;; Machine description for ARM processor synchronization primitives.
;; Copyright (C) 2010-2020 Free Software Foundation, Inc.
;; Written by Marcus Shawcroft (marcus.shawcroft@arm.com)
;; 64bit Atomics by Dave Gilbert (david.gilbert@linaro.org)
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>. */
(define_mode_attr sync_predtab
[(QI "TARGET_HAVE_LDREXBH && TARGET_HAVE_MEMORY_BARRIER")
(HI "TARGET_HAVE_LDREXBH && TARGET_HAVE_MEMORY_BARRIER")
(SI "TARGET_HAVE_LDREX && TARGET_HAVE_MEMORY_BARRIER")
(DI "TARGET_HAVE_LDREXD && ARM_DOUBLEWORD_ALIGN
&& TARGET_HAVE_MEMORY_BARRIER")])
(define_code_iterator syncop [plus minus ior xor and])
(define_code_attr sync_optab
[(ior "or") (xor "xor") (and "and") (plus "add") (minus "sub")])
(define_mode_attr sync_sfx
[(QI "b") (HI "h") (SI "") (DI "d")])
(define_expand "memory_barrier"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MEMORY_BARRIER))]
"TARGET_HAVE_MEMORY_BARRIER"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*memory_barrier"
[(set (match_operand:BLK 0 "" "")
(unspec:BLK [(match_dup 0)] UNSPEC_MEMORY_BARRIER))]
"TARGET_HAVE_MEMORY_BARRIER"
{
if (TARGET_HAVE_DMB)
{
return "dmb\\tish";
}
if (TARGET_HAVE_DMB_MCR)
return "mcr\\tp15, 0, r0, c7, c10, 5";
gcc_unreachable ();
}
[(set_attr "length" "4")
(set_attr "conds" "unconditional")
(set_attr "predicable" "no")])
(define_insn "atomic_load<mode>"
[(set (match_operand:QHSI 0 "register_operand" "=r,r,l")
(unspec_volatile:QHSI
[(match_operand:QHSI 1 "arm_sync_memory_operand" "Q,Q,Q")
(match_operand:SI 2 "const_int_operand" "n,Pf,n")] ;; model
VUNSPEC_LDA))]
"TARGET_HAVE_LDACQ"
{
if (aarch_mm_needs_acquire (operands[2]))
{
if (TARGET_THUMB1)
return "lda<sync_sfx>\t%0, %1";
else
return "lda<sync_sfx>%?\t%0, %1";
}
else
{
if (TARGET_THUMB1)
return "ldr<sync_sfx>\t%0, %1";
else
return "ldr<sync_sfx>%?\t%0, %1";
}
}
[(set_attr "arch" "32,v8mb,any")
(set_attr "predicable" "yes")])
(define_insn "atomic_store<mode>"
[(set (match_operand:QHSI 0 "memory_operand" "=Q,Q,Q")
(unspec_volatile:QHSI
[(match_operand:QHSI 1 "general_operand" "r,r,l")
(match_operand:SI 2 "const_int_operand" "n,Pf,n")] ;; model
VUNSPEC_STL))]
"TARGET_HAVE_LDACQ"
{
if (aarch_mm_needs_release (operands[2]))
{
if (TARGET_THUMB1)
return "stl<sync_sfx>\t%1, %0";
else
return "stl<sync_sfx>%?\t%1, %0";
}
else
{
if (TARGET_THUMB1)
return "str<sync_sfx>\t%1, %0";
else
return "str<sync_sfx>%?\t%1, %0";
}
}
[(set_attr "arch" "32,v8mb,any")
(set_attr "predicable" "yes")])
;; An LDRD instruction usable by the atomic_loaddi expander on LPAE targets
(define_insn "arm_atomic_loaddi2_ldrd"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec_volatile:DI
[(match_operand:DI 1 "arm_sync_memory_operand" "Q")]
VUNSPEC_LDRD_ATOMIC))]
"ARM_DOUBLEWORD_ALIGN && TARGET_HAVE_LPAE"
"ldrd%?\t%0, %H0, %C1"
[(set_attr "predicable" "yes")])
;; There are three ways to expand this depending on the architecture
;; features available. As for the barriers, a load needs a barrier
;; after it on all non-relaxed memory models except when the load
;; has acquire semantics (for ARMv8-A).
(define_expand "atomic_loaddi"
[(match_operand:DI 0 "s_register_operand") ;; val out
(match_operand:DI 1 "mem_noofs_operand") ;; memory
(match_operand:SI 2 "const_int_operand")] ;; model
"(TARGET_HAVE_LDREXD || TARGET_HAVE_LPAE || TARGET_HAVE_LDACQEXD)
&& ARM_DOUBLEWORD_ALIGN"
{
memmodel model = memmodel_from_int (INTVAL (operands[2]));
/* For ARMv8-A we can use an LDAEXD to atomically load two 32-bit registers
when acquire or stronger semantics are needed. When the relaxed model is
used this can be relaxed to a normal LDRD. */
if (TARGET_HAVE_LDACQEXD)
{
if (is_mm_relaxed (model))
emit_insn (gen_arm_atomic_loaddi2_ldrd (operands[0], operands[1]));
else
emit_insn (gen_arm_load_acquire_exclusivedi (operands[0], operands[1]));
DONE;
}
/* On LPAE targets LDRD and STRD accesses to 64-bit aligned
locations are 64-bit single-copy atomic. We still need barriers in the
appropriate places to implement the ordering constraints. */
if (TARGET_HAVE_LPAE)
emit_insn (gen_arm_atomic_loaddi2_ldrd (operands[0], operands[1]));
else
emit_insn (gen_arm_load_exclusivedi (operands[0], operands[1]));
/* All non-relaxed models need a barrier after the load when load-acquire
instructions are not available. */
if (!is_mm_relaxed (model))
expand_mem_thread_fence (model);
DONE;
})
(define_expand "atomic_compare_and_swap<mode>"
[(match_operand:SI 0 "s_register_operand") ;; bool out
(match_operand:QHSD 1 "s_register_operand") ;; val out
(match_operand:QHSD 2 "mem_noofs_operand") ;; memory
(match_operand:QHSD 3 "general_operand") ;; expected
(match_operand:QHSD 4 "s_register_operand") ;; desired
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; mod_s
(match_operand:SI 7 "const_int_operand")] ;; mod_f
"<sync_predtab>"
{
arm_expand_compare_and_swap (operands);
DONE;
})
;; Constraints of this pattern must be at least as strict as those of the
;; cbranchsi operations in thumb1.md and aim to be as permissive.
(define_insn_and_split "@atomic_compare_and_swap<CCSI:arch><NARROW:mode>_1"
[(set (match_operand:CCSI 0 "cc_register_operand" "=&c,&l,&l") ;; bool out
(unspec_volatile:CCSI [(const_int 0)] VUNSPEC_ATOMIC_CAS))
(set (match_operand:SI 1 "s_register_operand" "=&r,&l,&l*h") ;; val out
(zero_extend:SI
(match_operand:NARROW 2 "mem_noofs_operand" "+Ua,Ua,Ua"))) ;; memory
(set (match_dup 2)
(unspec_volatile:NARROW
[(match_operand:SI 3 "arm_add_operand" "rIL,lILJ*h,*r") ;; expected
(match_operand:NARROW 4 "s_register_operand" "r,r,r") ;; desired
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; mod_s
(match_operand:SI 7 "const_int_operand")] ;; mod_f
VUNSPEC_ATOMIC_CAS))
(clobber (match_scratch:SI 8 "=&r,X,X"))]
"<NARROW:sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_compare_and_swap (operands);
DONE;
}
[(set_attr "arch" "32,v8mb,v8mb")])
(define_mode_attr cas_cmp_operand
[(SI "arm_add_operand") (DI "cmpdi_operand")])
(define_mode_attr cas_cmp_str
[(SI "rIL") (DI "rDi")])
;; Constraints of this pattern must be at least as strict as those of the
;; cbranchsi operations in thumb1.md and aim to be as permissive.
(define_insn_and_split "@atomic_compare_and_swap<CCSI:arch><SIDI:mode>_1"
[(set (match_operand:CCSI 0 "cc_register_operand" "=&c,&l,&l") ;; bool out
(unspec_volatile:CCSI [(const_int 0)] VUNSPEC_ATOMIC_CAS))
(set (match_operand:SIDI 1 "s_register_operand" "=&r,&l,&l*h") ;; val out
(match_operand:SIDI 2 "mem_noofs_operand" "+Ua,Ua,Ua")) ;; memory
(set (match_dup 2)
(unspec_volatile:SIDI
[(match_operand:SIDI 3 "<SIDI:cas_cmp_operand>" "<SIDI:cas_cmp_str>,lILJ*h,*r") ;; expect
(match_operand:SIDI 4 "s_register_operand" "r,r,r") ;; desired
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; mod_s
(match_operand:SI 7 "const_int_operand")] ;; mod_f
VUNSPEC_ATOMIC_CAS))
(clobber (match_scratch:SI 8 "=&r,X,X"))]
"<SIDI:sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_compare_and_swap (operands);
DONE;
}
[(set_attr "arch" "32,v8mb,v8mb")])
(define_insn_and_split "atomic_exchange<mode>"
[(set (match_operand:QHSD 0 "s_register_operand" "=&r,&r") ;; output
(match_operand:QHSD 1 "mem_noofs_operand" "+Ua,Ua")) ;; memory
(set (match_dup 1)
(unspec_volatile:QHSD
[(match_operand:QHSD 2 "s_register_operand" "r,r") ;; input
(match_operand:SI 3 "const_int_operand" "")] ;; model
VUNSPEC_ATOMIC_XCHG))
(clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:SI 4 "=&r,&l"))]
"<sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_atomic_op (SET, operands[0], NULL, operands[1],
operands[2], operands[3], operands[4]);
DONE;
}
[(set_attr "arch" "32,v8mb")])
;; The following mode and code attribute are defined here because they are
;; specific to atomics and are not needed anywhere else.
(define_mode_attr atomic_op_operand
[(QI "reg_or_int_operand")
(HI "reg_or_int_operand")
(SI "reg_or_int_operand")
(DI "s_register_operand")])
(define_mode_attr atomic_op_str
[(QI "rn") (HI "rn") (SI "rn") (DI "r")])
(define_code_attr thumb1_atomic_op_str
[(ior "l,l") (xor "l,l") (and "l,l") (plus "lIJL,r") (minus "lPd,lPd")])
(define_code_attr thumb1_atomic_newop_str
[(ior "&l,&l") (xor "&l,&l") (and "&l,&l") (plus "&l,&r") (minus "&l,&l")])
;; Constraints of this pattern must be at least as strict as those of the non
;; atomic operations in thumb1.md and aim to be as permissive.
(define_insn_and_split "atomic_<sync_optab><mode>"
[(set (match_operand:QHSD 0 "mem_noofs_operand" "+Ua,Ua,Ua")
(unspec_volatile:QHSD
[(syncop:QHSD (match_dup 0)
(match_operand:QHSD 1 "<atomic_op_operand>" "<atomic_op_str>,<thumb1_atomic_op_str>"))
(match_operand:SI 2 "const_int_operand")] ;; model
VUNSPEC_ATOMIC_OP))
(clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:QHSD 3 "=&r,<thumb1_atomic_newop_str>"))
(clobber (match_scratch:SI 4 "=&r,&l,&l"))]
"<sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_atomic_op (<CODE>, NULL, operands[3], operands[0],
operands[1], operands[2], operands[4]);
DONE;
}
[(set_attr "arch" "32,v8mb,v8mb")])
;; Constraints of this pattern must be at least as strict as those of the non
;; atomic NANDs in thumb1.md and aim to be as permissive.
(define_insn_and_split "atomic_nand<mode>"
[(set (match_operand:QHSD 0 "mem_noofs_operand" "+Ua,Ua")
(unspec_volatile:QHSD
[(not:QHSD
(and:QHSD (match_dup 0)
(match_operand:QHSD 1 "<atomic_op_operand>" "<atomic_op_str>,l")))
(match_operand:SI 2 "const_int_operand")] ;; model
VUNSPEC_ATOMIC_OP))
(clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:QHSD 3 "=&r,&l"))
(clobber (match_scratch:SI 4 "=&r,&l"))]
"<sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_atomic_op (NOT, NULL, operands[3], operands[0],
operands[1], operands[2], operands[4]);
DONE;
}
[(set_attr "arch" "32,v8mb")])
;; 3 alternatives are needed to represent constraints after split from
;; thumb1_addsi3: (i) case where operand1 and destination can be in different
;; registers, (ii) case where they are in the same low register and (iii) case
;; when they are in the same register without restriction on the register. We
;; disparage slightly alternatives that require copying the old value into the
;; register for the new value (see bind_old_new in arm_split_atomic_op).
(define_code_attr thumb1_atomic_fetch_op_str
[(ior "l,l,l") (xor "l,l,l") (and "l,l,l") (plus "lL,?IJ,?r") (minus "lPd,lPd,lPd")])
(define_code_attr thumb1_atomic_fetch_newop_str
[(ior "&l,&l,&l") (xor "&l,&l,&l") (and "&l,&l,&l") (plus "&l,&l,&r") (minus "&l,&l,&l")])
(define_code_attr thumb1_atomic_fetch_oldop_str
[(ior "&r,&r,&r") (xor "&r,&r,&r") (and "&r,&r,&r") (plus "&l,&r,&r") (minus "&l,&l,&l")])
;; Constraints of this pattern must be at least as strict as those of the non
;; atomic operations in thumb1.md and aim to be as permissive.
(define_insn_and_split "atomic_fetch_<sync_optab><mode>"
[(set (match_operand:QHSD 0 "s_register_operand" "=&r,<thumb1_atomic_fetch_oldop_str>")
(match_operand:QHSD 1 "mem_noofs_operand" "+Ua,Ua,Ua,Ua"))
(set (match_dup 1)
(unspec_volatile:QHSD
[(syncop:QHSD (match_dup 1)
(match_operand:QHSD 2 "<atomic_op_operand>" "<atomic_op_str>,<thumb1_atomic_fetch_op_str>"))
(match_operand:SI 3 "const_int_operand")] ;; model
VUNSPEC_ATOMIC_OP))
(clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:QHSD 4 "=&r,<thumb1_atomic_fetch_newop_str>"))
(clobber (match_scratch:SI 5 "=&r,&l,&l,&l"))]
"<sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_atomic_op (<CODE>, operands[0], operands[4], operands[1],
operands[2], operands[3], operands[5]);
DONE;
}
[(set_attr "arch" "32,v8mb,v8mb,v8mb")])
;; Constraints of this pattern must be at least as strict as those of the non
;; atomic NANDs in thumb1.md and aim to be as permissive.
(define_insn_and_split "atomic_fetch_nand<mode>"
[(set (match_operand:QHSD 0 "s_register_operand" "=&r,&r")
(match_operand:QHSD 1 "mem_noofs_operand" "+Ua,Ua"))
(set (match_dup 1)
(unspec_volatile:QHSD
[(not:QHSD
(and:QHSD (match_dup 1)
(match_operand:QHSD 2 "<atomic_op_operand>" "<atomic_op_str>,l")))
(match_operand:SI 3 "const_int_operand")] ;; model
VUNSPEC_ATOMIC_OP))
(clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:QHSD 4 "=&r,&l"))
(clobber (match_scratch:SI 5 "=&r,&l"))]
"<sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_atomic_op (NOT, operands[0], operands[4], operands[1],
operands[2], operands[3], operands[5]);
DONE;
}
[(set_attr "arch" "32,v8mb")])
;; Constraints of this pattern must be at least as strict as those of the non
;; atomic operations in thumb1.md and aim to be as permissive.
(define_insn_and_split "atomic_<sync_optab>_fetch<mode>"
[(set (match_operand:QHSD 0 "s_register_operand" "=&r,<thumb1_atomic_newop_str>")
(syncop:QHSD
(match_operand:QHSD 1 "mem_noofs_operand" "+Ua,Ua,Ua")
(match_operand:QHSD 2 "<atomic_op_operand>" "<atomic_op_str>,<thumb1_atomic_op_str>")))
(set (match_dup 1)
(unspec_volatile:QHSD
[(match_dup 1) (match_dup 2)
(match_operand:SI 3 "const_int_operand")] ;; model
VUNSPEC_ATOMIC_OP))
(clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:SI 4 "=&r,&l,&l"))]
"<sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_atomic_op (<CODE>, NULL, operands[0], operands[1],
operands[2], operands[3], operands[4]);
DONE;
}
[(set_attr "arch" "32,v8mb,v8mb")])
;; Constraints of this pattern must be at least as strict as those of the non
;; atomic NANDs in thumb1.md and aim to be as permissive.
(define_insn_and_split "atomic_nand_fetch<mode>"
[(set (match_operand:QHSD 0 "s_register_operand" "=&r,&l")
(not:QHSD
(and:QHSD
(match_operand:QHSD 1 "mem_noofs_operand" "+Ua,Ua")
(match_operand:QHSD 2 "<atomic_op_operand>" "<atomic_op_str>,l"))))
(set (match_dup 1)
(unspec_volatile:QHSD
[(match_dup 1) (match_dup 2)
(match_operand:SI 3 "const_int_operand")] ;; model
VUNSPEC_ATOMIC_OP))
(clobber (reg:CC CC_REGNUM))
(clobber (match_scratch:SI 4 "=&r,&l"))]
"<sync_predtab>"
"#"
"&& reload_completed"
[(const_int 0)]
{
arm_split_atomic_op (NOT, NULL, operands[0], operands[1],
operands[2], operands[3], operands[4]);
DONE;
}
[(set_attr "arch" "32,v8mb")])
(define_insn "arm_load_exclusive<mode>"
[(set (match_operand:SI 0 "s_register_operand" "=r,r")
(zero_extend:SI
(unspec_volatile:NARROW
[(match_operand:NARROW 1 "mem_noofs_operand" "Ua,Ua")]
VUNSPEC_LL)))]
"TARGET_HAVE_LDREXBH"
"@
ldrex<sync_sfx>%?\t%0, %C1
ldrex<sync_sfx>\t%0, %C1"
[(set_attr "arch" "32,v8mb")
(set_attr "predicable" "yes")])
(define_insn "arm_load_acquire_exclusive<mode>"
[(set (match_operand:SI 0 "s_register_operand" "=r,r")
(zero_extend:SI
(unspec_volatile:NARROW
[(match_operand:NARROW 1 "mem_noofs_operand" "Ua,Ua")]
VUNSPEC_LAX)))]
"TARGET_HAVE_LDACQ"
"@
ldaex<sync_sfx>%?\\t%0, %C1
ldaex<sync_sfx>\\t%0, %C1"
[(set_attr "arch" "32,v8mb")
(set_attr "predicable" "yes")])
(define_insn "arm_load_exclusivesi"
[(set (match_operand:SI 0 "s_register_operand" "=r,r")
(unspec_volatile:SI
[(match_operand:SI 1 "mem_noofs_operand" "Ua,Ua")]
VUNSPEC_LL))]
"TARGET_HAVE_LDREX"
"@
ldrex%?\t%0, %C1
ldrex\t%0, %C1"
[(set_attr "arch" "32,v8mb")
(set_attr "predicable" "yes")])
(define_insn "arm_load_acquire_exclusivesi"
[(set (match_operand:SI 0 "s_register_operand" "=r,r")
(unspec_volatile:SI
[(match_operand:SI 1 "mem_noofs_operand" "Ua,Ua")]
VUNSPEC_LAX))]
"TARGET_HAVE_LDACQ"
"@
ldaex%?\t%0, %C1
ldaex\t%0, %C1"
[(set_attr "arch" "32,v8mb")
(set_attr "predicable" "yes")])
(define_insn "arm_load_exclusivedi"
[(set (match_operand:DI 0 "s_register_operand" "=r")
(unspec_volatile:DI
[(match_operand:DI 1 "mem_noofs_operand" "Ua")]
VUNSPEC_LL))]
"TARGET_HAVE_LDREXD"
"ldrexd%?\t%0, %H0, %C1"
[(set_attr "predicable" "yes")])
(define_insn "arm_load_acquire_exclusivedi"
[(set (match_operand:DI 0 "s_register_operand" "=r")
(unspec_volatile:DI
[(match_operand:DI 1 "mem_noofs_operand" "Ua")]
VUNSPEC_LAX))]
"TARGET_HAVE_LDACQEXD && ARM_DOUBLEWORD_ALIGN"
"ldaexd%?\t%0, %H0, %C1"
[(set_attr "predicable" "yes")])
(define_insn "arm_store_exclusive<mode>"
[(set (match_operand:SI 0 "s_register_operand" "=&r")
(unspec_volatile:SI [(const_int 0)] VUNSPEC_SC))
(set (match_operand:QHSD 1 "mem_noofs_operand" "=Ua")
(unspec_volatile:QHSD
[(match_operand:QHSD 2 "s_register_operand" "r")]
VUNSPEC_SC))]
"<sync_predtab>"
{
if (<MODE>mode == DImode)
{
/* The restrictions on target registers in ARM mode are that the two
registers are consecutive and the first one is even; Thumb is
actually more flexible, but DI should give us this anyway.
Note that the 1st register always gets the
lowest word in memory. */
gcc_assert ((REGNO (operands[2]) & 1) == 0 || TARGET_THUMB2);
return "strexd%?\t%0, %2, %H2, %C1";
}
if (TARGET_THUMB1)
return "strex<sync_sfx>\t%0, %2, %C1";
else
return "strex<sync_sfx>%?\t%0, %2, %C1";
}
[(set_attr "predicable" "yes")])
(define_insn "arm_store_release_exclusivedi"
[(set (match_operand:SI 0 "s_register_operand" "=&r")
(unspec_volatile:SI [(const_int 0)] VUNSPEC_SLX))
(set (match_operand:DI 1 "mem_noofs_operand" "=Ua")
(unspec_volatile:DI
[(match_operand:DI 2 "s_register_operand" "r")]
VUNSPEC_SLX))]
"TARGET_HAVE_LDACQEXD && ARM_DOUBLEWORD_ALIGN"
{
/* See comment in arm_store_exclusive<mode> above. */
gcc_assert ((REGNO (operands[2]) & 1) == 0 || TARGET_THUMB2);
return "stlexd%?\t%0, %2, %H2, %C1";
}
[(set_attr "predicable" "yes")])
(define_insn "arm_store_release_exclusive<mode>"
[(set (match_operand:SI 0 "s_register_operand" "=&r,&r")
(unspec_volatile:SI [(const_int 0)] VUNSPEC_SLX))
(set (match_operand:QHSI 1 "mem_noofs_operand" "=Ua,Ua")
(unspec_volatile:QHSI
[(match_operand:QHSI 2 "s_register_operand" "r,r")]
VUNSPEC_SLX))]
"TARGET_HAVE_LDACQ"
"@
stlex<sync_sfx>%?\t%0, %2, %C1
stlex<sync_sfx>\t%0, %2, %C1"
[(set_attr "arch" "32,v8mb")
(set_attr "predicable" "yes")])