Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
/* deflate.c -- compress data using the deflation algorithm
 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 */

/*
 *  ALGORITHM
 *
 *      The "deflation" process depends on being able to identify portions
 *      of the input text which are identical to earlier input (within a
 *      sliding window trailing behind the input currently being processed).
 *
 *      The most straightforward technique turns out to be the fastest for
 *      most input files: try all possible matches and select the longest.
 *      The key feature of this algorithm is that insertions into the string
 *      dictionary are very simple and thus fast, and deletions are avoided
 *      completely. Insertions are performed at each input character, whereas
 *      string matches are performed only when the previous match ends. So it
 *      is preferable to spend more time in matches to allow very fast string
 *      insertions and avoid deletions. The matching algorithm for small
 *      strings is inspired from that of Rabin & Karp. A brute force approach
 *      is used to find longer strings when a small match has been found.
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
 *      (by Leonid Broukhis).
 *         A previous version of this file used a more sophisticated algorithm
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
 *      time, but has a larger average cost, uses more memory and is patented.
 *      However the F&G algorithm may be faster for some highly redundant
 *      files if the parameter max_chain_length (described below) is too large.
 *
 *  ACKNOWLEDGEMENTS
 *
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
 *      I found it in 'freeze' written by Leonid Broukhis.
 *      Thanks to many people for bug reports and testing.
 *
 *  REFERENCES
 *
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
 *      Available in http://tools.ietf.org/html/rfc1951
 *
 *      A description of the Rabin and Karp algorithm is given in the book
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
 *
 *      Fiala,E.R., and Greene,D.H.
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
 *
 */

/* @(#) Id */

#include "deflate.h"

const char deflate_copyright[] =
   " deflate 1.2.12 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
/*
  If you use the zlib library in a product, an acknowledgment is welcome
  in the documentation of your product. If for some reason you cannot
  include such an acknowledgment, I would appreciate that you keep this
  copyright string in the executable of your product.
 */

/* ===========================================================================
 *  Function prototypes.
 */
typedef enum {
    need_more,      /* block not completed, need more input or more output */
    block_done,     /* block flush performed */
    finish_started, /* finish started, need only more output at next deflate */
    finish_done     /* finish done, accept no more input or output */
} block_state;

typedef block_state (*compress_func) OF((deflate_state *s, int flush));
/* Compression function. Returns the block state after the call. */

local int deflateStateCheck      OF((z_streamp strm));
local void slide_hash     OF((deflate_state *s));
local void fill_window    OF((deflate_state *s));
local block_state deflate_stored OF((deflate_state *s, int flush));
local block_state deflate_fast   OF((deflate_state *s, int flush));
#ifndef FASTEST
local block_state deflate_slow   OF((deflate_state *s, int flush));
#endif
local block_state deflate_rle    OF((deflate_state *s, int flush));
local block_state deflate_huff   OF((deflate_state *s, int flush));
local void lm_init        OF((deflate_state *s));
local void putShortMSB    OF((deflate_state *s, uInt b));
local void flush_pending  OF((z_streamp strm));
local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
#ifdef ASMV
#  pragma message("Assembler code may have bugs -- use at your own risk")
      void match_init OF((void)); /* asm code initialization */
      uInt longest_match  OF((deflate_state *s, IPos cur_match));
#else
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
#endif

#ifdef ZLIB_DEBUG
local  void check_match OF((deflate_state *s, IPos start, IPos match,
                            int length));
#endif

/* ===========================================================================
 * Local data
 */

#define NIL 0
/* Tail of hash chains */

#ifndef TOO_FAR
#  define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */

/* Values for max_lazy_match, good_match and max_chain_length, depending on
 * the desired pack level (0..9). The values given below have been tuned to
 * exclude worst case performance for pathological files. Better values may be
 * found for specific files.
 */
typedef struct config_s {
   ush good_length; /* reduce lazy search above this match length */
   ush max_lazy;    /* do not perform lazy search above this match length */
   ush nice_length; /* quit search above this match length */
   ush max_chain;
   compress_func func;
} config;

#ifdef FASTEST
local const config configuration_table[2] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
#else
local const config configuration_table[10] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
/* 2 */ {4,    5, 16,    8, deflate_fast},
/* 3 */ {4,    6, 32,   32, deflate_fast},

/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
/* 5 */ {8,   16, 32,   32, deflate_slow},
/* 6 */ {8,   16, 128, 128, deflate_slow},
/* 7 */ {8,   32, 128, 256, deflate_slow},
/* 8 */ {32, 128, 258, 1024, deflate_slow},
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
#endif

/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 * meaning.
 */

/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))

/* ===========================================================================
 * Update a hash value with the given input byte
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
 *    characters, so that a running hash key can be computed from the previous
 *    key instead of complete recalculation each time.
 */
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)


/* ===========================================================================
 * Insert string str in the dictionary and set match_head to the previous head
 * of the hash chain (the most recent string with same hash key). Return
 * the previous length of the hash chain.
 * If this file is compiled with -DFASTEST, the compression level is forced
 * to 1, and no hash chains are maintained.
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
 *    characters and the first MIN_MATCH bytes of str are valid (except for
 *    the last MIN_MATCH-1 bytes of the input file).
 */
#ifdef FASTEST
#define INSERT_STRING(s, str, match_head) \
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    match_head = s->head[s->ins_h], \
    s->head[s->ins_h] = (Pos)(str))
#else
#define INSERT_STRING(s, str, match_head) \
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
    s->head[s->ins_h] = (Pos)(str))
#endif

/* ===========================================================================
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
 * prev[] will be initialized on the fly.
 */
#define CLEAR_HASH(s) \
    do { \
        s->head[s->hash_size-1] = NIL; \
        zmemzero((Bytef *)s->head, \
                 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
    } while (0)

/* ===========================================================================
 * Slide the hash table when sliding the window down (could be avoided with 32
 * bit values at the expense of memory usage). We slide even when level == 0 to
 * keep the hash table consistent if we switch back to level > 0 later.
 */
local void slide_hash(s)
    deflate_state *s;
{
    unsigned n, m;
    Posf *p;
    uInt wsize = s->w_size;

    n = s->hash_size;
    p = &s->head[n];
    do {
        m = *--p;
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
    } while (--n);
    n = wsize;
#ifndef FASTEST
    p = &s->prev[n];
    do {
        m = *--p;
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
        /* If n is not on any hash chain, prev[n] is garbage but
         * its value will never be used.
         */
    } while (--n);
#endif
}

/* ========================================================================= */
int ZEXPORT deflateInit_(strm, level, version, stream_size)
    z_streamp strm;
    int level;
    const char *version;
    int stream_size;
{
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
                         Z_DEFAULT_STRATEGY, version, stream_size);
    /* To do: ignore strm->next_in if we use it as window */
}

/* ========================================================================= */
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
                  version, stream_size)
    z_streamp strm;
    int  level;
    int  method;
    int  windowBits;
    int  memLevel;
    int  strategy;
    const char *version;
    int stream_size;
{
    deflate_state *s;
    int wrap = 1;
    static const char my_version[] = ZLIB_VERSION;

    if (version == Z_NULL || version[0] != my_version[0] ||
        stream_size != sizeof(z_stream)) {
        return Z_VERSION_ERROR;
    }
    if (strm == Z_NULL) return Z_STREAM_ERROR;

    strm->msg = Z_NULL;
    if (strm->zalloc == (alloc_func)0) {
#ifdef Z_SOLO
        return Z_STREAM_ERROR;
#else
        strm->zalloc = zcalloc;
        strm->opaque = (voidpf)0;
#endif
    }
    if (strm->zfree == (free_func)0)
#ifdef Z_SOLO
        return Z_STREAM_ERROR;
#else
        strm->zfree = zcfree;
#endif

#ifdef FASTEST
    if (level != 0) level = 1;
#else
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif

    if (windowBits < 0) { /* suppress zlib wrapper */
        wrap = 0;
        windowBits = -windowBits;
    }
#ifdef GZIP
    else if (windowBits > 15) {
        wrap = 2;       /* write gzip wrapper instead */
        windowBits -= 16;
    }
#endif
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
        return Z_STREAM_ERROR;
    }
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    if (s == Z_NULL) return Z_MEM_ERROR;
    strm->state = (struct internal_state FAR *)s;
    s->strm = strm;
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */

    s->wrap = wrap;
    s->gzhead = Z_NULL;
    s->w_bits = (uInt)windowBits;
    s->w_size = 1 << s->w_bits;
    s->w_mask = s->w_size - 1;

    s->hash_bits = (uInt)memLevel + 7;
    s->hash_size = 1 << s->hash_bits;
    s->hash_mask = s->hash_size - 1;
    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);

    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));

    s->high_water = 0;      /* nothing written to s->window yet */

    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */

    /* We overlay pending_buf and sym_buf. This works since the average size
     * for length/distance pairs over any compressed block is assured to be 31
     * bits or less.
     *
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
     * possible fixed-codes length/distance pair is then 31 bits total.
     *
     * sym_buf starts one-fourth of the way into pending_buf. So there are
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
     * in sym_buf is three bytes -- two for the distance and one for the
     * literal/length. As each symbol is consumed, the pointer to the next
     * sym_buf value to read moves forward three bytes. From that symbol, up to
     * 31 bits are written to pending_buf. The closest the written pending_buf
     * bits gets to the next sym_buf symbol to read is just before the last
     * code is written. At that time, 31*(n-2) bits have been written, just
     * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
     * symbols are written.) The closest the writing gets to what is unread is
     * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
     * can range from 128 to 32768.
     *
     * Therefore, at a minimum, there are 142 bits of space between what is
     * written and what is read in the overlain buffers, so the symbols cannot
     * be overwritten by the compressed data. That space is actually 139 bits,
     * due to the three-bit fixed-code block header.
     *
     * That covers the case where either Z_FIXED is specified, forcing fixed
     * codes, or when the use of fixed codes is chosen, because that choice
     * results in a smaller compressed block than dynamic codes. That latter
     * condition then assures that the above analysis also covers all dynamic
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
     * fewer bits than a fixed-code block would for the same set of symbols.
     * Therefore its average symbol length is assured to be less than 31. So
     * the compressed data for a dynamic block also cannot overwrite the
     * symbols from which it is being constructed.
     */

    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;

    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
        s->pending_buf == Z_NULL) {
        s->status = FINISH_STATE;
        strm->msg = ERR_MSG(Z_MEM_ERROR);
        deflateEnd (strm);
        return Z_MEM_ERROR;
    }
    s->sym_buf = s->pending_buf + s->lit_bufsize;
    s->sym_end = (s->lit_bufsize - 1) * 3;
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
     * on 16 bit machines and because stored blocks are restricted to
     * 64K-1 bytes.
     */

    s->level = level;
    s->strategy = strategy;
    s->method = (Byte)method;

    return deflateReset(strm);
}

/* =========================================================================
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
 */
local int deflateStateCheck (strm)
    z_streamp strm;
{
    deflate_state *s;
    if (strm == Z_NULL ||
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
        return 1;
    s = strm->state;
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
#ifdef GZIP
                                           s->status != GZIP_STATE &&
#endif
                                           s->status != EXTRA_STATE &&
                                           s->status != NAME_STATE &&
                                           s->status != COMMENT_STATE &&
                                           s->status != HCRC_STATE &&
                                           s->status != BUSY_STATE &&
                                           s->status != FINISH_STATE))
        return 1;
    return 0;
}

/* ========================================================================= */
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
    z_streamp strm;
    const Bytef *dictionary;
    uInt  dictLength;
{
    deflate_state *s;
    uInt str, n;
    int wrap;
    unsigned avail;
    z_const unsigned char *next;

    if (deflateStateCheck(strm) || dictionary == Z_NULL)
        return Z_STREAM_ERROR;
    s = strm->state;
    wrap = s->wrap;
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
        return Z_STREAM_ERROR;

    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
    if (wrap == 1)
        strm->adler = adler32(strm->adler, dictionary, dictLength);
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */

    /* if dictionary would fill window, just replace the history */
    if (dictLength >= s->w_size) {
        if (wrap == 0) {            /* already empty otherwise */
            CLEAR_HASH(s);
            s->strstart = 0;
            s->block_start = 0L;
            s->insert = 0;
        }
        dictionary += dictLength - s->w_size;  /* use the tail */
        dictLength = s->w_size;
    }

    /* insert dictionary into window and hash */
    avail = strm->avail_in;
    next = strm->next_in;
    strm->avail_in = dictLength;
    strm->next_in = (z_const Bytef *)dictionary;
    fill_window(s);
    while (s->lookahead >= MIN_MATCH) {
        str = s->strstart;
        n = s->lookahead - (MIN_MATCH-1);
        do {
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
            s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
            s->head[s->ins_h] = (Pos)str;
            str++;
        } while (--n);
        s->strstart = str;
        s->lookahead = MIN_MATCH-1;
        fill_window(s);
    }
    s->strstart += s->lookahead;
    s->block_start = (long)s->strstart;
    s->insert = s->lookahead;
    s->lookahead = 0;
    s->match_length = s->prev_length = MIN_MATCH-1;
    s->match_available = 0;
    strm->next_in = next;
    strm->avail_in = avail;
    s->wrap = wrap;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
    z_streamp strm;
    Bytef *dictionary;
    uInt  *dictLength;
{
    deflate_state *s;
    uInt len;

    if (deflateStateCheck(strm))
        return Z_STREAM_ERROR;
    s = strm->state;
    len = s->strstart + s->lookahead;
    if (len > s->w_size)
        len = s->w_size;
    if (dictionary != Z_NULL && len)
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
    if (dictLength != Z_NULL)
        *dictLength = len;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateResetKeep (strm)
    z_streamp strm;
{
    deflate_state *s;

    if (deflateStateCheck(strm)) {
        return Z_STREAM_ERROR;
    }

    strm->total_in = strm->total_out = 0;
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    strm->data_type = Z_UNKNOWN;

    s = (deflate_state *)strm->state;
    s->pending = 0;
    s->pending_out = s->pending_buf;

    if (s->wrap < 0) {
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
    }
    s->status =
#ifdef GZIP
        s->wrap == 2 ? GZIP_STATE :
#endif
        INIT_STATE;
    strm->adler =
#ifdef GZIP
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
#endif
        adler32(0L, Z_NULL, 0);
    s->last_flush = -2;

    _tr_init(s);

    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateReset (strm)
    z_streamp strm;
{
    int ret;

    ret = deflateResetKeep(strm);
    if (ret == Z_OK)
        lm_init(strm->state);
    return ret;
}

/* ========================================================================= */
int ZEXPORT deflateSetHeader (strm, head)
    z_streamp strm;
    gz_headerp head;
{
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
        return Z_STREAM_ERROR;
    strm->state->gzhead = head;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflatePending (strm, pending, bits)
    unsigned *pending;
    int *bits;
    z_streamp strm;
{
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    if (pending != Z_NULL)
        *pending = strm->state->pending;
    if (bits != Z_NULL)
        *bits = strm->state->bi_valid;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflatePrime (strm, bits, value)
    z_streamp strm;
    int bits;
    int value;
{
    deflate_state *s;
    int put;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    s = strm->state;
    if (bits < 0 || bits > 16 ||
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
        return Z_BUF_ERROR;
    do {
        put = Buf_size - s->bi_valid;
        if (put > bits)
            put = bits;
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
        s->bi_valid += put;
        _tr_flush_bits(s);
        value >>= put;
        bits -= put;
    } while (bits);
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateParams(strm, level, strategy)
    z_streamp strm;
    int level;
    int strategy;
{
    deflate_state *s;
    compress_func func;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    s = strm->state;

#ifdef FASTEST
    if (level != 0) level = 1;
#else
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
        return Z_STREAM_ERROR;
    }
    func = configuration_table[s->level].func;

    if ((strategy != s->strategy || func != configuration_table[level].func) &&
        s->last_flush != -2) {
        /* Flush the last buffer: */
        int err = deflate(strm, Z_BLOCK);
        if (err == Z_STREAM_ERROR)
            return err;
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
            return Z_BUF_ERROR;
    }
    if (s->level != level) {
        if (s->level == 0 && s->matches != 0) {
            if (s->matches == 1)
                slide_hash(s);
            else
                CLEAR_HASH(s);
            s->matches = 0;
        }
        s->level = level;
        s->max_lazy_match   = configuration_table[level].max_lazy;
        s->good_match       = configuration_table[level].good_length;
        s->nice_match       = configuration_table[level].nice_length;
        s->max_chain_length = configuration_table[level].max_chain;
    }
    s->strategy = strategy;
    return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
    z_streamp strm;
    int good_length;
    int max_lazy;
    int nice_length;
    int max_chain;
{
    deflate_state *s;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    s = strm->state;
    s->good_match = (uInt)good_length;
    s->max_lazy_match = (uInt)max_lazy;
    s->nice_match = nice_length;
    s->max_chain_length = (uInt)max_chain;
    return Z_OK;
}

/* =========================================================================
 * For the default windowBits of 15 and memLevel of 8, this function returns
 * a close to exact, as well as small, upper bound on the compressed size.
 * They are coded as constants here for a reason--if the #define's are
 * changed, then this function needs to be changed as well.  The return
 * value for 15 and 8 only works for those exact settings.
 *
 * For any setting other than those defaults for windowBits and memLevel,
 * the value returned is a conservative worst case for the maximum expansion
 * resulting from using fixed blocks instead of stored blocks, which deflate
 * can emit on compressed data for some combinations of the parameters.
 *
 * This function could be more sophisticated to provide closer upper bounds for
 * every combination of windowBits and memLevel.  But even the conservative
 * upper bound of about 14% expansion does not seem onerous for output buffer
 * allocation.
 */
uLong ZEXPORT deflateBound(strm, sourceLen)
    z_streamp strm;
    uLong sourceLen;
{
    deflate_state *s;
    uLong complen, wraplen;

    /* conservative upper bound for compressed data */
    complen = sourceLen +
              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;

    /* if can't get parameters, return conservative bound plus zlib wrapper */
    if (deflateStateCheck(strm))
        return complen + 6;

    /* compute wrapper length */
    s = strm->state;
    switch (s->wrap) {
    case 0:                                 /* raw deflate */
        wraplen = 0;
        break;
    case 1:                                 /* zlib wrapper */
        wraplen = 6 + (s->strstart ? 4 : 0);
        break;
#ifdef GZIP
    case 2:                                 /* gzip wrapper */
        wraplen = 18;
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
            Bytef *str;
            if (s->gzhead->extra != Z_NULL)
                wraplen += 2 + s->gzhead->extra_len;
            str = s->gzhead->name;
            if (str != Z_NULL)
                do {
                    wraplen++;
                } while (*str++);
            str = s->gzhead->comment;
            if (str != Z_NULL)
                do {
                    wraplen++;
                } while (*str++);
            if (s->gzhead->hcrc)
                wraplen += 2;
        }
        break;
#endif
    default:                                /* for compiler happiness */
        wraplen = 6;
    }

    /* if not default parameters, return conservative bound */
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
        return complen + wraplen;

    /* default settings: return tight bound for that case */
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
           (sourceLen >> 25) + 13 - 6 + wraplen;
}

/* =========================================================================
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 * IN assertion: the stream state is correct and there is enough room in
 * pending_buf.
 */
local void putShortMSB (s, b)
    deflate_state *s;
    uInt b;
{
    put_byte(s, (Byte)(b >> 8));
    put_byte(s, (Byte)(b & 0xff));
}

/* =========================================================================
 * Flush as much pending output as possible. All deflate() output, except for
 * some deflate_stored() output, goes through this function so some
 * applications may wish to modify it to avoid allocating a large
 * strm->next_out buffer and copying into it. (See also read_buf()).
 */
local void flush_pending(strm)
    z_streamp strm;
{
    unsigned len;
    deflate_state *s = strm->state;

    _tr_flush_bits(s);
    len = s->pending;
    if (len > strm->avail_out) len = strm->avail_out;
    if (len == 0) return;

    zmemcpy(strm->next_out, s->pending_out, len);
    strm->next_out  += len;
    s->pending_out  += len;
    strm->total_out += len;
    strm->avail_out -= len;
    s->pending      -= len;
    if (s->pending == 0) {
        s->pending_out = s->pending_buf;
    }
}

/* ===========================================================================
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
 */
#define HCRC_UPDATE(beg) \
    do { \
        if (s->gzhead->hcrc && s->pending > (beg)) \
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
                                s->pending - (beg)); \
    } while (0)

/* ========================================================================= */
int ZEXPORT deflate (strm, flush)
    z_streamp strm;
    int flush;
{
    int old_flush; /* value of flush param for previous deflate call */
    deflate_state *s;

    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
        return Z_STREAM_ERROR;
    }
    s = strm->state;

    if (strm->next_out == Z_NULL ||
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
        ERR_RETURN(strm, Z_STREAM_ERROR);
    }
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);

    old_flush = s->last_flush;
    s->last_flush = flush;

    /* Flush as much pending output as possible */
    if (s->pending != 0) {
        flush_pending(strm);
        if (strm->avail_out == 0) {
            /* Since avail_out is 0, deflate will be called again with
             * more output space, but possibly with both pending and
             * avail_in equal to zero. There won't be anything to do,
             * but this is not an error situation so make sure we
             * return OK instead of BUF_ERROR at next call of deflate:
             */
            s->last_flush = -1;
            return Z_OK;
        }

    /* Make sure there is something to do and avoid duplicate consecutive
     * flushes. For repeated and useless calls with Z_FINISH, we keep
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
     */
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
               flush != Z_FINISH) {
        ERR_RETURN(strm, Z_BUF_ERROR);
    }

    /* User must not provide more input after the first FINISH: */
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
        ERR_RETURN(strm, Z_BUF_ERROR);
    }

    /* Write the header */
    if (s->status == INIT_STATE && s->wrap == 0)
        s->status = BUSY_STATE;
    if (s->status == INIT_STATE) {
        /* zlib header */
        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
        uInt level_flags;

        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
            level_flags = 0;
        else if (s->level < 6)
            level_flags = 1;
        else if (s->level == 6)
            level_flags = 2;
        else
            level_flags = 3;
        header |= (level_flags << 6);
        if (s->strstart != 0) header |= PRESET_DICT;
        header += 31 - (header % 31);

        putShortMSB(s, header);

        /* Save the adler32 of the preset dictionary: */
        if (s->strstart != 0) {
            putShortMSB(s, (uInt)(strm->adler >> 16));
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
        }
        strm->adler = adler32(0L, Z_NULL, 0);
        s->status = BUSY_STATE;

        /* Compression must start with an empty pending buffer */
        flush_pending(strm);
        if (s->pending != 0) {
            s->last_flush = -1;
            return Z_OK;
        }
    }
#ifdef GZIP
    if (s->status == GZIP_STATE) {
        /* gzip header */
        strm->adler = crc32(0L, Z_NULL, 0);
        put_byte(s, 31);
        put_byte(s, 139);
        put_byte(s, 8);
        if (s->gzhead == Z_NULL) {
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, 0);
            put_byte(s, s->level == 9 ? 2 :
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                      4 : 0));
            put_byte(s, OS_CODE);
            s->status = BUSY_STATE;

            /* Compression must start with an empty pending buffer */
            flush_pending(strm);
            if (s->pending != 0) {
                s->last_flush = -1;
                return Z_OK;
            }
        }
        else {
            put_byte(s, (s->gzhead->text ? 1 : 0) +
                     (s->gzhead->hcrc ? 2 : 0) +
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
                     );
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
            put_byte(s, s->level == 9 ? 2 :
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                      4 : 0));
            put_byte(s, s->gzhead->os & 0xff);
            if (s->gzhead->extra != Z_NULL) {
                put_byte(s, s->gzhead->extra_len & 0xff);
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
            }
            if (s->gzhead->hcrc)
                strm->adler = crc32(strm->adler, s->pending_buf,
                                    s->pending);
            s->gzindex = 0;
            s->status = EXTRA_STATE;
        }
    }
    if (s->status == EXTRA_STATE) {
        if (s->gzhead->extra != Z_NULL) {
            ulg beg = s->pending;   /* start of bytes to update crc */
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
            while (s->pending + left > s->pending_buf_size) {
                uInt copy = s->pending_buf_size - s->pending;
                zmemcpy(s->pending_buf + s->pending,
                        s->gzhead->extra + s->gzindex, copy);
                s->pending = s->pending_buf_size;
                HCRC_UPDATE(beg);
                s->gzindex += copy;
                flush_pending(strm);
                if (s->pending != 0) {
                    s->last_flush = -1;
                    return Z_OK;
                }
                beg = 0;
                left -= copy;
            }
            zmemcpy(s->pending_buf + s->pending,
                    s->gzhead->extra + s->gzindex, left);
            s->pending += left;
            HCRC_UPDATE(beg);
            s->gzindex = 0;
        }
        s->status = NAME_STATE;
    }
    if (s->status == NAME_STATE) {
        if (s->gzhead->name != Z_NULL) {
            ulg beg = s->pending;   /* start of bytes to update crc */
            int val;
            do {
                if (s->pending == s->pending_buf_size) {
                    HCRC_UPDATE(beg);
                    flush_pending(strm);
                    if (s->pending != 0) {
                        s->last_flush = -1;
                        return Z_OK;
                    }
                    beg = 0;
                }
                val = s->gzhead->name[s->gzindex++];
                put_byte(s, val);
            } while (val != 0);
            HCRC_UPDATE(beg);
            s->gzindex = 0;
        }
        s->status = COMMENT_STATE;
    }
    if (s->status == COMMENT_STATE) {
        if (s->gzhead->comment != Z_NULL) {
            ulg beg = s->pending;   /* start of bytes to update crc */
            int val;
            do {
                if (s->pending == s->pending_buf_size) {
                    HCRC_UPDATE(beg);
                    flush_pending(strm);
                    if (s->pending != 0) {
                        s->last_flush = -1;
                        return Z_OK;
                    }
                    beg = 0;
                }
                val = s->gzhead->comment[s->gzindex++];
                put_byte(s, val);
            } while (val != 0);
            HCRC_UPDATE(beg);
        }
        s->status = HCRC_STATE;
    }
    if (s->status == HCRC_STATE) {
        if (s->gzhead->hcrc) {
            if (s->pending + 2 > s->pending_buf_size) {
                flush_pending(strm);
                if (s->pending != 0) {
                    s->last_flush = -1;
                    return Z_OK;
                }
            }
            put_byte(s, (Byte)(strm->adler & 0xff));
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
            strm->adler = crc32(0L, Z_NULL, 0);
        }
        s->status = BUSY_STATE;

        /* Compression must start with an empty pending buffer */
        flush_pending(strm);
        if (s->pending != 0) {
            s->last_flush = -1;
            return Z_OK;
        }
    }
#endif

    /* Start a new block or continue the current one.
     */
    if (strm->avail_in != 0 || s->lookahead != 0 ||
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
        block_state bstate;

        bstate = s->level == 0 ? deflate_stored(s, flush) :
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
                 (*(configuration_table[s->level].func))(s, flush);

        if (bstate == finish_started || bstate == finish_done) {
            s->status = FINISH_STATE;
        }
        if (bstate == need_more || bstate == finish_started) {
            if (strm->avail_out == 0) {
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
            }
            return Z_OK;
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
             * of deflate should use the same flush parameter to make sure
             * that the flush is complete. So we don't have to output an
             * empty block here, this will be done at next call. This also
             * ensures that for a very small output buffer, we emit at most
             * one empty block.
             */
        }
        if (bstate == block_done) {
            if (flush == Z_PARTIAL_FLUSH) {
                _tr_align(s);
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
                _tr_stored_block(s, (char*)0, 0L, 0);
                /* For a full flush, this empty block will be recognized
                 * as a special marker by inflate_sync().
                 */
                if (flush == Z_FULL_FLUSH) {
                    CLEAR_HASH(s);             /* forget history */
                    if (s->lookahead == 0) {
                        s->strstart = 0;
                        s->block_start = 0L;
                        s->insert = 0;
                    }
                }
            }
            flush_pending(strm);
            if (strm->avail_out == 0) {
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
              return Z_OK;
            }
        }
    }

    if (flush != Z_FINISH) return Z_OK;
    if (s->wrap <= 0) return Z_STREAM_END;

    /* Write the trailer */
#ifdef GZIP
    if (s->wrap == 2) {
        put_byte(s, (Byte)(strm->adler & 0xff));
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
        put_byte(s, (Byte)(strm->total_in & 0xff));
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
    }
    else
#endif
    {
        putShortMSB(s, (uInt)(strm->adler >> 16));
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
    }
    flush_pending(strm);
    /* If avail_out is zero, the application will call deflate again
     * to flush the rest.
     */
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
}

/* ========================================================================= */
int ZEXPORT deflateEnd (strm)
    z_streamp strm;
{
    int status;

    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;

    status = strm->state->status;

    /* Deallocate in reverse order of allocations: */
    TRY_FREE(strm, strm->state->pending_buf);
    TRY_FREE(strm, strm->state->head);
    TRY_FREE(strm, strm->state->prev);
    TRY_FREE(strm, strm->state->window);

    ZFREE(strm, strm->state);
    strm->state = Z_NULL;

    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
}

/* =========================================================================
 * Copy the source state to the destination state.
 * To simplify the source, this is not supported for 16-bit MSDOS (which
 * doesn't have enough memory anyway to duplicate compression states).
 */
int ZEXPORT deflateCopy (dest, source)
    z_streamp dest;
    z_streamp source;
{
#ifdef MAXSEG_64K
    return Z_STREAM_ERROR;
#else
    deflate_state *ds;
    deflate_state *ss;


    if (deflateStateCheck(source) || dest == Z_NULL) {
        return Z_STREAM_ERROR;
    }

    ss = source->state;

    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));

    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
    if (ds == Z_NULL) return Z_MEM_ERROR;
    dest->state = (struct internal_state FAR *) ds;
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
    ds->strm = dest;

    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);

    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
        ds->pending_buf == Z_NULL) {
        deflateEnd (dest);
        return Z_MEM_ERROR;
    }
    /* following zmemcpy do not work for 16-bit MSDOS */
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);

    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;

    ds->l_desc.dyn_tree = ds->dyn_ltree;
    ds->d_desc.dyn_tree = ds->dyn_dtree;
    ds->bl_desc.dyn_tree = ds->bl_tree;

    return Z_OK;
#endif /* MAXSEG_64K */
}

/* ===========================================================================
 * Read a new buffer from the current input stream, update the adler32
 * and total number of bytes read.  All deflate() input goes through
 * this function so some applications may wish to modify it to avoid
 * allocating a large strm->next_in buffer and copying from it.
 * (See also flush_pending()).
 */
local unsigned read_buf(strm, buf, size)
    z_streamp strm;
    Bytef *buf;
    unsigned size;
{
    unsigned len = strm->avail_in;

    if (len > size) len = size;
    if (len == 0) return 0;

    strm->avail_in  -= len;

    zmemcpy(buf, strm->next_in, len);
    if (strm->state->wrap == 1) {
        strm->adler = adler32(strm->adler, buf, len);
    }
#ifdef GZIP
    else if (strm->state->wrap == 2) {
        strm->adler = crc32(strm->adler, buf, len);
    }
#endif
    strm->next_in  += len;
    strm->total_in += len;

    return len;
}

/* ===========================================================================
 * Initialize the "longest match" routines for a new zlib stream
 */
local void lm_init (s)
    deflate_state *s;
{
    s->window_size = (ulg)2L*s->w_size;

    CLEAR_HASH(s);

    /* Set the default configuration parameters:
     */
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
    s->good_match       = configuration_table[s->level].good_length;
    s->nice_match       = configuration_table[s->level].nice_length;
    s->max_chain_length = configuration_table[s->level].max_chain;

    s->strstart = 0;
    s->block_start = 0L;
    s->lookahead = 0;
    s->insert = 0;
    s->match_length = s->prev_length = MIN_MATCH-1;
    s->match_available = 0;
    s->ins_h = 0;
#ifndef FASTEST
#ifdef ASMV
    match_init(); /* initialize the asm code */
#endif
#endif
}

#ifndef FASTEST
/* ===========================================================================
 * Set match_start to the longest match starting at the given string and
 * return its length. Matches shorter or equal to prev_length are discarded,
 * in which case the result is equal to prev_length and match_start is
 * garbage.
 * IN assertions: cur_match is the head of the hash chain for the current
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 * OUT assertion: the match length is not greater than s->lookahead.
 */
#ifndef ASMV
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 * match.S. The code will be functionally equivalent.
 */
local uInt longest_match(s, cur_match)
    deflate_state *s;
    IPos cur_match;                             /* current match */
{
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
    register Bytef *scan = s->window + s->strstart; /* current string */
    register Bytef *match;                      /* matched string */
    register int len;                           /* length of current match */
    int best_len = (int)s->prev_length;         /* best match length so far */
    int nice_match = s->nice_match;             /* stop if match long enough */
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
        s->strstart - (IPos)MAX_DIST(s) : NIL;
    /* Stop when cur_match becomes <= limit. To simplify the code,
     * we prevent matches with the string of window index 0.
     */
    Posf *prev = s->prev;
    uInt wmask = s->w_mask;

#ifdef UNALIGNED_OK
    /* Compare two bytes at a time. Note: this is not always beneficial.
     * Try with and without -DUNALIGNED_OK to check.
     */
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
    register ush scan_start = *(ushf*)scan;
    register ush scan_end   = *(ushf*)(scan+best_len-1);
#else
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
    register Byte scan_end1  = scan[best_len-1];
    register Byte scan_end   = scan[best_len];
#endif

    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
     * It is easy to get rid of this optimization if necessary.
     */
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

    /* Do not waste too much time if we already have a good match: */
    if (s->prev_length >= s->good_match) {
        chain_length >>= 2;
    }
    /* Do not look for matches beyond the end of the input. This is necessary
     * to make deflate deterministic.
     */
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;

    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

    do {
        Assert(cur_match < s->strstart, "no future");
        match = s->window + cur_match;

        /* Skip to next match if the match length cannot increase
         * or if the match length is less than 2.  Note that the checks below
         * for insufficient lookahead only occur occasionally for performance
         * reasons.  Therefore uninitialized memory will be accessed, and
         * conditional jumps will be made that depend on those values.
         * However the length of the match is limited to the lookahead, so
         * the output of deflate is not affected by the uninitialized values.
         */
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
        /* This code assumes sizeof(unsigned short) == 2. Do not use
         * UNALIGNED_OK if your compiler uses a different size.
         */
        if (*(ushf*)(match+best_len-1) != scan_end ||
            *(ushf*)match != scan_start) continue;

        /* It is not necessary to compare scan[2] and match[2] since they are
         * always equal when the other bytes match, given that the hash keys
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
         * strstart+3, +5, ... up to strstart+257. We check for insufficient
         * lookahead only every 4th comparison; the 128th check will be made
         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
         * necessary to put more guard bytes at the end of the window, or
         * to check more often for insufficient lookahead.
         */
        Assert(scan[2] == match[2], "scan[2]?");
        scan++, match++;
        do {
        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                 scan < strend);
        /* The funny "do {}" generates better code on most compilers */

        /* Here, scan <= window+strstart+257 */
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
        if (*scan == *match) scan++;

        len = (MAX_MATCH - 1) - (int)(strend-scan);
        scan = strend - (MAX_MATCH-1);

#else /* UNALIGNED_OK */

        if (match[best_len]   != scan_end  ||
            match[best_len-1] != scan_end1 ||
            *match            != *scan     ||
            *++match          != scan[1])      continue;

        /* The check at best_len-1 can be removed because it will be made
         * again later. (This heuristic is not always a win.)
         * It is not necessary to compare scan[2] and match[2] since they
         * are always equal when the other bytes match, given that
         * the hash keys are equal and that HASH_BITS >= 8.
         */
        scan += 2, match++;
        Assert(*scan == *match, "match[2]?");

        /* We check for insufficient lookahead only every 8th comparison;
         * the 256th check will be made at strstart+258.
         */
        do {
        } while (*++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 *++scan == *++match && *++scan == *++match &&
                 scan < strend);

        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

        len = MAX_MATCH - (int)(strend - scan);
        scan = strend - MAX_MATCH;

#endif /* UNALIGNED_OK */

        if (len > best_len) {
            s->match_start = cur_match;
            best_len = len;
            if (len >= nice_match) break;
#ifdef UNALIGNED_OK
            scan_end = *(ushf*)(scan+best_len-1);
#else
            scan_end1  = scan[best_len-1];
            scan_end   = scan[best_len];
#endif
        }
    } while ((cur_match = prev[cur_match & wmask]) > limit
             && --chain_length != 0);

    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
    return s->lookahead;
}
#endif /* ASMV */

#else /* FASTEST */

/* ---------------------------------------------------------------------------
 * Optimized version for FASTEST only
 */
local uInt longest_match(s, cur_match)
    deflate_state *s;
    IPos cur_match;                             /* current match */
{
    register Bytef *scan = s->window + s->strstart; /* current string */
    register Bytef *match;                       /* matched string */
    register int len;                           /* length of current match */
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;

    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
     * It is easy to get rid of this optimization if necessary.
     */
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

    Assert(cur_match < s->strstart, "no future");

    match = s->window + cur_match;

    /* Return failure if the match length is less than 2:
     */
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;

    /* The check at best_len-1 can be removed because it will be made
     * again later. (This heuristic is not always a win.)
     * It is not necessary to compare scan[2] and match[2] since they
     * are always equal when the other bytes match, given that
     * the hash keys are equal and that HASH_BITS >= 8.
     */
    scan += 2, match += 2;
    Assert(*scan == *match, "match[2]?");

    /* We check for insufficient lookahead only every 8th comparison;
     * the 256th check will be made at strstart+258.
     */
    do {
    } while (*++scan == *++match && *++scan == *++match &&
             *++scan == *++match && *++scan == *++match &&
             *++scan == *++match && *++scan == *++match &&
             *++scan == *++match && *++scan == *++match &&
             scan < strend);

    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

    len = MAX_MATCH - (int)(strend - scan);

    if (len < MIN_MATCH) return MIN_MATCH - 1;

    s->match_start = cur_match;
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
}

#endif /* FASTEST */

#ifdef ZLIB_DEBUG

#define EQUAL 0
/* result of memcmp for equal strings */

/* ===========================================================================
 * Check that the match at match_start is indeed a match.
 */
local void check_match(s, start, match, length)
    deflate_state *s;
    IPos start, match;
    int length;
{
    /* check that the match is indeed a match */
    if (zmemcmp(s->window + match,
                s->window + start, length) != EQUAL) {
        fprintf(stderr, " start %u, match %u, length %d\n",
                start, match, length);
        do {
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
        } while (--length != 0);
        z_error("invalid match");
    }
    if (z_verbose > 1) {
        fprintf(stderr,"\\[%d,%d]", start-match, length);
        do { putc(s->window[start++], stderr); } while (--length != 0);
    }
}
#else
#  define check_match(s, start, match, length)
#endif /* ZLIB_DEBUG */

/* ===========================================================================
 * Fill the window when the lookahead becomes insufficient.
 * Updates strstart and lookahead.
 *
 * IN assertion: lookahead < MIN_LOOKAHEAD
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 *    At least one byte has been read, or avail_in == 0; reads are
 *    performed for at least two bytes (required for the zip translate_eol
 *    option -- not supported here).
 */
local void fill_window(s)
    deflate_state *s;
{
    unsigned n;
    unsigned more;    /* Amount of free space at the end of the window. */
    uInt wsize = s->w_size;

    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");

    do {
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);

        /* Deal with !@#$% 64K limit: */
        if (sizeof(int) <= 2) {
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
                more = wsize;

            } else if (more == (unsigned)(-1)) {
                /* Very unlikely, but possible on 16 bit machine if
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
                 */
                more--;
            }
        }

        /* If the window is almost full and there is insufficient lookahead,
         * move the upper half to the lower one to make room in the upper half.
         */
        if (s->strstart >= wsize+MAX_DIST(s)) {

            zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
            s->match_start -= wsize;
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
            s->block_start -= (long) wsize;
            if (s->insert > s->strstart)
                s->insert = s->strstart;
            slide_hash(s);
            more += wsize;
        }
        if (s->strm->avail_in == 0) break;

        /* If there was no sliding:
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
         *    more == window_size - lookahead - strstart
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
         * => more >= window_size - 2*WSIZE + 2
         * In the BIG_MEM or MMAP case (not yet supported),
         *   window_size == input_size + MIN_LOOKAHEAD  &&
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
         * Otherwise, window_size == 2*WSIZE so more >= 2.
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
         */
        Assert(more >= 2, "more < 2");

        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
        s->lookahead += n;

        /* Initialize the hash value now that we have some input: */
        if (s->lookahead + s->insert >= MIN_MATCH) {
            uInt str = s->strstart - s->insert;
            s->ins_h = s->window[str];
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
#if MIN_MATCH != 3
            Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
            while (s->insert) {
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
                s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
                s->head[s->ins_h] = (Pos)str;
                str++;
                s->insert--;
                if (s->lookahead + s->insert < MIN_MATCH)
                    break;
            }
        }
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
         * but this is not important since only literal bytes will be emitted.
         */

    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);

    /* If the WIN_INIT bytes after the end of the current data have never been
     * written, then zero those bytes in order to avoid memory check reports of
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
     * the longest match routines.  Update the high water mark for the next
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
     */
    if (s->high_water < s->window_size) {
        ulg curr = s->strstart + (ulg)(s->lookahead);
        ulg init;

        if (s->high_water < curr) {
            /* Previous high water mark below current data -- zero WIN_INIT
             * bytes or up to end of window, whichever is less.
             */
            init = s->window_size - curr;
            if (init > WIN_INIT)
                init = WIN_INIT;
            zmemzero(s->window + curr, (unsigned)init);
            s->high_water = curr + init;
        }
        else if (s->high_water < (ulg)curr + WIN_INIT) {
            /* High water mark at or above current data, but below current data
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
             * to end of window, whichever is less.
             */
            init = (ulg)curr + WIN_INIT - s->high_water;
            if (init > s->window_size - s->high_water)
                init = s->window_size - s->high_water;
            zmemzero(s->window + s->high_water, (unsigned)init);
            s->high_water += init;
        }
    }

    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
           "not enough room for search");
}

/* ===========================================================================
 * Flush the current block, with given end-of-file flag.
 * IN assertion: strstart is set to the end of the current match.
 */
#define FLUSH_BLOCK_ONLY(s, last) { \
   _tr_flush_block(s, (s->block_start >= 0L ? \
                   (charf *)&s->window[(unsigned)s->block_start] : \
                   (charf *)Z_NULL), \
                (ulg)((long)s->strstart - s->block_start), \
                (last)); \
   s->block_start = s->strstart; \
   flush_pending(s->strm); \
   Tracev((stderr,"[FLUSH]")); \
}

/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, last) { \
   FLUSH_BLOCK_ONLY(s, last); \
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
}

/* Maximum stored block length in deflate format (not including header). */
#define MAX_STORED 65535

/* Minimum of a and b. */
#define MIN(a, b) ((a) > (b) ? (b) : (a))

/* ===========================================================================
 * Copy without compression as much as possible from the input stream, return
 * the current block state.
 *
 * In case deflateParams() is used to later switch to a non-zero compression
 * level, s->matches (otherwise unused when storing) keeps track of the number
 * of hash table slides to perform. If s->matches is 1, then one hash table
 * slide will be done when switching. If s->matches is 2, the maximum value
 * allowed here, then the hash table will be cleared, since two or more slides
 * is the same as a clear.
 *
 * deflate_stored() is written to minimize the number of times an input byte is
 * copied. It is most efficient with large input and output buffers, which
 * maximizes the opportunites to have a single copy from next_in to next_out.
 */
local block_state deflate_stored(s, flush)
    deflate_state *s;
    int flush;
{
    /* Smallest worthy block size when not flushing or finishing. By default
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
     * large input and output buffers, the stored block size will be larger.
     */
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);

    /* Copy as many min_block or larger stored blocks directly to next_out as
     * possible. If flushing, copy the remaining available input to next_out as
     * stored blocks, if there is enough space.
     */
    unsigned len, left, have, last = 0;
    unsigned used = s->strm->avail_in;
    do {
        /* Set len to the maximum size block that we can copy directly with the
         * available input data and output space. Set left to how much of that
         * would be copied from what's left in the window.
         */
        len = MAX_STORED;       /* maximum deflate stored block length */
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
        if (s->strm->avail_out < have)          /* need room for header */
            break;
            /* maximum stored block length that will fit in avail_out: */
        have = s->strm->avail_out - have;
        left = s->strstart - s->block_start;    /* bytes left in window */
        if (len > (ulg)left + s->strm->avail_in)
            len = left + s->strm->avail_in;     /* limit len to the input */
        if (len > have)
            len = have;                         /* limit len to the output */

        /* If the stored block would be less than min_block in length, or if
         * unable to copy all of the available input when flushing, then try
         * copying to the window and the pending buffer instead. Also don't
         * write an empty block when flushing -- deflate() does that.
         */
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
                                flush == Z_NO_FLUSH ||
                                len != left + s->strm->avail_in))
            break;

        /* Make a dummy stored block in pending to get the header bytes,
         * including any pending bits. This also updates the debugging counts.
         */
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
        _tr_stored_block(s, (char *)0, 0L, last);

        /* Replace the lengths in the dummy stored block with len. */
        s->pending_buf[s->pending - 4] = len;
        s->pending_buf[s->pending - 3] = len >> 8;
        s->pending_buf[s->pending - 2] = ~len;
        s->pending_buf[s->pending - 1] = ~len >> 8;

        /* Write the stored block header bytes. */
        flush_pending(s->strm);

#ifdef ZLIB_DEBUG
        /* Update debugging counts for the data about to be copied. */
        s->compressed_len += len << 3;
        s->bits_sent += len << 3;
#endif

        /* Copy uncompressed bytes from the window to next_out. */
        if (left) {
            if (left > len)
                left = len;
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
            s->strm->next_out += left;
            s->strm->avail_out -= left;
            s->strm->total_out += left;
            s->block_start += left;
            len -= left;
        }

        /* Copy uncompressed bytes directly from next_in to next_out, updating
         * the check value.
         */
        if (len) {
            read_buf(s->strm, s->strm->next_out, len);
            s->strm->next_out += len;
            s->strm->avail_out -= len;
            s->strm->total_out += len;
        }
    } while (last == 0);

    /* Update the sliding window with the last s->w_size bytes of the copied
     * data, or append all of the copied data to the existing window if less
     * than s->w_size bytes were copied. Also update the number of bytes to
     * insert in the hash tables, in the event that deflateParams() switches to
     * a non-zero compression level.
     */
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
    if (used) {
        /* If any input was used, then no unused input remains in the window,
         * therefore s->block_start == s->strstart.
         */
        if (used >= s->w_size) {    /* supplant the previous history */
            s->matches = 2;         /* clear hash */
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
            s->strstart = s->w_size;
            s->insert = s->strstart;
        }
        else {
            if (s->window_size - s->strstart <= used) {
                /* Slide the window down. */
                s->strstart -= s->w_size;
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
                if (s->matches < 2)
                    s->matches++;   /* add a pending slide_hash() */
                if (s->insert > s->strstart)
                    s->insert = s->strstart;
            }
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
            s->strstart += used;
            s->insert += MIN(used, s->w_size - s->insert);
        }
        s->block_start = s->strstart;
    }
    if (s->high_water < s->strstart)
        s->high_water = s->strstart;

    /* If the last block was written to next_out, then done. */
    if (last)
        return finish_done;

    /* If flushing and all input has been consumed, then done. */
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
        return block_done;

    /* Fill the window with any remaining input. */
    have = s->window_size - s->strstart;
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
        /* Slide the window down. */
        s->block_start -= s->w_size;
        s->strstart -= s->w_size;
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
        if (s->matches < 2)
            s->matches++;           /* add a pending slide_hash() */
        have += s->w_size;          /* more space now */
        if (s->insert > s->strstart)
            s->insert = s->strstart;
    }
    if (have > s->strm->avail_in)
        have = s->strm->avail_in;
    if (have) {
        read_buf(s->strm, s->window + s->strstart, have);
        s->strstart += have;
        s->insert += MIN(have, s->w_size - s->insert);
    }
    if (s->high_water < s->strstart)
        s->high_water = s->strstart;

    /* There was not enough avail_out to write a complete worthy or flushed
     * stored block to next_out. Write a stored block to pending instead, if we
     * have enough input for a worthy block, or if flushing and there is enough
     * room for the remaining input as a stored block in the pending buffer.
     */
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
        /* maximum stored block length that will fit in pending: */
    have = MIN(s->pending_buf_size - have, MAX_STORED);
    min_block = MIN(have, s->w_size);
    left = s->strstart - s->block_start;
    if (left >= min_block ||
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
         s->strm->avail_in == 0 && left <= have)) {
        len = MIN(left, have);
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
               len == left ? 1 : 0;
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
        s->block_start += len;
        flush_pending(s->strm);
    }

    /* We've done all we can with the available input and output. */
    return last ? finish_started : need_more;
}

/* ===========================================================================
 * Compress as much as possible from the input stream, return the current
 * block state.
 * This function does not perform lazy evaluation of matches and inserts
 * new strings in the dictionary only for unmatched strings or for short
 * matches. It is used only for the fast compression options.
 */
local block_state deflate_fast(s, flush)
    deflate_state *s;
    int flush;
{
    IPos hash_head;       /* head of the hash chain */
    int bflush;           /* set if current block must be flushed */

    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (s->lookahead < MIN_LOOKAHEAD) {
            fill_window(s);
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
                return need_more;
            }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* Insert the string window[strstart .. strstart+2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        hash_head = NIL;
        if (s->lookahead >= MIN_MATCH) {
            INSERT_STRING(s, s->strstart, hash_head);
        }

        /* Find the longest match, discarding those <= prev_length.
         * At this point we have always match_length < MIN_MATCH
         */
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            s->match_length = longest_match (s, hash_head);
            /* longest_match() sets match_start */
        }
        if (s->match_length >= MIN_MATCH) {
            check_match(s, s->strstart, s->match_start, s->match_length);

            _tr_tally_dist(s, s->strstart - s->match_start,
                           s->match_length - MIN_MATCH, bflush);

            s->lookahead -= s->match_length;

            /* Insert new strings in the hash table only if the match length
             * is not too large. This saves time but degrades compression.
             */
#ifndef FASTEST
            if (s->match_length <= s->max_insert_length &&
                s->lookahead >= MIN_MATCH) {
                s->match_length--; /* string at strstart already in table */
                do {
                    s->strstart++;
                    INSERT_STRING(s, s->strstart, hash_head);
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                     * always MIN_MATCH bytes ahead.
                     */
                } while (--s->match_length != 0);
                s->strstart++;
            } else
#endif
            {
                s->strstart += s->match_length;
                s->match_length = 0;
                s->ins_h = s->window[s->strstart];
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
#if MIN_MATCH != 3
                Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                 * matter since it will be recomputed at next deflate call.
                 */
            }
        } else {
            /* No match, output a literal byte */
            Tracevv((stderr,"%c", s->window[s->strstart]));
            _tr_tally_lit (s, s->window[s->strstart], bflush);
            s->lookahead--;
            s->strstart++;
        }
        if (bflush) FLUSH_BLOCK(s, 0);
    }
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}

#ifndef FASTEST
/* ===========================================================================
 * Same as above, but achieves better compression. We use a lazy
 * evaluation for matches: a match is finally adopted only if there is
 * no better match at the next window position.
 */
local block_state deflate_slow(s, flush)
    deflate_state *s;
    int flush;
{
    IPos hash_head;          /* head of hash chain */
    int bflush;              /* set if current block must be flushed */

    /* Process the input block. */
    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the next match, plus MIN_MATCH bytes to insert the
         * string following the next match.
         */
        if (s->lookahead < MIN_LOOKAHEAD) {
            fill_window(s);
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
                return need_more;
            }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* Insert the string window[strstart .. strstart+2] in the
         * dictionary, and set hash_head to the head of the hash chain:
         */
        hash_head = NIL;
        if (s->lookahead >= MIN_MATCH) {
            INSERT_STRING(s, s->strstart, hash_head);
        }

        /* Find the longest match, discarding those <= prev_length.
         */
        s->prev_length = s->match_length, s->prev_match = s->match_start;
        s->match_length = MIN_MATCH-1;

        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
            s->strstart - hash_head <= MAX_DIST(s)) {
            /* To simplify the code, we prevent matches with the string
             * of window index 0 (in particular we have to avoid a match
             * of the string with itself at the start of the input file).
             */
            s->match_length = longest_match (s, hash_head);
            /* longest_match() sets match_start */

            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
#if TOO_FAR <= 32767
                || (s->match_length == MIN_MATCH &&
                    s->strstart - s->match_start > TOO_FAR)
#endif
                )) {

                /* If prev_match is also MIN_MATCH, match_start is garbage
                 * but we will ignore the current match anyway.
                 */
                s->match_length = MIN_MATCH-1;
            }
        }
        /* If there was a match at the previous step and the current
         * match is not better, output the previous match:
         */
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
            /* Do not insert strings in hash table beyond this. */

            check_match(s, s->strstart-1, s->prev_match, s->prev_length);

            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
                           s->prev_length - MIN_MATCH, bflush);

            /* Insert in hash table all strings up to the end of the match.
             * strstart-1 and strstart are already inserted. If there is not
             * enough lookahead, the last two strings are not inserted in
             * the hash table.
             */
            s->lookahead -= s->prev_length-1;
            s->prev_length -= 2;
            do {
                if (++s->strstart <= max_insert) {
                    INSERT_STRING(s, s->strstart, hash_head);
                }
            } while (--s->prev_length != 0);
            s->match_available = 0;
            s->match_length = MIN_MATCH-1;
            s->strstart++;

            if (bflush) FLUSH_BLOCK(s, 0);

        } else if (s->match_available) {
            /* If there was no match at the previous position, output a
             * single literal. If there was a match but the current match
             * is longer, truncate the previous match to a single literal.
             */
            Tracevv((stderr,"%c", s->window[s->strstart-1]));
            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
            if (bflush) {
                FLUSH_BLOCK_ONLY(s, 0);
            }
            s->strstart++;
            s->lookahead--;
            if (s->strm->avail_out == 0) return need_more;
        } else {
            /* There is no previous match to compare with, wait for
             * the next step to decide.
             */
            s->match_available = 1;
            s->strstart++;
            s->lookahead--;
        }
    }
    Assert (flush != Z_NO_FLUSH, "no flush?");
    if (s->match_available) {
        Tracevv((stderr,"%c", s->window[s->strstart-1]));
        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
        s->match_available = 0;
    }
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}
#endif /* FASTEST */

/* ===========================================================================
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 * deflate switches away from Z_RLE.)
 */
local block_state deflate_rle(s, flush)
    deflate_state *s;
    int flush;
{
    int bflush;             /* set if current block must be flushed */
    uInt prev;              /* byte at distance one to match */
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */

    for (;;) {
        /* Make sure that we always have enough lookahead, except
         * at the end of the input file. We need MAX_MATCH bytes
         * for the longest run, plus one for the unrolled loop.
         */
        if (s->lookahead <= MAX_MATCH) {
            fill_window(s);
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
                return need_more;
            }
            if (s->lookahead == 0) break; /* flush the current block */
        }

        /* See how many times the previous byte repeats */
        s->match_length = 0;
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
            scan = s->window + s->strstart - 1;
            prev = *scan;
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
                strend = s->window + s->strstart + MAX_MATCH;
                do {
                } while (prev == *++scan && prev == *++scan &&
                         prev == *++scan && prev == *++scan &&
                         prev == *++scan && prev == *++scan &&
                         prev == *++scan && prev == *++scan &&
                         scan < strend);
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
                if (s->match_length > s->lookahead)
                    s->match_length = s->lookahead;
            }
            Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
        }

        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
        if (s->match_length >= MIN_MATCH) {
            check_match(s, s->strstart, s->strstart - 1, s->match_length);

            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);

            s->lookahead -= s->match_length;
            s->strstart += s->match_length;
            s->match_length = 0;
        } else {
            /* No match, output a literal byte */
            Tracevv((stderr,"%c", s->window[s->strstart]));
            _tr_tally_lit (s, s->window[s->strstart], bflush);
            s->lookahead--;
            s->strstart++;
        }
        if (bflush) FLUSH_BLOCK(s, 0);
    }
    s->insert = 0;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}

/* ===========================================================================
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 * (It will be regenerated if this run of deflate switches away from Huffman.)
 */
local block_state deflate_huff(s, flush)
    deflate_state *s;
    int flush;
{
    int bflush;             /* set if current block must be flushed */

    for (;;) {
        /* Make sure that we have a literal to write. */
        if (s->lookahead == 0) {
            fill_window(s);
            if (s->lookahead == 0) {
                if (flush == Z_NO_FLUSH)
                    return need_more;
                break;      /* flush the current block */
            }
        }

        /* Output a literal byte */
        s->match_length = 0;
        Tracevv((stderr,"%c", s->window[s->strstart]));
        _tr_tally_lit (s, s->window[s->strstart], bflush);
        s->lookahead--;
        s->strstart++;
        if (bflush) FLUSH_BLOCK(s, 0);
    }
    s->insert = 0;
    if (flush == Z_FINISH) {
        FLUSH_BLOCK(s, 1);
        return finish_done;
    }
    if (s->sym_next)
        FLUSH_BLOCK(s, 0);
    return block_done;
}