;; GCC machine description for i386 synchronization instructions.
;; Copyright (C) 2005-2020 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
(define_c_enum "unspec" [
UNSPEC_LFENCE
UNSPEC_SFENCE
UNSPEC_MFENCE
UNSPEC_FILD_ATOMIC
UNSPEC_FIST_ATOMIC
UNSPEC_LDX_ATOMIC
UNSPEC_STX_ATOMIC
;; __atomic support
UNSPEC_LDA
UNSPEC_STA
])
(define_c_enum "unspecv" [
UNSPECV_CMPXCHG
UNSPECV_XCHG
UNSPECV_LOCK
])
(define_expand "sse2_lfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
"TARGET_SSE2"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*sse2_lfence"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
"TARGET_SSE2"
"lfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "lfence")
(set_attr "memory" "unknown")])
(define_expand "sse_sfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
"TARGET_SSE || TARGET_3DNOW_A"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*sse_sfence"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
"TARGET_SSE || TARGET_3DNOW_A"
"sfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "fence")
(set_attr "memory" "unknown")])
(define_expand "sse2_mfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
"TARGET_SSE2"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "mfence_sse2"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
"TARGET_64BIT || TARGET_SSE2"
"mfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "fence")
(set_attr "memory" "unknown")])
(define_insn "mfence_nosse"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))
(clobber (reg:CC FLAGS_REG))]
"!(TARGET_64BIT || TARGET_SSE2)"
"lock{%;} or{l}\t{$0, (%%esp)|DWORD PTR [esp], 0}"
[(set_attr "memory" "unknown")])
(define_expand "mem_thread_fence"
[(match_operand:SI 0 "const_int_operand")] ;; model
""
{
enum memmodel model = memmodel_from_int (INTVAL (operands[0]));
/* Unless this is a SEQ_CST fence, the i386 memory model is strong
enough not to require barriers of any kind. */
if (is_mm_seq_cst (model))
{
rtx (*mfence_insn)(rtx);
rtx mem;
if (TARGET_64BIT || TARGET_SSE2)
mfence_insn = gen_mfence_sse2;
else
mfence_insn = gen_mfence_nosse;
mem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (mem) = 1;
emit_insn (mfence_insn (mem));
}
DONE;
})
;; ??? From volume 3 section 8.1.1 Guaranteed Atomic Operations,
;; Only beginning at Pentium family processors do we get any guarantee of
;; atomicity in aligned 64-bit quantities. Beginning at P6, we get a
;; guarantee for 64-bit accesses that do not cross a cacheline boundary.
;;
;; Note that the TARGET_CMPXCHG8B test below is a stand-in for "Pentium".
;;
;; Importantly, *no* processor makes atomicity guarantees for larger
;; accesses. In particular, there's no way to perform an atomic TImode
;; move, despite the apparent applicability of MOVDQA et al.
(define_mode_iterator ATOMIC
[QI HI SI
(DI "TARGET_64BIT || (TARGET_CMPXCHG8B && (TARGET_80387 || TARGET_SSE))")
])
(define_expand "atomic_load<mode>"
[(set (match_operand:ATOMIC 0 "nonimmediate_operand")
(unspec:ATOMIC [(match_operand:ATOMIC 1 "memory_operand")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_LDA))]
""
{
/* For DImode on 32-bit, we can use the FPU to perform the load. */
if (<MODE>mode == DImode && !TARGET_64BIT)
emit_insn (gen_atomic_loaddi_fpu
(operands[0], operands[1],
assign_386_stack_local (DImode, SLOT_TEMP)));
else
{
rtx dst = operands[0];
if (MEM_P (dst))
dst = gen_reg_rtx (<MODE>mode);
emit_move_insn (dst, operands[1]);
/* Fix up the destination if needed. */
if (dst != operands[0])
emit_move_insn (operands[0], dst);
}
DONE;
})
(define_insn_and_split "atomic_loaddi_fpu"
[(set (match_operand:DI 0 "nonimmediate_operand" "=x,m,?r")
(unspec:DI [(match_operand:DI 1 "memory_operand" "m,m,m")]
UNSPEC_LDA))
(clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
(clobber (match_scratch:DF 3 "=X,xf,xf"))]
"!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
"#"
"&& reload_completed"
[(const_int 0)]
{
rtx dst = operands[0], src = operands[1];
rtx mem = operands[2], tmp = operands[3];
if (SSE_REG_P (dst))
emit_move_insn (dst, src);
else
{
if (MEM_P (dst))
mem = dst;
if (STACK_REG_P (tmp))
{
emit_insn (gen_loaddi_via_fpu (tmp, src));
emit_insn (gen_storedi_via_fpu (mem, tmp));
}
else
{
emit_insn (gen_loaddi_via_sse (tmp, src));
emit_insn (gen_storedi_via_sse (mem, tmp));
}
if (mem != dst)
emit_move_insn (dst, mem);
}
DONE;
})
(define_expand "atomic_store<mode>"
[(set (match_operand:ATOMIC 0 "memory_operand")
(unspec:ATOMIC [(match_operand:ATOMIC 1 "nonimmediate_operand")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_STA))]
""
{
enum memmodel model = memmodel_from_int (INTVAL (operands[2]));
if (<MODE>mode == DImode && !TARGET_64BIT)
{
/* For DImode on 32-bit, we can use the FPU to perform the store. */
/* Note that while we could perform a cmpxchg8b loop, that turns
out to be significantly larger than this plus a barrier. */
emit_insn (gen_atomic_storedi_fpu
(operands[0], operands[1],
assign_386_stack_local (DImode, SLOT_TEMP)));
}
else
{
operands[1] = force_reg (<MODE>mode, operands[1]);
/* For seq-cst stores, use XCHG when we lack MFENCE. */
if (is_mm_seq_cst (model)
&& (!(TARGET_64BIT || TARGET_SSE2)
|| TARGET_AVOID_MFENCE))
{
emit_insn (gen_atomic_exchange<mode> (gen_reg_rtx (<MODE>mode),
operands[0], operands[1],
operands[2]));
DONE;
}
/* Otherwise use a store. */
emit_insn (gen_atomic_store<mode>_1 (operands[0], operands[1],
operands[2]));
}
/* ... followed by an MFENCE, if required. */
if (is_mm_seq_cst (model))
emit_insn (gen_mem_thread_fence (operands[2]));
DONE;
})
(define_insn "atomic_store<mode>_1"
[(set (match_operand:SWI 0 "memory_operand" "=m")
(unspec:SWI [(match_operand:SWI 1 "<nonmemory_operand>" "<r><i>")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_STA))]
""
"%K2mov{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_insn_and_split "atomic_storedi_fpu"
[(set (match_operand:DI 0 "memory_operand" "=m,m,m")
(unspec:DI [(match_operand:DI 1 "nonimmediate_operand" "x,m,?r")]
UNSPEC_STA))
(clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
(clobber (match_scratch:DF 3 "=X,xf,xf"))]
"!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
"#"
"&& reload_completed"
[(const_int 0)]
{
rtx dst = operands[0], src = operands[1];
rtx mem = operands[2], tmp = operands[3];
if (SSE_REG_P (src))
emit_move_insn (dst, src);
else
{
if (REG_P (src))
{
emit_move_insn (mem, src);
src = mem;
}
if (STACK_REG_P (tmp))
{
emit_insn (gen_loaddi_via_fpu (tmp, src));
emit_insn (gen_storedi_via_fpu (dst, tmp));
}
else
{
emit_insn (gen_loaddi_via_sse (tmp, src));
emit_insn (gen_storedi_via_sse (dst, tmp));
}
}
DONE;
})
;; ??? You'd think that we'd be able to perform this via FLOAT + FIX_TRUNC
;; operations. But the fix_trunc patterns want way more setup than we want
;; to provide. Note that the scratch is DFmode instead of XFmode in order
;; to make it easy to allocate a scratch in either SSE or FP_REGs above.
(define_insn "loaddi_via_fpu"
[(set (match_operand:DF 0 "register_operand" "=f")
(unspec:DF [(match_operand:DI 1 "memory_operand" "m")]
UNSPEC_FILD_ATOMIC))]
"TARGET_80387"
"fild%Z1\t%1"
[(set_attr "type" "fmov")
(set_attr "mode" "DF")
(set_attr "fp_int_src" "true")])
(define_insn "storedi_via_fpu"
[(set (match_operand:DI 0 "memory_operand" "=m")
(unspec:DI [(match_operand:DF 1 "register_operand" "f")]
UNSPEC_FIST_ATOMIC))]
"TARGET_80387"
{
gcc_assert (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != NULL_RTX);
return "fistp%Z0\t%0";
}
[(set_attr "type" "fmov")
(set_attr "mode" "DI")])
(define_insn "loaddi_via_sse"
[(set (match_operand:DF 0 "register_operand" "=x")
(unspec:DF [(match_operand:DI 1 "memory_operand" "m")]
UNSPEC_LDX_ATOMIC))]
"TARGET_SSE"
{
if (TARGET_SSE2)
return "%vmovq\t{%1, %0|%0, %1}";
return "movlps\t{%1, %0|%0, %1}";
}
[(set_attr "type" "ssemov")
(set_attr "mode" "DI")])
(define_insn "storedi_via_sse"
[(set (match_operand:DI 0 "memory_operand" "=m")
(unspec:DI [(match_operand:DF 1 "register_operand" "x")]
UNSPEC_STX_ATOMIC))]
"TARGET_SSE"
{
if (TARGET_SSE2)
return "%vmovq\t{%1, %0|%0, %1}";
return "movlps\t{%1, %0|%0, %1}";
}
[(set_attr "type" "ssemov")
(set_attr "mode" "DI")])
(define_expand "atomic_compare_and_swap<mode>"
[(match_operand:QI 0 "register_operand") ;; bool success output
(match_operand:SWI124 1 "register_operand") ;; oldval output
(match_operand:SWI124 2 "memory_operand") ;; memory
(match_operand:SWI124 3 "register_operand") ;; expected input
(match_operand:SWI124 4 "register_operand") ;; newval input
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; success model
(match_operand:SI 7 "const_int_operand")] ;; failure model
"TARGET_CMPXCHG"
{
emit_insn
(gen_atomic_compare_and_swap<mode>_1
(operands[1], operands[2], operands[3], operands[4], operands[6]));
ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
const0_rtx);
DONE;
})
(define_mode_iterator CASMODE
[(DI "TARGET_64BIT || TARGET_CMPXCHG8B")
(TI "TARGET_64BIT && TARGET_CMPXCHG16B")])
(define_mode_attr CASHMODE [(DI "SI") (TI "DI")])
(define_expand "atomic_compare_and_swap<mode>"
[(match_operand:QI 0 "register_operand") ;; bool success output
(match_operand:CASMODE 1 "register_operand") ;; oldval output
(match_operand:CASMODE 2 "memory_operand") ;; memory
(match_operand:CASMODE 3 "register_operand") ;; expected input
(match_operand:CASMODE 4 "register_operand") ;; newval input
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; success model
(match_operand:SI 7 "const_int_operand")] ;; failure model
"TARGET_CMPXCHG"
{
if (<MODE>mode == DImode && TARGET_64BIT)
{
emit_insn
(gen_atomic_compare_and_swapdi_1
(operands[1], operands[2], operands[3], operands[4], operands[6]));
}
else
{
machine_mode hmode = <CASHMODE>mode;
emit_insn
(gen_atomic_compare_and_swap<mode>_doubleword
(operands[1], operands[2], operands[3],
gen_lowpart (hmode, operands[4]), gen_highpart (hmode, operands[4]),
operands[6]));
}
ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
const0_rtx);
DONE;
})
;; For double-word compare and swap, we are obliged to play tricks with
;; the input newval (op3:op4) because the Intel register numbering does
;; not match the gcc register numbering, so the pair must be CX:BX.
(define_mode_attr doublemodesuffix [(SI "8") (DI "16")])
(define_insn "atomic_compare_and_swap<dwi>_doubleword"
[(set (match_operand:<DWI> 0 "register_operand" "=A")
(unspec_volatile:<DWI>
[(match_operand:<DWI> 1 "memory_operand" "+m")
(match_operand:<DWI> 2 "register_operand" "0")
(match_operand:DWIH 3 "register_operand" "b")
(match_operand:DWIH 4 "register_operand" "c")
(match_operand:SI 5 "const_int_operand")]
UNSPECV_CMPXCHG))
(set (match_dup 1)
(unspec_volatile:<DWI> [(const_int 0)] UNSPECV_CMPXCHG))
(set (reg:CCZ FLAGS_REG)
(unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG))]
"TARGET_CMPXCHG<doublemodesuffix>B"
"lock{%;} %K5cmpxchg<doublemodesuffix>b\t%1")
(define_insn "atomic_compare_and_swap<mode>_1"
[(set (match_operand:SWI 0 "register_operand" "=a")
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m")
(match_operand:SWI 2 "register_operand" "0")
(match_operand:SWI 3 "register_operand" "<r>")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_CMPXCHG))
(set (match_dup 1)
(unspec_volatile:SWI [(const_int 0)] UNSPECV_CMPXCHG))
(set (reg:CCZ FLAGS_REG)
(unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG))]
"TARGET_CMPXCHG"
"lock{%;} %K4cmpxchg{<imodesuffix>}\t{%3, %1|%1, %3}")
;; For operand 2 nonmemory_operand predicate is used instead of
;; register_operand to allow combiner to better optimize atomic
;; additions of constants.
(define_insn "atomic_fetch_add<mode>"
[(set (match_operand:SWI 0 "register_operand" "=<r>")
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m")
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_operand:SWI 2 "nonmemory_operand" "0")))
(clobber (reg:CC FLAGS_REG))]
"TARGET_XADD"
"lock{%;} %K3xadd{<imodesuffix>}\t{%0, %1|%1, %0}")
;; This peephole2 and following insn optimize
;; __sync_fetch_and_add (x, -N) == N into just lock {add,sub,inc,dec}
;; followed by testing of flags instead of lock xadd and comparisons.
(define_peephole2
[(set (match_operand:SWI 0 "register_operand")
(match_operand:SWI 2 "const_int_operand"))
(parallel [(set (match_dup 0)
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 0)))
(clobber (reg:CC FLAGS_REG))])
(set (reg:CCZ FLAGS_REG)
(compare:CCZ (match_dup 0)
(match_operand:SWI 3 "const_int_operand")))]
"peep2_reg_dead_p (3, operands[0])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[3])
&& !reg_overlap_mentioned_p (operands[0], operands[1])"
[(parallel [(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI [(match_dup 1) (match_dup 4)]
UNSPECV_XCHG)
(match_dup 3)))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 2)))])])
;; Likewise, but for the -Os special case of *mov<mode>_or.
(define_peephole2
[(parallel [(set (match_operand:SWI 0 "register_operand")
(match_operand:SWI 2 "constm1_operand"))
(clobber (reg:CC FLAGS_REG))])
(parallel [(set (match_dup 0)
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 0)))
(clobber (reg:CC FLAGS_REG))])
(set (reg:CCZ FLAGS_REG)
(compare:CCZ (match_dup 0)
(match_operand:SWI 3 "const_int_operand")))]
"peep2_reg_dead_p (3, operands[0])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[3])
&& !reg_overlap_mentioned_p (operands[0], operands[1])"
[(parallel [(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI [(match_dup 1) (match_dup 4)]
UNSPECV_XCHG)
(match_dup 3)))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 2)))])])
(define_insn "*atomic_fetch_add_cmp<mode>"
[(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI
[(match_operand:SWI 0 "memory_operand" "+m")
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG)
(match_operand:SWI 2 "const_int_operand" "i")))
(set (match_dup 0)
(plus:SWI (match_dup 0)
(match_operand:SWI 1 "const_int_operand" "i")))]
"(unsigned HOST_WIDE_INT) INTVAL (operands[1])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[2])"
{
if (incdec_operand (operands[1], <MODE>mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K3inc{<imodesuffix>}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K3dec{<imodesuffix>}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], <MODE>mode))
return "lock{%;} %K3sub{<imodesuffix>}\t{%1, %0|%0, %1}";
return "lock{%;} %K3add{<imodesuffix>}\t{%1, %0|%0, %1}";
})
;; Recall that xchg implicitly sets LOCK#, so adding it again wastes space.
;; In addition, it is always a full barrier, so we can ignore the memory model.
(define_insn "atomic_exchange<mode>"
[(set (match_operand:SWI 0 "register_operand" "=<r>") ;; output
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m") ;; memory
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG))
(set (match_dup 1)
(match_operand:SWI 2 "register_operand" "0"))] ;; input
""
"%K3xchg{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_insn "atomic_add<mode>"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(plus:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" "<r><i>"))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
{
if (incdec_operand (operands[1], <MODE>mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K2inc{<imodesuffix>}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K2dec{<imodesuffix>}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], <MODE>mode))
return "lock{%;} %K2sub{<imodesuffix>}\t{%1, %0|%0, %1}";
return "lock{%;} %K2add{<imodesuffix>}\t{%1, %0|%0, %1}";
})
(define_insn "atomic_sub<mode>"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(minus:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" "<r><i>"))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
{
if (incdec_operand (operands[1], <MODE>mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K2dec{<imodesuffix>}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K2inc{<imodesuffix>}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], <MODE>mode))
return "lock{%;} %K2add{<imodesuffix>}\t{%1, %0|%0, %1}";
return "lock{%;} %K2sub{<imodesuffix>}\t{%1, %0|%0, %1}";
})
(define_insn "atomic_<logic><mode>"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(any_logic:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" "<r><i>"))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
"lock{%;} %K2<logic>{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_expand "atomic_bit_test_and_set<mode>"
[(match_operand:SWI248 0 "register_operand")
(match_operand:SWI248 1 "memory_operand")
(match_operand:SWI248 2 "nonmemory_operand")
(match_operand:SI 3 "const_int_operand") ;; model
(match_operand:SI 4 "const_int_operand")]
""
{
emit_insn (gen_atomic_bit_test_and_set<mode>_1 (operands[1], operands[2],
operands[3]));
rtx tem = gen_reg_rtx (QImode);
ix86_expand_setcc (tem, EQ, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx);
rtx result = convert_modes (<MODE>mode, QImode, tem, 1);
if (operands[4] == const0_rtx)
result = expand_simple_binop (<MODE>mode, ASHIFT, result,
operands[2], operands[0], 0, OPTAB_WIDEN);
if (result != operands[0])
emit_move_insn (operands[0], result);
DONE;
})
(define_insn "atomic_bit_test_and_set<mode>_1"
[(set (reg:CCC FLAGS_REG)
(compare:CCC
(unspec_volatile:SWI248
[(match_operand:SWI248 0 "memory_operand" "+m")
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_XCHG)
(const_int 0)))
(set (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_operand:SWI248 1 "nonmemory_operand" "rN"))
(const_int 1))]
""
"lock{%;} %K2bts{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_expand "atomic_bit_test_and_complement<mode>"
[(match_operand:SWI248 0 "register_operand")
(match_operand:SWI248 1 "memory_operand")
(match_operand:SWI248 2 "nonmemory_operand")
(match_operand:SI 3 "const_int_operand") ;; model
(match_operand:SI 4 "const_int_operand")]
""
{
emit_insn (gen_atomic_bit_test_and_complement<mode>_1 (operands[1],
operands[2],
operands[3]));
rtx tem = gen_reg_rtx (QImode);
ix86_expand_setcc (tem, EQ, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx);
rtx result = convert_modes (<MODE>mode, QImode, tem, 1);
if (operands[4] == const0_rtx)
result = expand_simple_binop (<MODE>mode, ASHIFT, result,
operands[2], operands[0], 0, OPTAB_WIDEN);
if (result != operands[0])
emit_move_insn (operands[0], result);
DONE;
})
(define_insn "atomic_bit_test_and_complement<mode>_1"
[(set (reg:CCC FLAGS_REG)
(compare:CCC
(unspec_volatile:SWI248
[(match_operand:SWI248 0 "memory_operand" "+m")
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_XCHG)
(const_int 0)))
(set (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_operand:SWI248 1 "nonmemory_operand" "rN"))
(not:SWI248 (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_dup 1))))]
""
"lock{%;} %K2btc{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_expand "atomic_bit_test_and_reset<mode>"
[(match_operand:SWI248 0 "register_operand")
(match_operand:SWI248 1 "memory_operand")
(match_operand:SWI248 2 "nonmemory_operand")
(match_operand:SI 3 "const_int_operand") ;; model
(match_operand:SI 4 "const_int_operand")]
""
{
emit_insn (gen_atomic_bit_test_and_reset<mode>_1 (operands[1], operands[2],
operands[3]));
rtx tem = gen_reg_rtx (QImode);
ix86_expand_setcc (tem, EQ, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx);
rtx result = convert_modes (<MODE>mode, QImode, tem, 1);
if (operands[4] == const0_rtx)
result = expand_simple_binop (<MODE>mode, ASHIFT, result,
operands[2], operands[0], 0, OPTAB_WIDEN);
if (result != operands[0])
emit_move_insn (operands[0], result);
DONE;
})
(define_insn "atomic_bit_test_and_reset<mode>_1"
[(set (reg:CCC FLAGS_REG)
(compare:CCC
(unspec_volatile:SWI248
[(match_operand:SWI248 0 "memory_operand" "+m")
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_XCHG)
(const_int 0)))
(set (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_operand:SWI248 1 "nonmemory_operand" "rN"))
(const_int 0))]
""
"lock{%;} %K2btr{<imodesuffix>}\t{%1, %0|%0, %1}")