Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
/* brig-code-entry-handler.cc -- a gccbrig base class
   Copyright (C) 2016-2020 Free Software Foundation, Inc.
   Contributed by Pekka Jaaskelainen <pekka.jaaskelainen@parmance.com>
   for General Processor Tech.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "brig-code-entry-handler.h"

#include "stringpool.h"
#include "tree-iterator.h"
#include "toplev.h"
#include "diagnostic.h"
#include "brig-machine.h"
#include "brig-util.h"
#include "errors.h"
#include "real.h"
#include "print-tree.h"
#include "tree-pretty-print.h"
#include "target.h"
#include "langhooks.h"
#include "gimple-expr.h"
#include "convert.h"
#include "brig-util.h"
#include "builtins.h"
#include "phsa.h"
#include "brig-builtins.h"
#include "fold-const.h"

brig_code_entry_handler::brig_code_entry_handler (brig_to_generic &parent)
  : brig_entry_handler (parent)
{
}

/* Build a tree operand which is a reference to a piece of code.  REF is the
   original reference as a BRIG object.  */

tree
brig_code_entry_handler::build_code_ref (const BrigBase &ref)
{
  if (ref.kind == BRIG_KIND_DIRECTIVE_LABEL)
    {
      const BrigDirectiveLabel *brig_label = (const BrigDirectiveLabel *) &ref;

      const BrigData *label_name
	= m_parent.get_brig_data_entry (brig_label->name);

      std::string label_str ((const char *) (label_name->bytes),
			     label_name->byteCount);
      return m_parent.m_cf->label (label_str);
    }
  else if (ref.kind == BRIG_KIND_DIRECTIVE_FUNCTION)
    {
      const BrigDirectiveExecutable *func
       = (const BrigDirectiveExecutable *) &ref;
      return m_parent.function_decl (m_parent.get_mangled_name (func));
    }
  else if (ref.kind == BRIG_KIND_DIRECTIVE_FBARRIER)
    {
      const BrigDirectiveFbarrier* fbar = (const BrigDirectiveFbarrier*)&ref;

      std::string var_name = m_parent.get_mangled_name (fbar);
      uint64_t offset
	= m_parent.m_cf->group_variable_segment_offset (var_name);

      tree local_offset = build_int_cst (uint32_type_node, offset);
      if (m_parent.m_cf->m_local_group_variables.has_variable (var_name))
	local_offset
	  = build2 (PLUS_EXPR, uint64_type_node, local_offset,
		    convert (uint64_type_node,
			     m_parent.m_cf->m_group_local_offset_arg));
      return local_offset;
    }
  else
    gcc_unreachable ();
}

/* Produce a tree operand for the given BRIG_INST and its OPERAND.
   OPERAND_TYPE should be the operand type in case it should not
   be dictated by the BrigBase.  IS_INPUT indicates if the operand
   is an input operand or a result.  */

tree
brig_code_entry_handler::build_tree_operand (const BrigInstBase &brig_inst,
					     const BrigBase &operand,
					     tree operand_type, bool is_input)
{
  switch (operand.kind)
    {
    case BRIG_KIND_OPERAND_OPERAND_LIST:
      {
	vec<constructor_elt, va_gc> *constructor_vals = NULL;
	const BrigOperandOperandList &oplist
	  = (const BrigOperandOperandList &) operand;
	const BrigData *data = m_parent.get_brig_data_entry (oplist.elements);
	size_t bytes = data->byteCount;
	const BrigOperandOffset32_t *operand_ptr
	  = (const BrigOperandOffset32_t *) data->bytes;
	while (bytes > 0)
	  {
	    BrigOperandOffset32_t offset = *operand_ptr;
	    const BrigBase *operand_element
	      = m_parent.get_brig_operand_entry (offset);
	    tree element
	      = build_tree_operand (brig_inst, *operand_element, operand_type);

	    /* In case a vector is used an input, cast the elements to
	       correct size here so we don't need a separate unpack/pack for it.
	       fp16-fp32 conversion is done in build_operands ().  */
	    if (is_input && TREE_TYPE (element) != operand_type)
	      element = build_resize_convert_view (operand_type, element);

	    CONSTRUCTOR_APPEND_ELT (constructor_vals, NULL_TREE, element);
	    ++operand_ptr;
	    bytes -= 4;
	  }
	size_t element_count = data->byteCount / 4;
	tree vec_type = build_vector_type (operand_type, element_count);

	return build_constructor (vec_type, constructor_vals);
      }
    case BRIG_KIND_OPERAND_CODE_LIST:
      {
	/* Build a TREE_VEC of code expressions.  */

	const BrigOperandCodeList &oplist
	  = (const BrigOperandCodeList &) operand;
	const BrigData *data = m_parent.get_brig_data_entry (oplist.elements);
	size_t bytes = data->byteCount;
	const BrigOperandOffset32_t *operand_ptr
	  = (const BrigOperandOffset32_t *) data->bytes;

	size_t case_index = 0;
	size_t element_count = data->byteCount / 4;

	/* Create a TREE_VEC out of the labels in the list.  */
	tree vec = make_tree_vec (element_count);

	while (bytes > 0)
	  {
	    BrigOperandOffset32_t offset = *operand_ptr;
	    const BrigBase *ref = m_parent.get_brig_code_entry (offset);
	    tree element = build_code_ref (*ref);

	    gcc_assert (case_index < element_count);
	    TREE_VEC_ELT (vec, case_index) = element;
	    case_index++;

	    ++operand_ptr;
	    bytes -= 4;
	  }
	return vec;
      }
    case BRIG_KIND_OPERAND_REGISTER:
      {
	const BrigOperandRegister *brig_reg
	  = (const BrigOperandRegister *) &operand;
	return m_parent.m_cf->get_m_var_declfor_reg (brig_reg);
      }
    case BRIG_KIND_OPERAND_CONSTANT_BYTES:
      {
	const BrigOperandConstantBytes *brigConst
	  = (const BrigOperandConstantBytes *) &operand;
	/* The constants can be of different type than the instruction
	   and are implicitly casted to the input operand.  */
	return get_tree_cst_for_hsa_operand (brigConst, NULL_TREE);
      }
    case BRIG_KIND_OPERAND_WAVESIZE:
      {
	if (!INTEGRAL_TYPE_P (operand_type))
	  {
	    gcc_unreachable ();
	    return NULL_TREE;
	  }
	return build_int_cstu (operand_type, gccbrig_get_target_wavesize ());
      }
    case BRIG_KIND_OPERAND_CODE_REF:
      {
	const BrigOperandCodeRef *brig_code_ref
	  = (const BrigOperandCodeRef *) &operand;

	const BrigBase *ref = m_parent.get_brig_code_entry (brig_code_ref->ref);

	return build_code_ref (*ref);
      }
    case BRIG_KIND_OPERAND_ADDRESS:
      {
	return build_address_operand (brig_inst,
				      (const BrigOperandAddress &) operand);
      }
    default:
      gcc_unreachable ();
    }
}

/* Build a tree node representing an address reference from a BRIG_INST and its
   ADDR_OPERAND.  */

tree
brig_code_entry_handler::build_address_operand
  (const BrigInstBase &brig_inst, const BrigOperandAddress &addr_operand)
{
  tree instr_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);

  BrigSegment8_t segment = BRIG_SEGMENT_GLOBAL;
  if (brig_inst.opcode == BRIG_OPCODE_LDA)
    segment = ((const BrigInstAddr &) brig_inst).segment;
  else if (brig_inst.base.kind == BRIG_KIND_INST_MEM)
    segment = ((const BrigInstMem &) brig_inst).segment;
  else if (brig_inst.base.kind == BRIG_KIND_INST_ATOMIC)
    segment = ((const BrigInstAtomic &) brig_inst).segment;

  tree var_offset = NULL_TREE;
  tree const_offset = NULL_TREE;
  tree symbol_base = NULL_TREE;

  if (addr_operand.symbol != 0)
    {
      const BrigDirectiveVariable *arg_symbol
	= (const BrigDirectiveVariable *) m_parent.get_brig_code_entry
	(addr_operand.symbol);

      std::string var_name = m_parent.get_mangled_name (arg_symbol);

      if (segment == BRIG_SEGMENT_KERNARG)
	{
	  /* Find the offset to the kernarg buffer for the given
	     kernel argument variable.  */
	  tree func = m_parent.m_cf->m_func_decl;
	  /* __args is the first parameter in kernel functions.  */
	  symbol_base = DECL_ARGUMENTS (func);
	  uint64_t offset = m_parent.m_cf->kernel_arg_offset (arg_symbol);
	  if (offset > 0)
	    const_offset = build_int_cst (size_type_node, offset);
	}
      else if (segment == BRIG_SEGMENT_GROUP)
	{
	  uint64_t offset
	    = m_parent.m_cf->group_variable_segment_offset (var_name);
	  const_offset = build_int_cst (size_type_node, offset);

	  /* If it's a local group variable reference, substract the local
	     group segment offset to get the group base ptr offset.  */
	  if (m_parent.m_cf->m_local_group_variables.has_variable (var_name))
	    const_offset
	      = build2 (PLUS_EXPR, uint64_type_node, const_offset,
			convert (uint64_type_node,
				 m_parent.m_cf->m_group_local_offset_arg));

	}
      else if (segment == BRIG_SEGMENT_PRIVATE || segment == BRIG_SEGMENT_SPILL)
	{
	  uint32_t offset = m_parent.private_variable_segment_offset (var_name);

	  /* Compute the offset to the work item's copy:

	     single-wi-offset * local_size + wiflatid * varsize

	     This way the work items have the same variable in
	     successive elements to each other in the segment,
	     helping to achieve autovectorization of loads/stores
	     with stride 1.  */

	  tree_stl_vec uint32_0
	    = tree_stl_vec (1, build_int_cst (uint32_type_node, 0));

	  tree_stl_vec uint32_1
	    = tree_stl_vec (1, build_int_cst (uint32_type_node, 1));

	  tree_stl_vec uint32_2
	    = tree_stl_vec (1, build_int_cst (uint32_type_node, 2));

	  tree local_size
	    = build2 (MULT_EXPR, uint32_type_node,
		      m_parent.m_cf->expand_or_call_builtin
		      (BRIG_OPCODE_WORKGROUPSIZE, BRIG_TYPE_U32,
		       uint32_type_node, uint32_0),
		      m_parent.m_cf->expand_or_call_builtin
		      (BRIG_OPCODE_WORKGROUPSIZE, BRIG_TYPE_U32,
		       uint32_type_node, uint32_1));

	  local_size
	    = build2 (MULT_EXPR, uint32_type_node,
		      m_parent.m_cf->expand_or_call_builtin
		      (BRIG_OPCODE_WORKGROUPSIZE, BRIG_TYPE_U32,
		       uint32_type_node, uint32_2),
		      local_size);

	  tree var_region
	    = build2 (MULT_EXPR, uint32_type_node,
		      build_int_cst (uint32_type_node, offset), local_size);

	  tree_stl_vec operands;
	  tree pos
	    = build2 (MULT_EXPR, uint32_type_node,
		      build_int_cst (uint32_type_node,
				     m_parent.private_variable_size (var_name)),
		      m_parent.m_cf->expand_or_call_builtin
		      (BRIG_OPCODE_WORKITEMFLATID, BRIG_TYPE_U32,
		       uint32_type_node, operands));

	  tree var_offset
	    = build2 (PLUS_EXPR, uint32_type_node, var_region, pos);

	  /* In case of LDA this is returned directly as an integer value.
	     For other mem-related instructions, we will convert this segment
	     offset to a flat address by adding it as an offset to a (private
	     or group) base pointer later on.  Same applies to group_var_offset.  */
	  symbol_base
	    = m_parent.m_cf->add_temp_var ("priv_var_offset",
					   convert (size_type_node,
						    var_offset));
	}
      else if (segment == BRIG_SEGMENT_ARG)
	{
	  tree arg_var_decl;
	  if (m_parent.m_cf->m_ret_value_brig_var == arg_symbol)
	    arg_var_decl = m_parent.m_cf->m_ret_temp;
	  else
	    arg_var_decl = m_parent.m_cf->arg_variable (arg_symbol);

	  gcc_assert (arg_var_decl != NULL_TREE);

	  tree ptype = build_pointer_type (instr_type);

	  if (arg_symbol->type & BRIG_TYPE_ARRAY)
	    {

	      /* Two different type of array references in case of arguments
		 depending where they are referred at.  In the caller (argument
		 segment), the reference is to an array object and
		 in the callee, the array object has been passed as a pointer
		 to the array object.  */

	      if (POINTER_TYPE_P (TREE_TYPE (arg_var_decl)))
		symbol_base = build_resize_convert_view (ptype, arg_var_decl);
	      else
		{
		  /* In case we are referring to an array (the argument in
		     call site), use its element zero as the base address.  */
		  tree element_zero
		    = build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (arg_var_decl)),
			      arg_var_decl, integer_zero_node, NULL_TREE,
			      NULL_TREE);
		  symbol_base = build1 (ADDR_EXPR, ptype, element_zero);
		}
	    }
	  else
	    symbol_base = build1 (ADDR_EXPR, ptype, arg_var_decl);
	}
      else
	{
	  tree global_var_decl = m_parent.global_variable (var_name);

	  /* In case the global variable hasn't been defined (yet),
	     use the host def indirection ptr variable.  */
	  if (global_var_decl == NULL_TREE)
	    {
	      std::string host_ptr_name
		= std::string (PHSA_HOST_DEF_PTR_PREFIX) + var_name;
	      tree host_defined_ptr = m_parent.global_variable (host_ptr_name);
	      gcc_assert (host_defined_ptr != NULL_TREE);
	      symbol_base = host_defined_ptr;
	    }
	  else
	    {
	      gcc_assert (global_var_decl != NULL_TREE);

	      tree ptype = build_pointer_type (instr_type);
	      symbol_base = build1 (ADDR_EXPR, ptype, global_var_decl);
	    }
	}
    }

  if (brig_inst.opcode != BRIG_OPCODE_LDA)
    {
      /* In case of lda_* we want to return the segment address because it's
	 used as a value, perhaps in address computation and later converted
	 explicitly to a flat address.

	 In case of other instructions with memory operands we produce the flat
	 address directly here (assuming the target does not have a separate
	 address space for group/private segments for now).  */
      if (segment == BRIG_SEGMENT_GROUP)
	symbol_base = m_parent.m_cf->m_group_base_arg;
      else if (segment == BRIG_SEGMENT_PRIVATE
	       || segment == BRIG_SEGMENT_SPILL)
	{
	  if (symbol_base != NULL_TREE)
	    symbol_base = build2 (POINTER_PLUS_EXPR, ptr_type_node,
				  m_parent.m_cf->m_private_base_arg,
				  symbol_base);
	  else
	    symbol_base = m_parent.m_cf->m_private_base_arg;
	}
    }

  if (addr_operand.reg != 0)
    {
      const BrigOperandRegister *mem_base_reg
	= (const BrigOperandRegister *) m_parent.get_brig_operand_entry
	(addr_operand.reg);
      tree base_reg_var = m_parent.m_cf->get_m_var_declfor_reg (mem_base_reg);
      tree as_uint = build_reinterpret_to_uint (base_reg_var);
      var_offset = convert_to_pointer (ptr_type_node, as_uint);

      gcc_assert (var_offset != NULL_TREE);
    }
  /* The pointer type we use to access the memory.  Should be of the
     width of the load/store instruction, not the target/data
     register.  */
  tree ptype = build_pointer_type (instr_type);

  gcc_assert (ptype != NULL_TREE);

  tree addr = NULL_TREE;
  if (symbol_base != NULL_TREE && var_offset != NULL_TREE)
    /* The most complex addressing mode: symbol + reg [+ const offset].  */
    addr = build2 (POINTER_PLUS_EXPR, ptr_type_node,
		   convert (ptr_type_node, symbol_base),
		   convert (size_type_node, var_offset));
  else if (var_offset != NULL)
    addr = var_offset;
  else if (symbol_base != NULL)
    addr = symbol_base;

  if (const_offset != NULL_TREE)
    {
      if (addr == NULL_TREE)
	/* At least direct module-scope global group symbol access with LDA
	   has only the const_offset.  Group base ptr is not added as LDA should
	   return the segment address, not the flattened one.  */
	addr = const_offset;
      else
	addr = build2 (POINTER_PLUS_EXPR, ptr_type_node,
		       addr, convert (size_type_node, const_offset));
    }

  /* We might have two const offsets in case of group or private arrays
     which have the first offset to the incoming group/private pointer
     arg, and the second one an offset to it. It's also legal to have
     a reference with a zero constant offset but no symbol.  I've seen
     codes that reference kernarg segment like this.  Thus, if at this
     point there is no address expression at all we assume it's an
     access to offset 0. */
  uint64_t offs = gccbrig_to_uint64_t (addr_operand.offset);
  if (offs > 0 || addr == NULL_TREE)
    {
      /* In large mode, the offset is treated as 32bits unless it's
	 global, readonly or kernarg address space.
	 See:
	 http://www.hsafoundation.com/html_spec111/HSA_Library.htm
	 #PRM/Topics/02_ProgModel/small_and_large_machine_models.htm
	 #table_machine_model_data_sizes */

      int is64b_offset = segment == BRIG_SEGMENT_GLOBAL
	|| segment == BRIG_SEGMENT_READONLY
	|| segment == BRIG_SEGMENT_KERNARG;

      /* The original offset is signed and should be sign
	 extended for the pointer arithmetics.  */
      tree const_offset_2 = is64b_offset
        ? build_int_cst (size_type_node, offs)
        : convert (long_integer_type_node,
                   build_int_cst (integer_type_node, offs));

      if (addr == NULL_TREE)
	addr = const_offset_2;
      else
	addr = build2 (POINTER_PLUS_EXPR, ptr_type_node,
		       /* Addr can be a constant offset in case this is
			  a private array access.  */
		       convert (ptr_type_node, addr),
		       convert (size_type_node, const_offset_2));
    }

  gcc_assert (addr != NULL_TREE);
  return convert_to_pointer (ptype, addr);
}

/* Builds a tree operand with the given OPERAND_INDEX for the given
   BRIG_INST with the desired tree OPERAND_TYPE.  OPERAND_TYPE can
   be NULL in case the type is forced by the BRIG_INST type.  */

tree
brig_code_entry_handler::build_tree_operand_from_brig
  (const BrigInstBase *brig_inst, tree operand_type, size_t operand_index)
{
  const BrigData *operand_entries
    = m_parent.get_brig_data_entry (brig_inst->operands);

  uint32_t operand_offset
    = ((const uint32_t *) &operand_entries->bytes)[operand_index];
  const BrigBase *operand_data
    = m_parent.get_brig_operand_entry (operand_offset);

  bool inputp = !gccbrig_hsa_opcode_op_output_p (brig_inst->opcode,
						 operand_index);
  return build_tree_operand (*brig_inst, *operand_data, operand_type, inputp);
}

/* Builds a single (scalar) constant initialized element of type
   ELEMENT_TYPE from the buffer pointed to by NEXT_DATA.  */

tree
brig_code_entry_handler::build_tree_cst_element
  (BrigType16_t element_type, const unsigned char *next_data) const
{

  tree tree_element_type = gccbrig_tree_type_for_hsa_type (element_type);

  tree cst;
  switch (element_type)
    {
    case BRIG_TYPE_F16:
      {
	HOST_WIDE_INT low = *(const uint16_t *) next_data;
	cst = build_int_cst (uint16_type_node, low);
	break;
      }
    case BRIG_TYPE_F32:
      {
	REAL_VALUE_TYPE val;
	ieee_single_format.decode (&ieee_single_format, &val,
				   (const long *) next_data);
	cst = build_real (tree_element_type, val);
	break;
      }
    case BRIG_TYPE_F64:
      {
	long data[2];
	data[0] = *(const uint32_t *) next_data;
	data[1] = *(const uint32_t *) (next_data + 4);
	REAL_VALUE_TYPE val;
	ieee_double_format.decode (&ieee_double_format, &val, data);
	cst = build_real (tree_element_type, val);
	break;
      }
    case BRIG_TYPE_S8:
    case BRIG_TYPE_S16:
    case BRIG_TYPE_S32:
    case BRIG_TYPE_S64:
      {
	HOST_WIDE_INT low = *(const int64_t *) next_data;
	cst = build_int_cst (tree_element_type, low);
	break;
      }
    case BRIG_TYPE_U8:
    case BRIG_TYPE_U16:
    case BRIG_TYPE_U32:
    case BRIG_TYPE_U64:
      {
	unsigned HOST_WIDE_INT low = *(const uint64_t *) next_data;
	cst = build_int_cstu (tree_element_type, low);
	break;
      }
    case BRIG_TYPE_SIG64:
      {
	unsigned HOST_WIDE_INT low = *(const uint64_t *) next_data;
	cst = build_int_cstu (uint64_type_node, low);
	break;
      }
    case BRIG_TYPE_SIG32:
      {
	unsigned HOST_WIDE_INT low = *(const uint64_t *) next_data;
	cst = build_int_cstu (uint32_type_node, low);
	break;
      }
    default:
      gcc_unreachable ();
      return NULL_TREE;
    }
  return cst;
}

/* Produce a tree constant type for the given BRIG constant (BRIG_CONST).
   TYPE should be the forced instruction type, otherwise the type is
   dictated by the BRIG_CONST.  */

tree
brig_code_entry_handler::get_tree_cst_for_hsa_operand
  (const BrigOperandConstantBytes *brig_const, tree type) const
{
  const BrigData *data = m_parent.get_brig_data_entry (brig_const->bytes);

  tree cst = NULL_TREE;

  if (type == NULL_TREE)
    type = gccbrig_tree_type_for_hsa_type (brig_const->type);

  /* The type of a single (scalar) element inside an array,
     vector or an array of vectors.  */
  BrigType16_t scalar_element_type
    = brig_const->type & BRIG_TYPE_BASE_MASK;
  tree tree_element_type = type;

  vec<constructor_elt, va_gc> *constructor_vals = NULL;

  if (TREE_CODE (type) == ARRAY_TYPE)
    tree_element_type = TREE_TYPE (type);

  size_t bytes_left = data->byteCount;
  const unsigned char *next_data = data->bytes;
  size_t scalar_element_size
    = gccbrig_hsa_type_bit_size (scalar_element_type) / BITS_PER_UNIT;

  while (bytes_left > 0)
    {
      if (VECTOR_TYPE_P (tree_element_type))
	{
	  /* In case of vector type elements (or sole vectors),
	     create a vector ctor.  */
	  size_t element_count
	    = gccbrig_type_vector_subparts (tree_element_type);
	  if (bytes_left < scalar_element_size * element_count)
	    fatal_error (UNKNOWN_LOCATION,
			 "Not enough bytes left for the initializer "
			 "(%lu need %lu).", (unsigned long) bytes_left,
			 (unsigned long) (scalar_element_size
					  * element_count));

	  vec<constructor_elt, va_gc> *vec_els = NULL;
	  for (size_t i = 0; i < element_count; ++i)
	    {
	      tree element
		= build_tree_cst_element (scalar_element_type, next_data);
	      CONSTRUCTOR_APPEND_ELT (vec_els, NULL_TREE, element);
	      bytes_left -= scalar_element_size;
	      next_data += scalar_element_size;
	    }
	  cst = build_vector_from_ctor (tree_element_type, vec_els);
	}
      else
	{
	  if (bytes_left < scalar_element_size)
	    fatal_error (UNKNOWN_LOCATION,
			 "Not enough bytes left for the initializer "
			 "(%lu need %lu).", (unsigned long) bytes_left,
			 (unsigned long) scalar_element_size);
	  cst = build_tree_cst_element (scalar_element_type, next_data);
	  bytes_left -= scalar_element_size;
	  next_data += scalar_element_size;
	}
      CONSTRUCTOR_APPEND_ELT (constructor_vals, NULL_TREE, cst);
    }

  if (TREE_CODE (type) == ARRAY_TYPE)
    return build_constructor (type, constructor_vals);
  else
    return cst;
}

/* Return the matching tree instruction arithmetics type for the
   given BRIG_TYPE.  The aritmethics type is the one with which
   computation is done (in contrast to the storage type).  F16
   arithmetics type is emulated using F32 for now.  */

tree
brig_code_entry_handler::get_tree_expr_type_for_hsa_type
  (BrigType16_t brig_type) const
{
  BrigType16_t brig_inner_type = brig_type & BRIG_TYPE_BASE_MASK;
  if (brig_inner_type == BRIG_TYPE_F16)
    {
      if (brig_inner_type == brig_type)
	return m_parent.s_fp32_type;
      size_t element_count = gccbrig_hsa_type_bit_size (brig_type) / 16;
      return build_vector_type (m_parent.s_fp32_type, element_count);
    }
  else
    return gccbrig_tree_type_for_hsa_type (brig_type);
}

/* Return the correct GENERIC type for storing comparison results
   of operand with the type given in SOURCE_TYPE.  */

tree
brig_code_entry_handler::get_comparison_result_type (tree source_type)
{
  if (VECTOR_TYPE_P (source_type))
    {
      size_t element_size = int_size_in_bytes (TREE_TYPE (source_type));
      return build_vector_type
	(build_nonstandard_boolean_type (element_size * BITS_PER_UNIT),
	 gccbrig_type_vector_subparts (source_type));
    }
  else
    return gccbrig_tree_type_for_hsa_type (BRIG_TYPE_B1);
}

/* Creates a FP32 to FP16 conversion call, assuming the source and destination
   are FP32 type variables.  */

tree
brig_code_entry_handler::build_f2h_conversion (tree source)
{
  return float_to_half () (*this, source);
}

/* Creates a FP16 to FP32 conversion call, assuming the source and destination
   are FP32 type variables.  */

tree
brig_code_entry_handler::build_h2f_conversion (tree source)
{
  return half_to_float () (*this, source);
}

/* Builds and "normalizes" the dest and source operands for the instruction
   execution; converts the input operands to the expected instruction type,
   performs half to float conversions, constant to correct type variable,
   and flush to zero (if applicable).  */

tree_stl_vec
brig_code_entry_handler::build_operands (const BrigInstBase &brig_inst)
{
  return build_or_analyze_operands (brig_inst, false);
}

void
brig_code_entry_handler::analyze_operands (const BrigInstBase &brig_inst)
{
  build_or_analyze_operands (brig_inst, true);
}

/* Implements both the build_operands () and analyze_operands () call
   so changes go in tandem.  Performs build_operands () when ANALYZE
   is false.  Otherwise, only analyze operands and return empty
   list.

   If analyzing record each HSA register operand with the
   corresponding resolved operand tree type to
   brig_to_generic::m_fn_regs_use_index.  */

tree_stl_vec
brig_code_entry_handler::
build_or_analyze_operands (const BrigInstBase &brig_inst, bool analyze)
{
  /* Flush to zero.  */
  bool ftz = false;
  const BrigBase *base = &brig_inst.base;

  if (base->kind == BRIG_KIND_INST_MOD)
    {
      const BrigInstMod *mod = (const BrigInstMod *) base;
      ftz = mod->modifier & BRIG_ALU_FTZ;
    }
  else if (base->kind == BRIG_KIND_INST_CMP)
    {
      const BrigInstCmp *cmp = (const BrigInstCmp *) base;
      ftz = cmp->modifier & BRIG_ALU_FTZ;
    }

  bool is_vec_instr = hsa_type_packed_p (brig_inst.type);

  size_t element_count;
  if (is_vec_instr)
    {
      BrigType16_t brig_element_type = brig_inst.type & BRIG_TYPE_BASE_MASK;
      element_count = gccbrig_hsa_type_bit_size (brig_inst.type)
		      / gccbrig_hsa_type_bit_size (brig_element_type);
    }
  else
    element_count = 1;

  bool is_fp16_arith = false;

  tree src_type;
  tree dest_type;
  if (base->kind == BRIG_KIND_INST_CMP)
    {
      const BrigInstCmp *cmp_inst = (const BrigInstCmp *) base;
      src_type = gccbrig_tree_type_for_hsa_type (cmp_inst->sourceType);
      dest_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);
      is_fp16_arith
	= (cmp_inst->sourceType & BRIG_TYPE_BASE_MASK) == BRIG_TYPE_F16;
    }
  else if (base->kind == BRIG_KIND_INST_SOURCE_TYPE)
    {
      const BrigInstSourceType *src_type_inst
	= (const BrigInstSourceType *) base;
      src_type = gccbrig_tree_type_for_hsa_type (src_type_inst->sourceType);
      dest_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);
      is_fp16_arith
	= (src_type_inst->sourceType & BRIG_TYPE_BASE_MASK) == BRIG_TYPE_F16
	&& !gccbrig_is_bit_operation (brig_inst.opcode);
    }
  else if (base->kind == BRIG_KIND_INST_SEG_CVT)
    {
      const BrigInstSegCvt *seg_cvt_inst = (const BrigInstSegCvt *) base;
      src_type = gccbrig_tree_type_for_hsa_type (seg_cvt_inst->sourceType);
      dest_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);
    }
  else if (base->kind == BRIG_KIND_INST_MEM)
    {
      src_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);
      dest_type = src_type;
      /* With mem instructions we don't want to cast the fp16
	 back and forth between fp32, because the load/stores
	 are not specific to the data type.  */
      is_fp16_arith = false;
    }
  else if (base->kind == BRIG_KIND_INST_CVT)
    {
      const BrigInstCvt *cvt_inst = (const BrigInstCvt *) base;

      src_type = gccbrig_tree_type_for_hsa_type (cvt_inst->sourceType);
      dest_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);
    }
  else
    {
      switch (brig_inst.opcode)
	{
	case BRIG_OPCODE_INITFBAR:
	case BRIG_OPCODE_JOINFBAR:
	case BRIG_OPCODE_WAITFBAR:
	case BRIG_OPCODE_ARRIVEFBAR:
	case BRIG_OPCODE_LEAVEFBAR:
	case BRIG_OPCODE_RELEASEFBAR:
	  src_type = uint32_type_node;
	  break;
	default:
	  src_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);
	  break;
	}
      dest_type = src_type;
      is_fp16_arith
	= !gccbrig_is_bit_operation (brig_inst.opcode)
	&& (brig_inst.type & BRIG_TYPE_BASE_MASK) == BRIG_TYPE_F16;
    }

  /* Halfs are a tricky special case: their "storage format" is u16, but
     scalars are stored in 32b regs while packed f16 are... well packed.  */
  tree half_storage_type = element_count > 1
			     ? gccbrig_tree_type_for_hsa_type (brig_inst.type)
			     : uint32_type_node;

  const BrigData *operand_entries
    = m_parent.get_brig_data_entry (brig_inst.operands);
  std::vector<tree> operands;
  for (size_t i = 0; i < operand_entries->byteCount / 4; ++i)
    {
      uint32_t operand_offset = ((const uint32_t *) &operand_entries->bytes)[i];
      const BrigBase *operand_data
	= m_parent.get_brig_operand_entry (operand_offset);

      const bool is_output
	= gccbrig_hsa_opcode_op_output_p (brig_inst.opcode, i);

      tree operand_type = is_output ? dest_type : src_type;

      bool half_to_float = is_fp16_arith;

      /* Special cases for operand types.  */
      if ((brig_inst.opcode == BRIG_OPCODE_SHL
	   || brig_inst.opcode == BRIG_OPCODE_SHR)
	  && i == 2)
	  /* The shift amount is always a scalar.  */
	operand_type
	  = VECTOR_TYPE_P (src_type) ? TREE_TYPE (src_type) : src_type;
      else if (brig_inst.opcode == BRIG_OPCODE_SHUFFLE)
	{
	  if (i == 3)
	    /* HSAIL shuffle inputs the MASK vector as tightly packed bits
	       while GENERIC VEC_PERM_EXPR expects the mask elements to be
	       of the same size as the elements in the input vectors.  Let's
	       cast to a scalar type here and convert to the VEC_PERM_EXPR
	       format in instruction handling.  There are no arbitrary bit
	       width int types in GENERIC so we cannot use the original
	       vector type.  */
	    operand_type = uint32_type_node;
	  else
	    /* Always treat the element as unsigned ints to avoid
	       sign extensions/negative offsets with masks, which
	       are expected to be of the same element type as the
	       data in VEC_PERM_EXPR.  With shuffles the data type
	       should not matter as it's a "raw operation".  */
	    operand_type = get_unsigned_int_type (operand_type);
	}
      else if (brig_inst.opcode == BRIG_OPCODE_PACK)
	{
	  if (i == 1)
	    operand_type = get_unsigned_int_type (dest_type);
	  else if (i == 2)
	    operand_type = get_unsigned_int_type (TREE_TYPE (dest_type));
	  else if (i == 3)
	    operand_type = uint32_type_node;
	}
      else if (brig_inst.opcode == BRIG_OPCODE_UNPACK && i == 2)
	operand_type = uint32_type_node;
      else if (brig_inst.opcode == BRIG_OPCODE_SAD && i == 3)
	operand_type = uint32_type_node;
      else if (brig_inst.opcode == BRIG_OPCODE_CLASS && i == 2)
	{
	  operand_type = uint32_type_node;
	  half_to_float = false;
	}
      else if (brig_inst.opcode == BRIG_OPCODE_ACTIVELANEPERMUTE && i == 4)
	{
	  operand_type = uint32_type_node;
	}
      else if (half_to_float)
	/* Treat the operands as the storage type at this point.  */
	operand_type = half_storage_type;

      if (analyze)
	{
	  if (operand_data->kind == BRIG_KIND_OPERAND_REGISTER)
	    {
	      const BrigOperandRegister &brig_reg
		= (const BrigOperandRegister &) *operand_data;
	      m_parent.add_reg_used_as_type (brig_reg, operand_type);
	    }
	  continue;
	}

      tree operand = build_tree_operand (brig_inst, *operand_data, operand_type,
					 !is_output);
      gcc_assert (operand);

      /* Cast/convert the inputs to correct types as expected by the GENERIC
	 opcode instruction.  */
      if (!is_output)
	{
	  if (half_to_float)
	    operand = build_h2f_conversion
	      (build_resize_convert_view (half_storage_type, operand));
	  else if (TREE_CODE (operand) != LABEL_DECL
		   && TREE_CODE (operand) != TREE_VEC
		   && operand_data->kind != BRIG_KIND_OPERAND_ADDRESS
		   && operand_data->kind != BRIG_KIND_OPERAND_OPERAND_LIST)
	    {
	      operand = build_resize_convert_view (operand_type, operand);
	    }
	  else if (brig_inst.opcode == BRIG_OPCODE_SHUFFLE)
	    /* Force the operand type to be treated as the raw type.  */
	    operand = build_resize_convert_view (operand_type, operand);

	  if (brig_inst.opcode == BRIG_OPCODE_CMOV && i == 1)
	    {
	      /* gcc expects the lower bit to be 1 (or all ones in case of
		 vectors) while CMOV assumes false iff 0.  Convert the input
		 here to what gcc likes by generating
		 'operand = operand != 0'.  */
	      tree cmp_res_type = get_comparison_result_type (operand_type);
	      operand = build2 (NE_EXPR, cmp_res_type, operand,
				build_zero_cst (TREE_TYPE (operand)));
	    }

	  if (ftz)
	    operand = flush_to_zero (is_fp16_arith) (*this, operand);
	}
      operands.push_back (operand);
    }
  return operands;
}

/* Build the GENERIC for assigning the result of an instruction to the result
   "register" (variable).  BRIG_INST is the original brig instruction,
   OUTPUT the result variable/register, INST_EXPR the one producing the
   result.  Required bitcasts and fp32 to fp16 conversions are added as
   well.  */

tree
brig_code_entry_handler::build_output_assignment (const BrigInstBase &brig_inst,
						  tree output, tree inst_expr)
{
  /* The result/input type might be different from the output register
     variable type (can be any type; see get_m_var_declfor_reg @
     brig-function.cc).  */
  tree output_type = TREE_TYPE (output);
  bool is_fp16 = (brig_inst.type & BRIG_TYPE_BASE_MASK) == BRIG_TYPE_F16
		 && brig_inst.base.kind != BRIG_KIND_INST_MEM
		 && !gccbrig_is_bit_operation (brig_inst.opcode);

  /* Flush to zero.  */
  bool ftz = false;
  const BrigBase *base = &brig_inst.base;

  if (m_parent.m_cf->is_id_val (inst_expr))
    inst_expr = m_parent.m_cf->id_val (inst_expr);

  tree input_type = TREE_TYPE (inst_expr);

  m_parent.m_cf->add_reg_var_update (output, inst_expr);

  if (base->kind == BRIG_KIND_INST_MOD)
    {
      const BrigInstMod *mod = (const BrigInstMod *) base;
      ftz = mod->modifier & BRIG_ALU_FTZ;
    }
  else if (base->kind == BRIG_KIND_INST_CMP)
    {
      const BrigInstCmp *cmp = (const BrigInstCmp *) base;
      ftz = cmp->modifier & BRIG_ALU_FTZ;
    }

  if (TREE_CODE (inst_expr) == CALL_EXPR)
    {
      tree func_decl = TREE_OPERAND (TREE_OPERAND (inst_expr, 1), 0);
      input_type = TREE_TYPE (TREE_TYPE (func_decl));
    }

  if (ftz && (VECTOR_FLOAT_TYPE_P (TREE_TYPE (inst_expr))
	      || SCALAR_FLOAT_TYPE_P (TREE_TYPE (inst_expr)) || is_fp16))
    {
      /* Ensure we don't duplicate the arithmetics to the arguments of the bit
	 field reference operators.  */
      inst_expr = m_parent.m_cf->add_temp_var ("before_ftz", inst_expr);
      inst_expr = flush_to_zero (is_fp16) (*this, inst_expr);
    }

  if (is_fp16)
    {
      inst_expr = m_parent.m_cf->add_temp_var ("before_f2h", inst_expr);
      tree f2h_output = build_f2h_conversion (inst_expr);
      tree conv = build_resize_convert_view (output_type, f2h_output);
      tree assign = build2 (MODIFY_EXPR, output_type, output, conv);
      m_parent.m_cf->append_statement (assign);
      return assign;
    }
  else if (VECTOR_TYPE_P (output_type) && TREE_CODE (output) == CONSTRUCTOR)
    {
      /* Expand/unpack the input value to the given vector elements.  */
      size_t i;
      tree input = inst_expr;
      tree element_type = gccbrig_tree_type_for_hsa_type (brig_inst.type);
      tree element;
      tree last_assign = NULL_TREE;
      FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (output), i, element)
	{
	  tree element_ref
	    = build3 (BIT_FIELD_REF, element_type, input,
		      TYPE_SIZE (element_type),
		      bitsize_int (i * int_size_in_bytes (element_type)
				   *  BITS_PER_UNIT));

	  last_assign
	    = build_output_assignment (brig_inst, element, element_ref);
	}
      return last_assign;
    }
  else
    {
      /* All we do here is to bitcast the result and store it to the
	 'register' (variable).  Mainly need to take care of differing
	 bitwidths.  */
      size_t src_width = int_size_in_bytes (input_type);
      size_t dst_width = int_size_in_bytes (output_type);
      tree input = inst_expr;
      /* Integer results are extended to the target register width, using
	 the same sign as the inst_expr.  */
      if (INTEGRAL_TYPE_P (TREE_TYPE (input)) && src_width != dst_width)
	{
	  bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (input));
	  tree resized_type
	    = build_nonstandard_integer_type (dst_width * BITS_PER_UNIT,
					      unsigned_p);
	  input = convert_to_integer (resized_type, input);
	}
      input = build_resize_convert_view (output_type, input);
      tree assign = build2 (MODIFY_EXPR, output_type, output, input);
      m_parent.m_cf->append_statement (assign);
      return assign;
    }
  return NULL_TREE;
}

/* Appends a GENERIC statement (STMT) to the currently constructed function.  */

void
brig_code_entry_handler::append_statement (tree stmt)
{
  m_parent.m_cf->append_statement (stmt);
}

/* Visits the element(s) in the OPERAND, calling HANDLER to each of them.  */

tree
tree_element_unary_visitor::operator () (brig_code_entry_handler &handler,
					tree operand)
{
  if (VECTOR_TYPE_P (TREE_TYPE (operand)))
    {
      size_t vec_size = int_size_in_bytes (TREE_TYPE (operand));
      size_t element_size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (operand)));
      size_t element_count = vec_size / element_size;

      tree input_element_type = TREE_TYPE (TREE_TYPE (operand));
      tree output_element_type = NULL_TREE;

      vec<constructor_elt, va_gc> *constructor_vals = NULL;
      for (size_t i = 0; i < element_count; ++i)
	{
	  tree element = build3 (BIT_FIELD_REF, input_element_type, operand,
				 TYPE_SIZE (input_element_type),
				 bitsize_int (i * element_size
					      * BITS_PER_UNIT));

	  tree output = visit_element (handler, element);
	  output_element_type = TREE_TYPE (output);

	  CONSTRUCTOR_APPEND_ELT (constructor_vals, NULL_TREE, output);
	}

      tree vec_type = build_vector_type (output_element_type, element_count);

      /* build_constructor creates a vector type which is not a vector_cst
	 that requires compile time constant elements.  */
      tree vec = build_constructor (vec_type, constructor_vals);

      /* Add a temp variable for readability.  */
      tree tmp_var = create_tmp_var (vec_type, "vec_out");
      tree vec_tmp_assign
	= build2 (MODIFY_EXPR, TREE_TYPE (tmp_var), tmp_var, vec);
      handler.append_statement (vec_tmp_assign);
      return tmp_var;
    }
  else
    return visit_element (handler, operand);
}

/* Visits the element pair(s) in the OPERAND0 and OPERAND1, calling HANDLER
   to each of them.  */

tree
tree_element_binary_visitor::operator () (brig_code_entry_handler &handler,
					 tree operand0, tree operand1)
{
  if (VECTOR_TYPE_P (TREE_TYPE (operand0)))
    {
      gcc_assert (VECTOR_TYPE_P (TREE_TYPE (operand1)));
      size_t vec_size = int_size_in_bytes (TREE_TYPE (operand0));
      size_t element_size
	= int_size_in_bytes (TREE_TYPE (TREE_TYPE (operand0)));
      size_t element_count = vec_size / element_size;

      tree input_element_type = TREE_TYPE (TREE_TYPE (operand0));
      tree output_element_type = NULL_TREE;

      vec<constructor_elt, va_gc> *constructor_vals = NULL;
      for (size_t i = 0; i < element_count; ++i)
	{

	  tree element0 = build3 (BIT_FIELD_REF, input_element_type, operand0,
				  TYPE_SIZE (input_element_type),
				  bitsize_int (i * element_size
					       * BITS_PER_UNIT));

	  tree element1 = build3 (BIT_FIELD_REF, input_element_type, operand1,
				  TYPE_SIZE (input_element_type),
				  bitsize_int (i * element_size
					       * BITS_PER_UNIT));

	  tree output = visit_element (handler, element0, element1);
	  output_element_type = TREE_TYPE (output);

	  CONSTRUCTOR_APPEND_ELT (constructor_vals, NULL_TREE, output);
	}

      tree vec_type = build_vector_type (output_element_type, element_count);

      /* build_constructor creates a vector type which is not a vector_cst
	 that requires compile time constant elements.  */
      tree vec = build_constructor (vec_type, constructor_vals);

      /* Add a temp variable for readability.  */
      tree tmp_var = create_tmp_var (vec_type, "vec_out");
      tree vec_tmp_assign
	= build2 (MODIFY_EXPR, TREE_TYPE (tmp_var), tmp_var, vec);
      handler.append_statement (vec_tmp_assign);
      return tmp_var;
    }
  else
    return visit_element (handler, operand0, operand1);
}

/* Generates GENERIC code that flushes the visited element to zero.  */

tree
flush_to_zero::visit_element (brig_code_entry_handler &, tree operand)
{
  size_t size = int_size_in_bytes (TREE_TYPE (operand));
  if (size == 4)
    {
      tree built_in
	= (m_fp16) ? builtin_decl_explicit (BUILT_IN_HSAIL_FTZ_F32_F16) :
	builtin_decl_explicit (BUILT_IN_HSAIL_FTZ_F32);

      return call_builtin (built_in, 1, float_type_node, float_type_node,
			   operand);
    }
  else if (size == 8)
    {
      return call_builtin (builtin_decl_explicit (BUILT_IN_HSAIL_FTZ_F64), 1,
			   double_type_node, double_type_node, operand);
    }
  else
    gcc_unreachable ();
  return NULL_TREE;
}

/* Generates GENERIC code that converts a single precision float to half
   precision float.  */

tree
float_to_half::visit_element (brig_code_entry_handler &caller, tree operand)
{
  tree built_in = builtin_decl_explicit (BUILT_IN_HSAIL_F32_TO_F16);

  tree casted_operand = build_resize_convert_view (uint32_type_node, operand);

  tree call = call_builtin (built_in, 1, uint16_type_node, uint32_type_node,
			    casted_operand);
  tree output
    = create_tmp_var (TREE_TYPE (TREE_TYPE (built_in)), "fp16out");
  tree assign = build2 (MODIFY_EXPR, TREE_TYPE (output), output, call);
  caller.append_statement (assign);
  return output;
}

/* Generates GENERIC code that converts a half precision float to single
   precision float.  */

tree
half_to_float::visit_element (brig_code_entry_handler &caller, tree operand)
{
  tree built_in = builtin_decl_explicit (BUILT_IN_HSAIL_F16_TO_F32);
  tree truncated_source = convert_to_integer (uint16_type_node, operand);

  tree call
    = call_builtin (built_in, 1, uint32_type_node, uint16_type_node,
		    truncated_source);

  tree const_fp32_type
    = build_type_variant (brig_to_generic::s_fp32_type, 1, 0);

  tree output = create_tmp_var (const_fp32_type, "fp32out");
  tree casted_result
    = build_resize_convert_view (brig_to_generic::s_fp32_type, call);

  tree assign = build2 (MODIFY_EXPR, TREE_TYPE (output), output, casted_result);

  caller.append_statement (assign);

  return output;
}

/* Treats the INPUT as SRC_TYPE and sign or zero extends it to DEST_TYPE.  */

tree
brig_code_entry_handler::extend_int (tree input, tree dest_type, tree src_type)
{
  /* Extend integer conversions according to the destination's
     ext mode.  First we need to clip the input register to
     the possible smaller integer size to ensure the correct sign
     bit is extended.  */
  tree clipped_input = convert_to_integer (src_type, input);
  tree conversion_result;

  if (TYPE_UNSIGNED (src_type))
    conversion_result
      = convert_to_integer (unsigned_type_for (dest_type), clipped_input);
  else
    conversion_result
      = convert_to_integer (signed_type_for (dest_type), clipped_input);

  /* Treat the result as unsigned so we do not sign extend to the
     register width.  For some reason this GENERIC sequence sign
     extends to the s register:

     D.1541 = (signed char) s1;
     D.1542 = (signed short) D.1541;
     s0 = (unsigned int) D.1542
  */

  /* The converted result is then extended to the target register
     width, using the same sign as the destination.  */
  return convert_to_integer (dest_type, conversion_result);
}

/* Returns the integer constant value of the given node.
   If it's a cast, looks into the source of the cast.  */
HOST_WIDE_INT
brig_code_entry_handler::int_constant_value (tree node)
{
  tree n = node;
  if (TREE_CODE (n) == VIEW_CONVERT_EXPR)
    n = TREE_OPERAND (n, 0);
  return int_cst_value (n);
}