START
|| r_type == BFD_RELOC_SH_LOOP_END)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_SH_LABEL && fixp->fx_pcrel)
{
rel->addend = 0;
rel->address = rel->addend = fixp->fx_offset;
}
else
rel->addend = fixp->fx_addnumber;
rel->howto = bfd_reloc_type_lookup (stdoutput, r_type);
if (rel->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Cannot represent relocation type %s"),
bfd_get_reloc_code_name (r_type));
/* Set howto to a garbage value so that we can keep going. */
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
gas_assert (rel->howto != NULL);
}
#ifdef OBJ_ELF
else if (rel->howto->type == R_SH_IND12W)
rel->addend += fixp->fx_offset - 4;
#endif
return rel;
}
#ifdef OBJ_ELF
inline static char *
sh_end_of_match (char *cont, const char *what)
{
int len = strlen (what);
if (strncasecmp (cont, what, strlen (what)) == 0
&& ! is_part_of_name (cont[len]))
return cont + len;
return NULL;
}
int
sh_parse_name (char const *name,
expressionS *exprP,
enum expr_mode mode,
char *nextcharP)
{
char *next = input_line_pointer;
char *next_end;
int reloc_type;
segT segment;
exprP->X_op_symbol = NULL;
if (strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
{
if (! GOT_symbol)
GOT_symbol = symbol_find_or_make (name);
exprP->X_add_symbol = GOT_symbol;
no_suffix:
/* If we have an absolute symbol or a reg, then we know its
value now. */
segment = S_GET_SEGMENT (exprP->X_add_symbol);
if (mode != expr_defer && segment == absolute_section)
{
exprP->X_op = O_constant;
exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
exprP->X_add_symbol = NULL;
}
else if (mode != expr_defer && segment == reg_section)
{
exprP->X_op = O_register;
exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
exprP->X_add_symbol = NULL;
}
else
{
exprP->X_op = O_symbol;
exprP->X_add_number = 0;
}
return 1;
}
exprP->X_add_symbol = symbol_find_or_make (name);
if (*nextcharP != '@')
goto no_suffix;
else if ((next_end = sh_end_of_match (next + 1, "GOTOFF")))
reloc_type = BFD_RELOC_32_GOTOFF;
else if ((next_end = sh_end_of_match (next + 1, "GOTPLT")))
reloc_type = BFD_RELOC_SH_GOTPLT32;
else if ((next_end = sh_end_of_match (next + 1, "GOT")))
reloc_type = BFD_RELOC_32_GOT_PCREL;
else if ((next_end = sh_end_of_match (next + 1, "PLT")))
reloc_type = BFD_RELOC_32_PLT_PCREL;
else if ((next_end = sh_end_of_match (next + 1, "TLSGD")))
reloc_type = BFD_RELOC_SH_TLS_GD_32;
else if ((next_end = sh_end_of_match (next + 1, "TLSLDM")))
reloc_type = BFD_RELOC_SH_TLS_LD_32;
else if ((next_end = sh_end_of_match (next + 1, "GOTTPOFF")))
reloc_type = BFD_RELOC_SH_TLS_IE_32;
else if ((next_end = sh_end_of_match (next + 1, "TPOFF")))
reloc_type = BFD_RELOC_SH_TLS_LE_32;
else if ((next_end = sh_end_of_match (next + 1, "DTPOFF")))
reloc_type = BFD_RELOC_SH_TLS_LDO_32;
else if ((next_end = sh_end_of_match (next + 1, "PCREL")))
reloc_type = BFD_RELOC_32_PCREL;
else if ((next_end = sh_end_of_match (next + 1, "GOTFUNCDESC")))
reloc_type = BFD_RELOC_SH_GOTFUNCDESC;
else if ((next_end = sh_end_of_match (next + 1, "GOTOFFFUNCDESC")))
reloc_type = BFD_RELOC_SH_GOTOFFFUNCDESC;
else if ((next_end = sh_end_of_match (next + 1, "FUNCDESC")))
reloc_type = BFD_RELOC_SH_FUNCDESC;
else
goto no_suffix;
*input_line_pointer = *nextcharP;
input_line_pointer = next_end;
*nextcharP = *input_line_pointer;
*input_line_pointer = '\0';
exprP->X_op = O_PIC_reloc;
exprP->X_add_number = 0;
exprP->X_md = reloc_type;
return 1;
}
void
sh_cfi_frame_initial_instructions (void)
{
cfi_add_CFA_def_cfa (15, 0);
}
int
sh_regname_to_dw2regnum (char *regname)
{
unsigned int regnum = -1;
unsigned int i;
const char *p;
char *q;
static struct { const char *name; int dw2regnum; } regnames[] =
{
{ "pr", 17 }, { "t", 18 }, { "gbr", 19 }, { "mach", 20 },
{ "macl", 21 }, { "fpul", 23 }
};
for (i = 0; i < ARRAY_SIZE (regnames); ++i)
if (strcmp (regnames[i].name, regname) == 0)
return regnames[i].dw2regnum;
if (regname[0] == 'r')
{
p = regname + 1;
regnum = strtoul (p, &q, 10);
if (p == q || *q || regnum >= 16)
return -1;
}
else if (regname[0] == 'f' && regname[1] == 'r')
{
p = regname + 2;
regnum = strtoul (p, &q, 10);
if (p == q || *q || regnum >= 16)
return -1;
regnum += 25;
}
else if (regname[0] == 'x' && regname[1] == 'd')
{
p = regname + 2;
regnum = strtoul (p, &q, 10);
if (p == q || *q || regnum >= 8)
return -1;
regnum += 87;
}
return regnum;
}
#endif /* OBJ_ELF */